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So, welcome to today’s lecture on where what we are going to do is wrap up the problem in some

sense, not completely, slightly wrap up because the rest of the things you guys with wrap up as a

homework. What I want to do is just take you through the process of finding the base solution as

well as the first order solution, okay. Then, we will make some observations and then we will

keep moving.

(Refer Slide Time: 00:50)

So, let us proceed with finding the solution here. The base solution remember corresponds to the

problem when Epsilon=0. So, if our method is right, you expect that the base solution falls back,

collapses to the flow between two infinite parallel plates, okay, the flat and that is exactly what is

happening.  This upper  half  is  what  we are looking at  and at  y=0 you have the (())  (01:15)

boundary condition and y=0 you have the symmetry condition and that is differential equation

which has to be satisfied.

This is actually a total derivative. It is not a partial derivative and you can therefore integrate it

out directly, right. So, before somebody points it out and makes this remark. So, now dw0/dy we



integrate the differential equation twice and what do we get w0=-y square/2+C1y+C2 and when I

impose these boundary conditions, I have w0 prime at y=0=0 and this implies that c1=0.

When I differentiate this, substitute y=0, I get C1 and if that has to be 0, C1 has to be 0 and from

the other boundary condition, at y=1/2, I have w0=0, so I have w0 of y=1/2=0 implies 0=1/2-

1/8+C2 or C2 is 1/8 and what this means is that w0 is actually 1/2 of 1/4-y square. So, that is my

parabolic profile, that is my base solution and I think that is perfect. So, we want to do now is we

want to go ahead and construct the solution for w1, okay and remember I need this information

to find out w1 and that is how it is.

(Refer Slide Time: 03:58)

Whenever  you are  doing a  perturbation  series,  what  you are  doing is  you are  converting  a

problem into a hierarchy of problems, use this information to construct the next fellow, right and

where does this information come in. This information comes in here. So, our need to calculate

dw0/dy and y=1/2 and this is evaluated y=1/2. So, basically what I am going to do is calculate

dw0/dy and y=0 and what is dw0/dy, is -2y/2 is nothing buy –y, is nothing but -1/2, okay. 

So, I substitute -1/2 here because this entire thing is evaluated at y=1/2. Therefore, evaluated at

y=1/2 and dw0/dy I have just found out is -1/2, okay. I know w0 from my earlier solution and so,

this boundary condition basically reduces to w1=sin2 pi x/4 at y=1/2. The other fellow remains

as  it  is.  This  guy  w1  dash=0  at  y=0.  What  I  want  you  to  observe  is  that  now we  have  a



homogenous differential equation, okay.

This differential equation is homogenous when right hand side is zero, but the non-homogeneity

is in the boundary condition here. This boundary condition is homogenous. If this also had been

zero, what would have happened, the solution to this system of differential equation and this

boundary condition would be the trigger solution w1=0. The fact that this guy is non-zero gives

me a non-zero value for w1, okay. So, I just want to point out that this is non-homogenous and

ensures w1 is != 0. 

This is homogenous and this is also homogenous. The other nice thing of course is that this

problem is linear. There is no non-linearity in it. So, now the question arises I have this guy

evaluate  y=1/2  which  is  nice  because  I  can  now substitute  this.  What  I  have  to  do  now is

remember w1 depends upon both x and y, okay and if you remember the physical problem, the

periodicity was in x direction, the flow is in the z direction, okay.

So, one of the things that we can visualized is that this particular velocity at the boundary is

periodic is possibly going to persist throughout the domain, throughout y, that is whatever is the

periodicity of the velocity in the x direction, this periodicity is going to be present everywhere

but w1 is a function of y as well.
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So, we can look for a solution of the form where w1 of x, y is of the form sum F of y*sin2 pi x,

okay. That means the periodicity in the boundary condition prevails everywhere in the domain.

See I have fully developed (()) (08:43) in the z direction, the dependence in x and y and when x

direction if it is getting periodicity at the boundary, I am just going to say that the same thing

happens everywhere.

