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Welcome back. In today’s lecture, we will be looking at exploratory data analysis. So far we

have studied about random variables both discrete and continuous. We looked at some of the

parameters  that  are  encountered  when dealing  with  both continuous  and discrete  random

variables the mean variance standard deviation and so on. We also looked at the moments

then we came on to normal probability distributions.

And one of its variance namely the lognormal probability distribution. Before we go further

into details of statistics it is worthwhile to take a small break and look at presentation of data.

This is also very important to us. Let us say that you have conducted the experiments and you

have the data available with you. It will be a good idea to subject the data to preliminary data

analysis to get a feel for the data trends.

Between what  range of values,  you find the data  points  whether  there are  some unusual

observations and whether the data are looking linear or they are showing a strong curvature

and the response is plotted against the main variable or the variables. You also may want to

see whether the distribution of the data is following a certain standard distribution. You may

want to check whether the distribution of the data is normal.

You  may  also  want  to  present  the  data  and  what  are  the  different  effective  ways  of

presentation. What will you actually look for in a data? So these are some of the things we are

going to discuss. Now of course this discussion is not exhaustive or complete it  is just a

starting  point.  There  are  many  more  data  analysis  procedures  which  you  may  definitely

understand when you read up after getting exposed to this lecture.

(Refer Slide Time: 03:20)



Coming to the references there is a nice book by DeCoursey a Statistics and Probability for

Engineering Based Applications with Microsoft Excel. We are also going to follow our usual

reference books the one written by Montgomery and Runger.

(Refer Slide Time: 03:43)

Also we will be following Ogunnaike the name of the book is Random Phenomena.
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Coming to the motivation of the exploratory data analysis as the name implies you are having

the data and you are going to do an exploratory analysis of the available data. Statistical

analysis are based on data. What is the difference between statistics and mathematics both

seem to use for  example  integration  differentiation  and many more  methods  of  analysis.

Statistics is based on data while mathematics is based on pure numbers.

This kind of interpretation is of course arguable, but this is one way of looking at it. So when

you have done the experiment you must familiarize with the trends of the experimental data

set. As an experimentalist you should also look for the center point of the data distribution

you may want to look at the average value and also quantify the spread of the distribution.

(Refer Slide Time: 05:14)

In order to get proper idea on the spread you may want to first plot the data and after plotting



you should be able to discern its essential features without too much of textual description.

You should also see whether there are any rogue data points in the data. Data set you have

collected and it is better to become aware of these right at the outset because if you can detect

the location of these outliers.

You perhaps may repeat the experiments corresponding to the occurrence of these data points

and see whether you are still getting the same values. If you otherwise wait until the end of

the experimentation, then these rogue data points may stick out like (()) (06:22). Then you

would be at a loss as to what to do with them then you will have to attribute some reasons

while they may have occurred. So the moral of the story is if you have any outliers you better

locate them right at the outset and take suitable action.

(Refer Slide Time: 06:54)

You may want to speculate that the given data belongs to a particular statistical distribution.

This  may  be  based  on  what  other  people  have  experienced  with  this  type  of  data.  For

example,  particle  size  distributions  are  commonly  expressed  in  terms  of  the  log  normal

distribution. So you may want to assume that the particle diameters in your data set can be

expressed in terms of (()) (07:31) is the particle diameter.

And then you may want to show them in the form of log normal distribution, but you have to

confirm that indeed the data belongs to a particular distribution. So you should be able to plot

the data suitably and demonstrate whether this assumption is justified. A picture is worth a

1000 words and hence it is always better to present your data in a compact, economical and

effective manner.



In the corporate sector most of the presentations involve data analysis and they have to be

presented in a compact manner. A lot of information should be present in 1 or 2 diagrams or

presentations. You do not want to show 10 or 20 graphs to drive home your point.

(Refer Slide Time: 08:44)

Let us look at the box plots. We came across the box plots in the introduction session in the

very first lecture if you recall. The box plot is also called as the Box and Whisker plot. In this

plot,  you  are  able  to  show a  lot  of  information.  You  can  show the  data  maximum and

minimum along with the other characteristics like the quartiles, median, the outliers etcetera.

