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Normal Probability Distributions

Okay, in today's lecture we will be looking at the normal distribution, it is also called as the

Gaussian distribution.

(Refer Slide Time: 00:26)

The reference books for this topic are given in this slide, the book by Montgomery and Runger

Applied  Statistics  and  Probability  for  Engineers,  and  the  book  Random  Phenomena  by

Ogunnaike are suitable references for the material we are going to cover in today's lecture. So

why  should  we  study  normal  probability  distribution,  it  is  very  popular,  very  elegant  and

relatively simple, it has some nice properties to it.

We use normal probability distribution not only because of these desirable features, but it is also

the distribution which real life tends to follow in many cases, in large classes the distribution of

marks is considered or approximated to be a Gaussian or normal distribution. If you look at the

particle sizes coming from a crusher or a grinder they may cover a very large range of values, the

smallest particle maybe in the micron range, and the largest particle maybe in the millimeter or

centimeter range.



These sizes let us denote them by D, you take the natural log of the particle sizes convert them

into ln D, you will be surprised to find that the distribution of the natural logarithm of the particle

diameters is following the normal probability distribution. Once you have this normal probability

distribution, you can do a lot of things, in the case of the marks distribution you can find the

percentage of the students, who have got marks let us say between 50 to 60.

You  can  also  find  out  what  is  the  percentage  of  students,  who  have  got  marks  below  20,

regarding the particle sizes you can also calculate  the probabilities that the particle sizes are

going to lie between 2 values. It is a very useful distribution, it is also going to be useful for our

design of experiments and analysis of data, because many of the samples they have properties

like mean and variance and so on.

If  you  look  at  the  mean  values  of  different  samples,  sometimes  they  follow  the  normal

probability distribution okay. Some of the other standard distributions like the t distributions also

tend to normal distribution under certain conditions.

(Refer Slide Time: 04:16)

This probability density function finds several applications in Science and Engineering, it is one

of the most widely used continuous probability distribution functions in statistical analysis.
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When  we  are  looking  at  the  parameters  of  the  normal  probability  distribution,  it  is  very

interesting to note that the parameters of the distribution are themselves the mean and standard

deviation of the distribution, this is a big advantage. In many other distributions you will have 2

parameters or in more infrequent situations you may have even 3 parameters. But in the case of a

normal distribution you have 2 parameters.

The 2 parameters describe the shape of the distribution, and the parameters are themselves the

mean and standard deviation, for other distributions you have some parameters let us say we call

them as  parameter  1  and  parameter  2,  these  2  parameters  are  then  used  in  a  mathematical

expression to get the mean and variance.
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Let us look at the probability density function for the normal distribution, the function is denoted

by f of x and that is given by 1/root 2 pi sigma square exponential-x-mu whole square/2 sigma

square, mu is the mean of the distributions, sigma squared is the variance of the distribution, the

lower limit is -infinity, and upper limit is +infinity, so x can take both negative values as well as

positive values.
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Now we will define the normal random variable, a random variable X with the above probability

density  function  is  a  normal  random variable  with parameters  mu and sigma,  the parameter

values may range from -infinity to +infinity for the case of the mean, and the case of the standard



deviation it may vary between 0 to infinity. This is an important point many of us intuitively

believe that mean value of a distribution should be only positive.

It need not be the case mean is an average okay, and so the distribution range may be such that

the mean value or the average value may be negative. For example, if the upper and lower limits

of the distribution are -5 to -50, then the mean would be somewhere between -5 and-50, so the

mean  can  take  negative  values.  However,  the  standard  deviation  is  obtained  as  the  positive

square root of the variance, and so it is always going to be a positive quantity.

Coming back to the normal distribution, for a distribution with parameters mu and sigma square

we use a general notation N of mu sigma square to denote the normal distribution.
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As any other probability density function, the normal distribution should satisfy the condition

-infinity to +infinity f of x dx=1. In other words, if you take this expression for f of x into the

integral and carry out the integration, fortunately the integration can be carried out analytically

you will find that the value=1 after the application of the limits. This is not only definition for the

mean mu.