Now, first of all what does this mean, what I can do is whether this is correct or not or whether

such a solution is possible or not, I can find by substituting this form there and see if I can

actually get an F of y. Supposing I am not able to proceed further that means this assumption is

wrong, okay. Then, I have to come back and do something else. So, that is one way to actually

find out if this is indeed possible.  So, you know you make an assumption of this  kind, you

proceed further, you get stuck, you come back and then you make a change.

So, clearly what we are going to do is we are going to substitute this here and what does this

means  in  terms  of  differential  equation.  Let  us  substitute  this  form of  the  solution  in  this

equation. I get d/l whole square, d square w1/dx square, when I do a second derivative, I get 2 pi

cosine,  I will  get  -2 pi again cosine.  So,  I  get  -4pi square*F of y*sin 2 pi x+d square F/dy

square*sin 2 pi x=0. All I have done is substituted this form in my equation for w, okay.

So, substitute w1. So, that is perfectly fine. Now, remember so what happening is sin 2 pi x is

present and sin 2 pi x is not zero, actually knock it off. Supposing these have not been second

derivative, your equation actually was with the first derivative, then such a solution would not

have exited. Because on differentiating we got cosine and cosine and sin you could not have

factored out, okay. So, the fact that I have a diffusive process, viscosity actually have a second

derivative process, I actually can get this.

So, that is something which I want to point out to you, okay. If it is a first order if it is just

conviction, then this would not have happened, okay. So, this sin2 pi x is != 0 and therefore what

I get is F double prime is that term -2 pi d/l whole square F=0, okay, that is my equation for F

and what is boundary condition on F. I need to use these boundary conditions, w1 dash=0 at y=0

with derivative with respect to y.



So, F dash of 0=0, okay and w1 is sin2 pi x and y=1/2, so if w1 is sin2 pi x/4. So, this must be =

sin2 pi x/4. I have F of y=1/4 at y=1/2, okay. So, at y=1/2 w1 sin2 pi x/4, so F of y has to be that,

so F has to be 1/4. So, basically what I have done and this is something which I want you to see

because later on when there would be other problems, we will be following the same strategy.

You have started up with a partial  differential  equation and we are going to reduce it  to an

ordinary differential equation, okay.

That is one way to help find out analytical solution, okay. We will see this in more detail later but

basically that is only one periodic mode which is present in the system. Since my equation is

linear, okay, I am looking for a solution which has only that mode, okay. If my equation was non-

linear,  then  the  different  modes  would  have  interacted  and  I  could  have  got  in  different

waveforms, not just sin2 pi x, I may have got sin4 pi x, I may have got sin8 pi x, okay.

But because my equation is linear and I am giving this kind of a disturbance which is having a

shape of sin2 pi x, I am expecting my response to also have sin2 pi x, but if my equation has

been non-linear, I would have got in other terms, okay. So, one of the things which allows me to

do this is actually the fact that the equation is linear, okay. Now, this equation is something which

everybody can solve with our eyes closed, except me, alright.
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So, how do you solve that equation. I mean you just seek a solution of the form E par mx, 2pi d/l

number is  constant.  So,  seek F of y as e power m y and what would you get.  You get the

characteristic equation just as m square-2pi d/l whole square=0. So, ms plus or minus 2pi d/l,

okay and F or y is of the form Ae power 2pi d/ly+Be power 2pi d/ly, okay. That is your thing

from calculus, whatever you have learned.

Now, I need to find A and B and if I know A and B, then I can go back, I know F, I know w1 and

that is what I wanted to get. So, how to get A and B, you have to use those boundary conditions,

let us use the boundary condition which is homogenous which is F dash of 0=0, okay. So, F dash

of y is A*2pi d/l e power 2pi d/ly-B 2 pi d/l e power -2pi d/l*y, that is F dash of y, okay. I want to

evaluate this at 0. So, F dash of 0 is nothing but A-B*2pi d/l. 

This has to be 0 which means A has to be = B. This equals 0 implies A=B. So, that is good, I got

one constant and now I need to put the other boundary condition and get the constant, okay. So,

let us do that.