The box plots are economical and a lot of information can be presented in a compact manner. 

If you have different sets of data and you want to compare them box plots are quite useful.

Let us look at the features of the box plot.
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I will show you a diagram of the box plot. Here we are comparing 2 sets of data. This is the

so called Box and these are referred to as Whiskers. So this is referred to as the first quartile.

The second line is the second quartile, the third line is the third quartile. Quartile you may

relate it to quarter or one-fourth. So in this diagram we have shown the Whiskers we have

shown the box, we have shown the first, second and third quartiles.

(Refer Slide Time: 10:41)

Now let us go back and see the definitions for this quartiles. The 0th quartile is the data point

with the lowest value. For example, in a class where the marks are distributed the teacher

may want to arrange the marks from the lowest mark to the highest mark. Usually this is not

done and the marks are distributed in the random manner, but some teachers want to present

the papers in the ascending order of marks.



So coming to the 0th quartile it is a data point with the lowest value. The first quartile it refers

to the value below or equal to which 25% of the data are present and above which 75% of the

data are present. The second quartile refers to the data points below or equal to which 50% of

the data are present and above which obviously the remaining 50% are present. The second

quartile is also equal to the median.

(Refer Slide Time: 12:07)

The third quartile by now you will be familiar with it. The 75% of the data are located equal

to below this value and 25% of the data are located above this value highest number. The

inter quartile range is the difference between the third and the first quartiles that is Q3-Q.  Q3

is the third quartile and Q1 is the first quartile. What about the Whiskers if you recollect I told

that these vertical lines shooting out of the boxes on either side are termed as Whiskers. 
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The Whiskers are drawn from the edge of the box to the data point that is located within 1.5

times the inter quartile range. So you have the first quartile and the third quartile. Then you

want to indentify data points that are located at 1.5 times the inter quartile range from these 2

quartile. The Whiskers need not be of equal length. So this value is the one which is lying

within 1.5 times the inter quartile range.

These 2 distances are not the same, but however this data point at the very end of the whisker

is falling within 1.5 inter quartile range. Similarly, here also you have whiskers, but it appears

that the data point at the edge of this whisker is lying at the same distance from the third

quartile. As this point was lying from the first quartile so it depends upon the data set. We

already discussed about the performance by the students in the lab and in the course.

Lab is  more of  a  group activity  and so the  marks  are  sort  of closer  to  each other  when

compared to the core course performance. If there are any data points below or above the

respective Whiskers, then they are referred to as outliers. What we are trying to do here is

whatever data point is falling within the quartiles or close to the quartiles are considered to be

the kind of expected points.

And if you are having any points which are lying beyond the 1.5 times the inter quartile range

from the first quarter or the third quarter is considered to be a rogue point or a outlier. This

box plot can be generated in different  ways I  have used the version 16 of MINITAB to

generate this box plot diagram.
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Now let us look at another kind of plot namely the Scatter plot. It shows the scatter on the

data to put it simply. It shows the 2 data set on a regular graph sheet. It compares 2 data sets

you may want to plot the first data set along the x axis on the second data set along the y axis

and then see if there is any correspondence between the 2. We want to see whether there is

dependency between the 2 data sets.

For making the comparison of course the length of the 2 data set should be the same. The first

data set has 20 points the second data set should also have 20 points.

(Refer Slide Time: 16:33)

I will demonstrate the scatter plot with the help of an example. Let us say that we are looking

at a batsman performance over the years and we want to show runs scored in a calendar year

as a function of the batsman’s age.
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Whether the batsman is getting better with the age or he is getting worse with the age or he

goes through an optimum phase before beginning to fade out. Well  when we look at this

particular scatter plot for this particular batsman if you look at that graph the runs scored per

calendar year is shown on the y axis and his age is shown on the x axis. From this diagram it

can be seen that there is no apparent relation or dependency between the run scored per year

and age.

The runs scored per year may have fluctuated based on other reasons they might not have

been due to the aging of the batsman. So this clearly shows that there is no dependency on the

runs scored with the age of the batsman in the range of 20 years to 30 years. Normally when

you do an experiment and collect the data it is referred to as the sample.
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So we would like to look at the sample properties and the most common one would be the

sample mean. The sample mean is denoted as x bar and the variance is denoted by s square.