But you can also show that after substituting the value for f of x the equation I just showed that

this equation if you plug it here and then multiply by x carry out the integration, you will be



pleasantly surprised to find that value to be mu okay. The function had parameters mu and sigma

square and you finally end up with mu, sigma square surprisingly will vanish in the mathematical

manipulations involved.
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When you carry out the different type of integration okay between -infinity to +infinity x-mu

whole square f of x dx, you will find after plugging in the expression for the normal distribution

here, you carry out the necessary mathematical steps including integration by parts, you will find

that the mu will somehow vanish, and you are going to left with only sigma square.
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The area under the curve=1, the total area under the curve=1, when you integrate f of x between

the  lower  limit  to  the  upper  limit.  What  you do is  you plug in  the  equation  of  the  normal

distribution here for f of x, after carrying out the integration you will get the area to be 1.

(Refer Slide Time: 11:16)

The normal distribution is a very flexible one, it can change shape very easily when you change

the parameters. If you look at the normal distribution, it is centered at the mean value, so by

changing the mean value you can make it move around, instead of 0 if you say the mean to be

50,  the  normal  distribution  will  shift  and  it  will  come  to  it  will  be  centered  around  okay,

modification here.

The normal distribution is a very flexible distribution, it can change shape and location pretty

easily, the parameters of the distribution are mu and sigma. The distribution is centered around

the mean mu; it is a symmetric distribution. When you change the value of mu from let us say 0

to 50, the distribution moves to the right, and it gets centered at 50. The spread of the distribution

is governed by the parameters sigma or the standard deviation.

If  you look  at  these  3  curves,  all  of  them are  normal  distributions,  but  they  have  different

standard  deviations,  they  have  the  same  mean  mu  of  0,  but  they  have  different  standard

deviations. The one showing a taller peak has a smaller standard deviation of 10, the second peak



of intermediate height has an intermediate standard deviation of 20, and the shortest peak but the

widest one as well has the standard deviation of 30.

So the standard deviation is a measure of the spread, and so higher the standard deviation the

more would be the spread of the distribution. You can make this normal distribution move about

by changing the value of mu, so instead of 0 you can give 10 or 50 and it can just shift to this

side. You can also try to imagine what would happen if you continuously decreased the value of

sigma, if the value of sigma is reduced, the height of the distribution will increase.

What  will  happen  when  you  reduce  the  sigma value  to  0,  just  think  about  it,  what  is  that

mathematical function called?
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Here, we have cases where we reduce the standard deviations to smaller and smaller values, here

you start with 3, the pink curve then you reduce it to 2, and then you reduce it even further to 1,

the green curve shows the tallest peak. And if you keep reducing the value of sigma the f of x

value will keep increasing, f of x is a maximum at the center okay. So this peak value will keep

increasing, as the standard deviation decreases.
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The normal distribution is symmetric about the mean, if the mean is 0 and then you cover from

the mean value to the upper limit 0 to infinity, you get f of x dx =0.5. Here, we have the mean of

0, when you cover the curve from 0 to infinity along this direction, the area under the curve will

be 0.5, we know that the total area under the curve=1, so when you consider half the domain

from 0 to +infinity, we should get an area of 0.5. In case you have a non 0 mean, then when you

integrate between mu to infinity, we get f of x dx mu infinity=0.5.
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So you can have different normal distributions each one having a different mean and or variance,

I told you that we do not have to do numerical integration or any further calculations to find the

different probabilities involving the normal distribution. However, you can have different normal



distributions  each one  having different  mean  and or  standard  deviation,  so for  each normal

distribution we cannot have a chart or table of probabilities.