(Refer Slide Time: 16:26)

So, from the other boundary condition, so I have F of y is now therefore A=B right. So, A*e

power 2pi dy/l+A power -2pi dy/left, okay. So, what is the funda now. F of 1/2 is 1/4. I have to

evaluate  this  at  1/2.  So,  F  of  1/2=1/4=A*e power  pi  d/l+e  power  –pi  d/l.  I  am sticking  to

exponentials as we people are comfortable, you could have worked with hyperbolic functions as



well. So, that tells me what is A, okay. I can use this to get A.

I can go back and substitute it by here and get this thing. So, this implies that A is 1/4 of e power

pi d/l+e power –pi d/l, okay and F of y is therefore A, okay. So, you can just observe that this is

cos hyperbolic, okay and you will get cos hyperbolic and this also (()) (18:32) cos hyperbolic so

that the factor of 2 which comes it gets cancelled off with the definition of cos hyperbolic. So,

this is 1/4 of cos hyperbolic 2pi dy/l/cos hyperbolic pi d/l, okay, that is what we have.

So, this is w1 for you and now you have found the correction to the velocity to the first order

because now w is w0 which was your parabolic profile plus epsilon w1. You should similarly go

ahead and find w2, okay. Again, you have homogenous equation, one of the boundary condition

is  homogenous.  One  boundary  condition  will  be  non-homogenous  but  for  this  boundary

condition, you need the information from w0 and w1 and this information you would use to go

find a solution, okay.

(Refer Slide Time: 19:35)

Just one last observation before we proceed further. I want you to realise that w1 is going to be of

the form 1/4 cos hyperbolic 2pi d/ly/cos hyperbolic pi d/l*sin2 pi x. Like I had mentioned earlier,

one of the things we are interested in finding out not only is actual velocity profile but to find out

if there is by having these kinds of corrugations, is there any change in the flow rate which is

passing through the channel, okay.



You are going to look at flow rate per unit wavelength because you have an infinite channel

which  is  extending  to  infinity  in  the  x  direction  in  this  periodicity.  So,  it  makes  sense  to

concentrate on one wavelength here through the gap of D and see what the flow rate is. So, how

do we find the flow rate. You would find the flow rate by taking this velocity and integrating this

out in x and y direction, okay.

Now, what you are going to observe is that since you have the dependency and the solution is of

variable separable form, some function of x multiplied by function of y. So, when you going to

integrate this out in the x and y directions,  you would be able to integrate this out in the y

direction, you would be able to integrate this out in the x direction separately, okay. When you do

the integrate out in the x direction, you are going to see that this is periodic and therefore sin2 pi

x when you are integrating from 0 to 1/2 or -1/2 to +1/2 because you are looking at the whole

channel remember, okay.

So, in the x direction from 0 to l, in the y direction is from -1/2 to +1/2. Here it is from 0 to l, you

will find that this guy is not going to make any contribution. So, what this means is that because

this is integral will go to 0. So, what this means is the first order affect that is going to be no

change in the flow rate that we are going to see. If you want to go to the second order affect

which you have to go because there is a homework problem, you will find that it is going to

make a difference to the flow rate.

So, the flow rate is going to be affected only at the second order, okay. So, point I am going to

make here is at order epsilon the flow rate is not affected since sin2 pi x and if I am working in

dimensionless coordinates is from 0 to 1, okay equals 0. At order epsilon square, the flow rate

will be affected and that is something I am telling you I want you to proof to yourself that this is

indeed true. So, all you need to do is find what w2 is.

What we will find is that the x dependency is in the form of a square, may be sin square or cos

square. So, when you integrate it out, you are not going to get a 0 value, okay, you just need to

solve again the same process. So, this is a part which has been wrapped up and this portion you



guys have  the  wrap up.  I  think  I  just  want  to  make one  more  remark  that  the  (())  (23:24)

perturbation method is extremely important when it comes to solving stability problems.