We have earlier seen the mean being represented by mu and variance being represented by

sigma square. For example, in the normal distribution the mean was given as mu and the

standard deviation was given as sigma square, but remember here we are talking about the

sample. Earlier we were talking about the population.

The population parameters were given in terms of mu and sigma square for the mean and

variance respectively. Here we are talking about the sample and we denote it by x bar and s

square. The sample mean is the arithmetic mean and we just sum all the data point values and

divided by the number of data points. The S squared is the sample variance which is defined

in terms of the deviation from the mean.

The deviation of each and every sample data point from the mean and this squared and then

added and after that we divided it by n-1. 

(Refer Slide Time: 20:10)

So what we saw was for a discrete data set the mean is a measure of central tendency. For a

discrete distribution the mean is also referred to as the expected value of x and that is given

by sigma i=1 to  N Xi f  of Xi and in the case of continuous distributions  we have mu=

expected value of X that is=-infinity to + infinity x f of x dx. So looking at the properties of

the  data  set  we are defining  for  a  discrete  distribution  we say that  that  the mean mu is

expected value of x and that is given by sigma xi f of xi.



We are  also  defining  the  arithmetic  mean  as  sigma  xi/n.  So  are  we  having  2  different

definitions what is then the basis for the arithmetic mean. It is actually quite simple. If each

of the xi values have these identical probabilities of occurrence, then f of xi will be simply

1/n. So you put 1/n here that is independent of the index i so we have mu equals sigma xi f of

xi that will become sigma xi/n.

So that will be the capital N where N is the total number of entities in the population. Now

we do the same thing for the sample mean when you have the sample we have used the same

formula, but a sample is a subset of the population the number of entities in the sample will

be much smaller than the population. We may not be finding it practical to take the data from

each and every entity in the population.

So we take a representative sample from the population and get the important characteristics.

So when we do the mean that is denoted by not mu, but it is denoted by x bar and that is

given by sigma i= 1 to n xi/n. Here n is small n it should not be confused with capital N.

Capital N is meant for the overall number of entities in a population it may be even going into

lakhs or million.

So it can be a huge population, but a sample is usually in the order of let say 30 it can even be

as low as 5 it can go up to 30 or 40. The sample need not be larger than that. So the sample

mean is defined as sigma i=1 to n xi/n. We did have f of xi, but since the probability of

occurrence of each of the item in the sample was identical it became 1/n and so we have x

bar= sigma i= 1 to n xi/n.

(Refer Slide Time: 24:08)



There  is  the  most  natural  way we take  the  average  of  a  finite  data  set.  You have  other

definition  such  as  the  geometric  mean  and  the  harmonic  mean.  However,  these  are  not

commonly used as that of the arithmetic mean.

(Refer Slide Time: 24:40)

The arithmetic mean balances the extent of deviation both positive as well as negative of the

data  points  from  itself.  In  fact,  you  identify  the  mean  in  such  a  way  that  the  positive

deviations from that will balance out the negative deviations such that the total sum of these

deviations will be= 0.
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The problem with  this  kind  of  definition  is  the  presence  of  unusually  large  value  or  an

unusually a small value may influence the average value. The average is a measure of the

overall data set and let us say that the batsman is playing in a 3 test series and if he has score

than 4 innings 200 runs okay the average may look to be a healthy 50. On the other hand, if

he has scored 200 and then he scored ducks in the remaining 3 innings then the average of 50

is not a good representation of his performance.

He has performed very well in the first innings and then done nothing in the remaining 3

innings. So when you are having a small data set and you are having extreme values the mean

value may be influenced by the presence of these extreme numbers.

(Refer Slide Time: 26:35)

The median is also a measure of the central value in the distribution and we also saw in the



box plot discussion that the median is the second quartile how do we find the median. It

depends upon whether the data set has odd numbers or even number you arrange the data

points in the ascending order you put the smallest number first and the largest number last

and then you find out the median.