It is important to reduce a given normal distribution into a standard form, the transformation of

any given normal distribution to its standard form is pretty easy. Once it has been reduced to a

standard form, then you need only one set of tables or charts to read the probability values. How

do you  define  the  standard  form of  the  normal  distribution?  The  normal  distribution  in  its

standard form has a mean of 0 and variance of 1, since variance is 1 standard deviation is also 1

okay.

So a standard normal distribution has mean 0 and variance 1, the random variable associated

with the standard normal distribution is called as the standard normal random variable.

(Refer Slide Time: 18:20)

The cumulative distribution function of a standard normal random variable is denoted as phi of z

=probability of z <=z okay, we are now talking about a standard normal variable, and what is the

probability that this standard normal variable will take a value smaller than that of z, and that is

given by the cumulative distribution for a standard normal variable phi of z.
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How do we make the transformation? You are having the original random variable X, which is

following the normal distribution, it is having a mean mu and standard deviation sigma, you have

to convert it into the standard normal random variable form. For that we do z=x-mu/sigma, x is

the original random variable, mu is the original mean of the normal distribution, and sigma was

the original standard deviation of the normal distribution.

By making this transformation we subtract mu from x, and then the resulting quantity is divided

by sigma, we get z. After this transformation we have a new random variable z, which has a

mean  of  0  and  standard  deviation  of  1,  and  it  is  also  a  normal  distribution  okay. So  this

transformation is applicable irrespective of the value of mu and sigma, obviously you cannot

have sigma to be 0, it should be a positive number >0.

Whether it is negative mu or positive mu, it is immaterial all you have to do is carry out the

transformation given by z=x-mu/sigma.
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What is it really mean? When you want to find the probability of Z <=z, where z is a number the

small z is a number taken by the random variable capital Z, but we do not know the value of

small z initially, we only know the value taken by the random variable capital X okay, to find the

small  z you substitute  the value of small  x here,  then you subtract  the mean of that normal

distribution,  that  resulting  quantity  you  divide  by  the  standard  deviation  of  the  normal

distribution then you will get small z.

You were having the normal distribution associated with X random variable X, it was having mu

and sigma as its parameters. Now when the random variable X takes on a particular value small

x, you subtract the actual mean of the normal distribution from that small x divided by sigma,

then you will get a value small z, this small z is used here, then you use these standard normal

random variable form okay, so it becomes probability of Z<=small z.

Now you can use the normal distribution with mean mu of 0 and standard deviation sigma of 1,

charts are available for this particular normal distribution that is the normal distribution with 0

mean and unity standard deviation, then you can compute the probabilities.
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Standard normal probability tables are available in many places including the reference book I

told you at the beginning of the lecture, you can also find these tables in the internet sources,

surprisingly or interestingly you can generate these tables by yourself if you have access to any

standard spreadsheets. You can define values of z, and use the approximate command in the

spreadsheet, and generate the complete table, I have done that.
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So you can see this table the z value is starting from -3.9, and it is going in the vertical direction

towards increasing z values. Suppose I want to find the probability corresponding to -3.75, so I

locate -3.7 here, then I go originally to my right and hit the value corresponding to -3.75, so if I



go in the horizontal direction I get z values of -3.99, -3.98, -3.97 so on to -3.90. If I take a z value

here and I move in the horizontal direction, I get -3.19, -3.18, -3.17 and so on.

So I can read the corresponding probability values. Why we are not having values below -3.9 is

the probability values or the area under the curve corresponding to-3.99 is pretty small 10 power-

5, 3.3*10 power-5 which is pretty much close to 0. So if you go for z values even lower than this

you will get even smaller numbers, so when you are pretty much reporting 0, it is not really

necessary to report 10 power-6, 10 power-7 and so on.

Even though our range is from -infinity to +infinity, we see that the curve pretty much coincides

with the x-axis at value of -4, since the distribution is symmetric the probability values or the

area under the curve beyond z=+4 will also be very, very small right. So you can take any z value

up to 2 digits beyond the decimal point -3.56 you just take -3.5 or locate -3.5 here, go towards

your right hand side, and you will hit -3.56, -3.55 and so on.