I think it is kind of the basis for solving stability problems because remember now I have a flat

surface and I  gave a  small  perturbation which was periodic  and then I  was able to actually

construct  solutions,  okay. So, when we are talking about multiphase flow problems, like the

problem of the jet breaking up into drops.

What  do you have,  you have a  cylindrical  surface  which is  your  base solution  without  any

epsilon in it which is defined as r=r0 which is constant and now you give a small perturbation

which could be periodic and then you are going to ask the question is this perturbation going to

make the jet breakup or not.

So, you can see now, we are actually interested, whenever you are talking about multiphase flow

problems where  there  is  an  interface  and the  base state  is  normally  going to  correspond to

boundary which is like y=1/2 but when I give a perturbation, it is going to be y=1/2 plus some

perturbation, okay. So, now when you want to find out whether something is stable or unstable,

you need to therefore use the domain perturbation method that we just spoke about to actually do

the calculation. So, that is where all these things are fitting in.

I am just trying to tell you this to show you that whatever we are doing here is actually fitting in.

So, the first part of the course, we just did a small revision of some of the concepts you have

learned and we extended it  to  the boundary conditions  when you have actually  an interface

which is not necessarily corresponding to a coordinate access, okay and I told you how to find

the normal stress and the tangential stress when you have some surface of the form y=F of x.

That is because when I am going to actually solve the problem I am going to be using normal

stresses for balancing,  tangential  stresses for balancing,  okay, not stresses in x direction,  not

stresses in y direction is a normal stress and the tangential stress so that is what we use. Then we

came to a perturbation because this is going to be basically the starting point for stability. So, let

me discuss a little bit about stability and then what we will do is we will start solving some



problems on stability, okay.

(Refer Slide Time: 26:00)

So, the perturbation method is to just give you some insight about how you can convert a non-

linear problem into a bunch of linear problems. So, you remember that viscosity problem was

actually non-linear because you have du/dy whole square term. So, then what we did was we

converted it into a bunch of linear problems and then we got analytical solutions, okay. So, that is

one of the things we are going to do when you are talking about stability.

So, let us quickly jump into stability. So, first of all I want to clarify that when we talk about

stability, we are talking about stability is with respect to a state of the system. What does this

mean. People normally talk about stability  of a system. This system is stable,  this  system is

unstable, okay but what I am saying is you should talk about stability of a particular state, may

be a steady state.  So, if you have a steady state,  let  us say had a steady state like you have

laminar flow in a pipe, that might be the easiest example, okay.

So, if you have a laminar flow in a pipe and because you are doing multiphase flows, we start

with single phase and then we go to multiphase. So, laminar flows are a steady state of the flow

in a pipe, okay. It is always a steady state. What does this mean. You can calculate like today we

found out this parabolic velocity profile, okay. This parabolic velocity profile was dimensionless,

so it did not have this G and all that as pressure drop but otherwise it would have had a pressure



drop.

So, no matter what the pressure drop is that is a solution to the equation if you have a flat plate,

you  understand.  So,  what  I  am  saying  is  the  parabolic  profile  is  always  a  solution  to  the

governing equations. Do you all agree with me? The parabolic profile earlier did not have the

pressure drop because it was scaled inside my velocity but if I actually write it in terms of an

actual dimensional velocity, I would have had a pressure drop just like your Hagen-Poiseuille

equation.

Hagen-Poiseuille equation has some dp/dz. So, if I give a very small dp/dz, I have very low

velocity. If I give a large dp/dz, I have a large velocity, right. So, basically what this means is

there is always a solution. However, you all know that for Reynolds number < 2100 only you

will  have  the  laminar  flow which  is  going  to  be  experimentally  absorbed.  When  Reynolds

number is more than 2100, the flow becomes turbulent, okay.