If the number of data points in the sample is an odd number, then the calculation of median is

quite simple. We identify the data points which is in the middle of this spread. Suppose you

have 2 m+1 data points which are arranged in the ascending order the median will correspond

to the m+1th data point.

(Refer Slide Time: 27:44)

On the other hand, you have even number of data points say 2 m which are arranged in

ascending order again. The median will correspond to the average of the mth and m+1th data

point. Suppose you have let us say 4 numbers which are arranged in ascending order then you

find out the second number which is m and then you find out the third number which is m+1

take the average of those 2 numbers to get the median.
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The median involves only a ranking and the presence of unusually small or large data points

will not affect the median value and hence it is considered to be more robust in estimating the

central  tendency  of  the  distributions  as  it  is  not  affected  that  much by the  outliers.  The

extreme points they may take any value, but here you are not actually doing the adding and

then dividing by the total number.

So the value of these numbers are really not affecting the calculation it is just ranking them

and then seeing what is the number which is going to be there in the middle. And the outliers

or obviously the extreme data points they are very, very low data values or very, very high

ones. So you would not get outliers in the middle of a distribution it does not make any sense

you will have outliers only in the extremes of the distribution.

So in  that  sense  the  median  is  the  more  robust  way to  find  the  central  tendency of  the

distribution.
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If the numbers are highly asymmetrical with many values considerably different from the

mean, then the median is preferred.

(Refer Slide Time: 30:00)

We also have the mode. The mode by definition is the number which appears most frequently

in  the  data  set.  This  you  might  have  studied  in  your  high  school  itself.  In  the  discrete

collection of data,  it  is the most popular value.  DeCoursey terms it as the even the most

fashionable  item in  the  data  set.  Who said  numbers  are  dull  they  have  very  interesting

properties.
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So now we want to look at the spread of the data. We have looked at the central tendency

now we will look at the variability in the data. The mean and median gives an estimate of the

number that is located at the center of the distribution. However, it does not indicate how the

other data points are clustered around the central point whether the points are very close to

the mean values or they are wide apart from the mean value.

(Refer Slide Time: 31:20)

It is very important for us to know the scatter about the mean value. It is as important as

knowing the mean value itself and the variability in the data is what influences us when we

make  decisions  during  experiments.  The  variance  is  the  parameter  which  influences  our

decision  making  in  statistical  data  analysis.  What  is  variance?  Variance  is  based  on  the

deviation from the mean, but we know that the deviation from the mean add up to 0.



So our aim is not to get the actual values we want to get our overall idea about the spread. So

whether is negative deviation or positive deviation we want to give them equal importance

and so we square  these  deviations  and once they are squared  then  there is  no difficulty

because the sum will not be=0 in most cases. So we will have the square of the deviations

from the mean and we add up those deviation square.

And then divide it by a suitable number that suitable number we will discuss very soon.

(Refer Slide Time: 32:55)

The next measure of the spread is the sample range and it is defined as the difference between

the largest and smallest values in the data set. This is a kind of a shortcut to estimate the

spread of the data. We are using only 2 data points you are not considering the entire data set.

Well if you want to look at the spread it will be better if all the data points are participating in

the exercise.

You take only the smallest number and the largest number and find a difference that is usually

not rigorous. It is a useful and a quick estimate, but it is not very rigorous. For example, the

largest and the smallest data maybe outliers and so the other remaining data points may be

very close to be mean value if you go by only the largest and the smallest value you may be

over estimating the spread.

Whereas in the actual case the spread may have been quite smaller the overall spread would

have been quite smaller then what was reported by the sample range.
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The range is useful when you want to compare different data sets of equal sizes. DeCoursey

observes that when the size of the data set increases the range also tends to increase along

with it. In some research paper you might have come across the average absolute deviation as

the name says there are different ways to handle the case where you have positive deviations

and negative deviations. One way is to square them, but when you square them you are sort

of changing the order of magnitude of the number.