Suppose you want to find the probability-3.55 okay that is 3 decimal points, you locate -3.5 here

go to you are right, you will see that -3.555 lies between -3.55 and -3.56, so you may want to

interpolate between these 2 values. Even up to 2 decimal places the chart is pretty useful, but

suppose you want to find the beyond 2 decimal places, then you have to do some interpolation,

the values are likely to become slightly erroneous at the third decimal or fourth decimal, which is

okay for most practical purposes.

If you want very accurate values of probabilities, then you have to resort to spreadsheet or any

statistical analysis software.
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So I have covered the broad range, so we have in this particular table from -2.9 to -2 and so on

until I get 0, and from 0 again I start from 0.1, 0.2 so on. I want to find the normal probability

value corresponding to let us say 0.44, I hit 0.4 here then go horizontally to my right until I reach

0.44, I read out the probability 0.67. This means that probability of the random variable lying

taking values below 0.44 is 0.67.

Since I have crossed the origin, I have crossed the area under the curve of 0.5 and so the values

would be higher than 0.5 at z=0, you see the probability value is 0.5, probability of the random

variable  z taking values  below 0 that  is  -infinity  to  0=0.25, you are describing the left  half

portion of the curve. So even at 1.09 you are covering up to 86% of the area under the curve, the

probability of a random variable the standard normal random variable capital Z taking a value

1.09 or lower is 0.86.
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If you go further down, you see that you have reached 0.98 at z value of 2.09.
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Now we come to the lognormal random variable, I told you at the beginning of the lecture that

even if the original random variable X is not following the normal distribution, in some cases if

you make a simple transformation from x to ln X, then it starts to behave in a normal fashion

okay. I am not implying that the random variable X the original random variable X was behaving

abnormally previously, and once it was converted to ln X it starts behaving normally.

I really mean that it was following some other probability distribution in its original form, when

it  was going by random variable  X but once you have converted it  to ln X, the probability



distribution is the normal distribution, it is not going to happen for all cases, so you have to be a

bit careful here, you make the conversion from x to ln X, and see whether the distribution has a

bell shaped curve or a normal like curve.

So the next thing is let us defined the random variables Q as ln of X, please remember that when

use  subject  a  random  variable  to  a  mathematical  transformation  of  any  kind  okay,  the

transformed variable is also a random variable. For example, you have x and then you convert it

from x to x+2 by adding 2, you define a new random variable as x+2, this x+2 let us called it as

y, y is also considered to be a random variable.

Similarly, when you have a random variable X, you subject it into a transformation and make it

into ln X, then the random variables q which=ln X also has a probability distribution.
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When the random variable has been converted to ln X, the range would be from -infinity to

+infinity. However, when the random variable was in the original primitive form X, the range

must be only from 0 to +infinity only positive values are allowed okay. The reason is if the

random variable X had a negative value, when you take ln of a negative value it is undefined

okay. So you cannot really have X values that are negative, this is not a restriction.



In many physical cases you have only positive values that are possible for the random variable,

for example particle size distributions, you can have very small particle sizes of 10 power-3 or 10

power-4 meters and so on in the micron range or sub-micron range or even the nano range, but

they are all positive. When you take the ln of number which is <1, then it will become negative

and so in the transformed domain the range can be from -infinity to +infinity.

So if you look at this particular slide, the transform the random variables Q may take values

between -infinity<q<infinity. The primitive random variable X may take values only between 0

to infinity, it cannot take a valuable lower than 0, because ln of a negative number is not defined.
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Let us now look at the form of the lognormal distribution, it is not something new since it is

going to follow the normal distribution, we have f of q=1/root 2 pi beta square exponential-q-

alpha whole square/2 beta square, the value is -infinity as the lower limit and +infinity as the

upper limit.  The parameters are alpha and beta, we use q here, q was obtained by taking the

natural logarithm of x okay, this is an important point, please do not put x here.