So, what is this critical thing about 2100. So, that means that what I am doing is just visualize an

experiment where you are actually increasing the pressure drop. So, there is a parameter in your

problem as  an  experimentalist  which  you  can  actually  change,  okay. So,  you  are  doing  an

experiment where you keep increasing the pressure drop. So, let us say that you have a pressure

drop which gives you a flow which corresponds to a Reynolds number of 100, okay.
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So, we have delta P which gives a flow corresponding to Reynolds number=100. What does this

mean. Given delta P I can find my velocity profile. I can find my average velocity, right. I can go

back, I know my properties of the liquid, I know the diameter of the channel. I can get rho vd/mu

and you do this calculation, you find Reynolds number is 100. So, what does this mean. You can

actually when you are doing this experiment, you will actually see a laminar profile.

So, whenever you are doing an experiment. Remember that your experiments are always going

to have some disturbances, okay. I mean when you do an experiment, it is not possible for you to

perfectly control you pressure drop. It is not possible for you to perfectly control your flow rate.

There will always be some small disturbances. If you are able to observe this laminar velocity

profile,  then it  means in  spite  of  these  disturbances  that  are  existing,  in  some kind of  time

average sense, you are able to get your laminar velocity profile, okay.

So, what I am trying to tell you is that any system, there will always be some small disturbances

present,  okay. But  it  turns  out  that  these disturbances  are  decaying to  zero,  they do not  get

amplified as long as the Reynolds number is < 100. But suppose you know, you slowly increase

the pressure drop and let us say Reynolds number is 1500. Again, you will see laminar flow.

Again, there will be disturbances that are present, okay and again your system is stable.

But supposing you change the pressure drop a little bit more and you cross the threshold of 2100,



your flow becomes turbulent, what is the difference. Your laminar profile is still theoretically

steady state, okay, but there are some disturbances which are going to be present but now the

disturbances  are  getting  amplified.  The  disturbances  do  not  decay  to  zero  and  because  of

disturbances will decay to zero, you would get a turbulent state, you understand.

So, what I say is the laminar profile is stable, that is a steady state solution, the laminar profile is

stable for Reynolds number < 2100. The laminar profile is unstable for Reynolds number > 2100.

So, I am talking about stability in the context of steady state. So, that is how you should always

talk. You know you cannot say, the system is unstable for more than 2100 or < 2100 is stable.

You are talking about stability in the context of the steady state, okay.

So,  what  I  have  done  is  I  have  introduced  the  concept  of  stability  in  the  form  of  small

disturbances which are always going to be present in experiment, okay. So, now let me write

down a few things. We have delta P which gives a flow which corresponds to Reynolds number

of 100. In any experiment, we will not be able to have perfect control, okay. There will be some

small deviations, okay. I am talking order epsilon.

So, very small deviations, say of order epsilon where epsilon is very much < 1. The question is

how does the system responds to these disturbances. So, you have a pump which is pumping a

liquid, okay. There is going to be some small fluctuation coming into the pump. So, it is not that

the pressure and outlet is always to be whatever 5 bar, 10 bar. Although, it has the rating of 5 bar

at the outlet pressure, may be actually it is going to be slightly varying 5.0001 to   4.999, okay. 

So, that is my perturbation. See for example, the pump outlet pressure is say rated at 5 bar but it

could vary from 5 plus or minus epsilon.  Clearly, it  is  not going to be exactly  5 bar and if

somebody is telling you it is going to be exactly 5 bar and you believe him you are crazy. So,

there is going to be some fluctuation and depending upon how much money you have paid, how

accurate the pump is, epsilon is going to be smaller and smaller, okay.

So, I am saying that this epsilon is my disturbance, the inlet pressure but for Reynolds number <

2100, these disturbances are deviations in the inlet pressure decay to zero in the fluid, okay. That



is how the dynamics is when you actually solve the partial differential equations and you are

actually trying to find out whether this kind of deviation of pressure from 5 to 5+epsilon, okay.

Whether it is going to make any difference or not, decay to zero in the fluid if Reynolds number

is < 2100.

But  if  the  Reynolds  number  is  >  2100,  the  laminar  flow  becomes  unstable  and  we  have

turbulence, this is something you all know. I mean, you guys have possibly month something up

and said oh Reynolds number < 2100 laminar but actually what is happening is when you are

actually  crossing,  you  are  having  a  stability  problem,  okay.  What  was  stable  has  become

unstable?