If it is > 1 when you square it, you are having a higher order of magnitude If the number is <

1 you are going to have a lower order of magnitude after the squaring is done. This is slight

manipulation of the data and of course after you take the variance you take the square root

and get  the  standard  deviation.  Another  way to handle this  issue  of  positive  or  negative

deviations from the mean is to ignore the sign.
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So what we do here is we take the absolute value of the deviation from the mean. We write it

as d bar which is=1/n sigma= 1 to n di. Where di is the deviation xi from the arithmetic mean.

(Refer Slide Time: 36:10)

So as far as the average absolute deviation is concerned the presence of a large valued outlier

can  cause  this  estimate  to  be  also  affected.  When  you  want  to  present  your  deviations

between your model predictions and exploratory data you may want to do so by using the

average absolute deviation. It may so happen that except in one case in all other cases the

data is matching rather well with the model predictions. However, because of one outliers the

model may be showing a prediction much different from that of the experimentally observed

value.

And  this  may  increase  your  average  absolute  deviation  and  make  it  appear  as  if  the



comparison between the model and experimental data is not that good. So you may have to

check for this outlier of course you have to go into the route of the matter rather than simply

removing the outlier. The average absolute deviation is simpler alternative to the standard

deviation.

(Refer Slide Time: 37:24)

So now we will  be again talking about average absolute deviation,  but this time we will

talking about it with respect to the median value. Earlier we were talking with respect to the

arithmetic mean now we are going to find the deviation with respect to the median. So a

small typo is there I will just correct it the subscript has again not been implemented so I will

just make the subscript.

So the average of the absolute deviation from the median is more robust than that based on

the mean. It is pretty useful and we denote the absolute deviation from the median in terms of

d bar m.
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Now let us come to the most rigorous form of identifying the spread in the data. Here we find

the sum of squares of the deviations from the mean and divided by n-1 where n is the number

of data points in the data set or sample. This is called as sample variance and this is very

popular.
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Please note that the variance is always a positive quantity because all the deviations have

been squared and all of them have now become positive. Of course we have to deal with only

a real number we do not deal with imaginary quantities. So after squaring we always have

positive values with us. The mathematical formula or equation for variance is given by S

square= sigma i= 1 to n Xi-X bar whole square/ n-1.
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To find the standard deviation s we simply take the square root of the variance. This is the

squared deviation Xi- X bar whole bar is referred to as the squared deviation and since we are

adding all those squared deviation and dividing it by n-1 we have a mean square deviation

and then we take the square root. So the standard deviation is also referred to as the root

mean square deviation from the mean. This concept of mean square is very important and we

will encounter this frequently in our design and analysis of experiments.

We call it as the mean square error. You may want to refer to the first lecture the introduction

where we talked about mean square error for the fertilizer example. Please note that the mean

can have negative value. It depends upon the range of number I have already told that in one

of the earlier lectures. The standard deviation also has the same units as that of the data set. If

you are having the data set in terms of particle diameter the standard deviation will also be

expressed in terms of particle diameters.

They may be referring to particle diameters so the dimension would be more appropriately

micrometers  then  the  standard  deviation  will  also  be  in  micrometers.  The  mean  of  this

distribution will also be in micrometers. So the standard deviation and the mean will have the

same units. The mean however can take negative values whereas the standard deviation is the

positive square root of the variance.

So the standard deviation will have only positive values. In the formula, we used to find the

variance or the standard deviation we used n-1 why did we use n-1 why not n. We used n in

the calculation of the mean whereas in calculation for the variance we are using n-1.
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The term n or n-1 is referring to the degrees of freedom. N of course stands for the size of the

data set. We are looking at the number of independent entities in the data set. If you collect

the data set the entities in those have been chosen in such a way that they are independent. So

when you are finding the mean value you are dealing with n independent entities. However,

when  you  are  calculating  the  standard  deviation  or  the  variance  you  are  basing  those

calculations on the deviation from the mean value not all the deviations are independent.

The mean has been defined in such a way that the sum of the deviations from the mean will

be=0. So this acting like a constraint. So you have only n-1 deviations from the mean that are

independent. So this is an interesting situation how do we deal with this okay. So the number

of  independent  entities  is  only  n-1  and  so  we  use  n-1  in  the  calculation  of  the  sample

variance. There is also another reason why we use n-1 I will come to it shortly.