You have to convert it into q by taking the natural logarithm of x, then use q here, then you can

use the normal distribution characteristics.
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So you have the random variable X, and you also have the transformed variable Q, so after the

transformation you got a normal distribution, what was the distribution like in the original form?

How was the probability distribution defined in terms of the original random variable x that is

very interesting, we can find it pretty easily? We know that q =ln x, so we differentiate q with

respect to x, we get dq/dx=1/x or dq=dx/x. This we can use to retrieve the original form of the

distribution in terms of x.
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The cumulative distribution function for the lognormal random variable  is  given by f  of p=

-infinity to p 1/root 2 pi beta square exponential-q-alpha whole square/2 beta square dq, this is

nothing but the cumulative distribution function, we have already seen this in one of our earlier



slides. So to find the value of the probability <=p, we do the integration up to p, now we can use

this find the original form of the probability distribution expressed in terms of x, here we are

using ln x or q.
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Here, we put instead of q we put ln x, instead of dq we use a substitution dx/x. When we convert

q into x, we have to make sure that the limit are also appropriately changed.
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When we do that we see that the lower limit of q which was -infinity has become 0, when we

converted into the x domain. And the value of p became e power p, when you converted into the

x domain, and instead of q we have put ln x, and instead of dq we put dx/x. And this represents



the cumulative distribution function in terms of the original random variable x. So the probability

density function is given by 1/x*1/root 2 pi beta square exponential-ln x-alpha whole square/2

beta square.

And the value of x is between 0 to infinity, this is very interesting here this f of x looks quite

similar to the normal distribution, but note that instead of x we have used ln x, and there is an

additional  1/x  term  here,  even  though  the  differences  are  seemingly  slight  they  are  quite

significant.
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Important thing to note here in this distribution alpha and beta are not the mean and variance or

rather standard deviation of this distribution. For the normal distribution mu and sigma actually

represented the mean and standard deviation, but for this distribution the lognormal distribution

alpha and beta do not represent the mean and standard deviation, this is something which we

have to remember.
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This is the cumulative distribution function by now it should be familiar to u, F of x=probability

of X<=x, and that maybe written as probability of Q<=ln of x. How did you get this? You have to

just take ln of x ln of small x, and so ln of capital X became Q<=ln x. To find the probabilities

we have to convert them into the standard normal form that is pretty easy, what we do is we

subtract alpha from ln x and divide by beta.

Please note that alpha and beta are the mean and standard deviation of the distribution in the

transformed case, you converted x to ln x, and that started behaving in a normal fashion, and so

the parameters  alpha and beta  did represent  the mean and standard deviation  of that  normal

distribution provided the transformation x to ln x had taken place okay, this is very important.

And then you can treat  it  as a normal distribution as like any other normal distribution and

convert it into the standard form.

But if you are not using ln x, but you are using x directly then you will have to use this form of

the probability density function, and there alpha and beta cannot be interpreted as mean and

standard deviation. So you have the standard form ln x-alpha/beta, probability of Z<=ln of x-

alpha/beta may be represented as the cumulative distribution function phi of ln of x-alpha/beta.
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I told you that in the original form you may recall me telling you that alpha and beta are not the

mean and standard deviation of the lognormal distribution, so how do we find the mean and the

standard deviation of the lognormal distribution? It is quite simple, we use the parameters alpha

and beta the expected value of X=mu, and that is given in terms of e power alpha +beta square/2,

and the variance of x is sigma squared okay, and that is given in terms of e power 2 alpha +beta

square*e power beta square-1.

So to find the mean use this formula, to find the variance use this formula. So we have covered 2

important distributions in this lecture. The first one was the normal distribution, and the next one

was the slightly confusing lognormal distribution. But after solving a few problems, you will

have no such conclusion.  We will  take some illustrative problems and solve them using the

normal probability tables, and the concepts will become clear.