And the way, I want you to visualize the stability problem is there are the small fluctuations that

all is going to be present and what happens is for < 2100, these deviations decay; more than 2100

the  deviations  get  amplified  and  you  have  turbulence.  Remember,  the  laminar  flow  is  the

possible solution for Reynolds number > 2100, okay. The parabolic velocity profile is possible.

(Refer Slide Time: 38:12)

So, the point I am trying to make here is the laminar flow is always a possible solution or is a

possible steady state. In fact, the people who have done experiments very, very carefully and

they have been able to observe laminar flow up till Reynolds number of 10 par 5, okay. So, if

you really interested in this, you could do very, very careful experiments and see that when you



have  Reynolds number of as high as 100,000, you would get laminar flow.

But  then,  normally  you are  not  very  careful.  You just  have  a  regular  pump.  You are  doing

undergraduate lab. I mean people are possibly trying to cut out on cost. So, we will get this

transition at 2100, okay. So, I am just trying to tell you, how do I know this. Careful experiments

reveal that laminar flow can be seen at Reynolds number up to 10 to the 5, okay. So, all this

means is that we are talking about a steady state now. Steady state is my laminar flow profile.

So, this laminar flow profile is stable, I am going to call it stable for Reynolds number < 2100. It

is  unstable  for  Reynolds number > 2100, okay. So, the laminar  flow is  stable  for Reynolds

number < 2100 since the disturbances decay to zero, okay and the laminar flow is unstable for

Reynolds number > 2100 as the disturbances now get amplified. So, this is something we are

always going to do when you talk about the stability problem.

When you talk about the stability problem, what we are going to do is we are going to worry

about changing some parameter which you can control as an experimentalist and you are going

to find out how does the system behaviour change, how does the response to disturbances change

when you have one parameter which is being varied. So, just like we have done now. When

Reynolds number is low, when disturbances are present, they are going to decay, everything is

fine and stable.

When Reynolds number is higher and that is the parameter I am changing, okay. The parameter I

am changing is the flow rate or the pressure drop. So, the pipe is of course the same pipe, so

diameter is constant. Fluid is the same, density and viscosity are the same, the velocity has to

change for changing the Reynolds number. I have changed the velocity by changing the pressure

drop, okay and I will keep changing the parameter which is the inlet pressure.

You will find that above a critical threshold value which in this case happens to be 2100 for

Reynolds number, you have a change in the behaviour. So, what was stable has become unstable.

So, that is what I have written down here. So, the stability is always talked in terms of responses

to disturbances. So, what you do is you have a particular steady state and this steady state would



normally correspond to what in my perturbation method I had as a 0th order solution, okay.

We did perturbation series now. Usually, I have a zero the order solution for which I know the

solution.  Like I  have the parabolic  profile  for  the laminar. Then,  I  do is  (())  (42:38)  giving

disturbances and whatever I am talking about experimentally, I have to do with using my model

to find out what this threshold is. So, what we are going to do is we determine stability in terms

of the response to disturbance, okay.

Experimentally, if  you are actually  able to observe a particular state experimentally, you can

conclude that that particular state is stable, I mean without doing anything special. Why, because

disturbances are always going to be present when you are doing an experiment and if you still

see  this  particular  steady  state  that  means  the  system  is  ensuring  that  the  disturbances  are

decaying to zero, okay. So, any experimentally observed state, as long as you have not done

something to control it, okay.

To make an unstable system stable, if you have not done anything special, if you are just letting a

system run and if  you observe it  experimentally, then that  particular  state is  stable.  So,  any

experimentally observed state is stable as this is seen in the presence of disturbances. So, what

we are going to do in this course is try and transform this simple experiment which you are

comfortable  with  into  a  mathematical  language,  so  that  we  can  make  a  prediction  of  these

threshold values, okay.
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So, what we want to do is we want to convert this to a mathematical framework to be able to

predict the onset of instability. In different context especially in the context of multiphase flows,

okay, that is the whole idea.


