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Okay, continuing with our discussion on blocking, this is a rarely used concept but has lot of

practical value. So it is not possible for you to carry out repeats on a single specimen, but you do

it on different ones. For example, if you are trying to look at the effect of different fertilizers in

the plot of land, so you put one plot of land and then you put different fertilizers in that plot and

monitor the growth of the crops.

Obviously, if you are talking of repeats then you have to wait until the first crop is ready before

you put the fertilizers the second time, but if you want to repeats in parallel then you have to put

different fertilizers in a second field.

(Refer Slide Time: 01:15)

And the second field is different from the first field or it may be different from the first field, so

the first field and second field are called as blocks. So the experiments are conducted on different

blocks,  and we have to  account  for  the blocking influence  also,  and if  you account  for  the

blocking influence, you lose on the degrees of freedom. And what happens is that is a negative

point, but on the other hand the sensitivity of your test will increased when you do blocking.



So in blocking we tried to answer the question, how to account for the difference between the

specimens on which the treatments were carried out? So what we are doing is we are carrying

out different tests on a particular specimen, now that specimen is used up, then we do the same

test on the same second specimen. But the first specimen is different from the second specimen

or it may be different it may be identical, but usually it will be different from the first specimen.

So the first specimen is a block, the second specimen is also a block, so here we are accounting

for the variability due to the 2 different specimens. So we are blocking out the effect of the type

of specimen on which the tests were carried out.

(Refer Slide Time: 02:53)

So there is some loss of information because of blocking, actually the blocking helps to increase

the sensitivity of the experiment to differences between the levels of study variables okay. So

please look at the ANOVA table given for blocking, and see the degrees of freedom eaten up by

the blocking, and on the other hand how the tests became more sensitive due to the blocking

effect.

(Refer Slide Time: 03:25)



Next we move on to factorial design, here we are talking about not a single factor, but we are

going to talk about more than one factor. So it can be multiple factors and those factors may be

set at 2 levels. In factorial designs of level 2, we can go for any number of factors 3, 4, 5, but

each factor will be set at only 2 levels, one lower level, and the other a higher level, so we call it

as -1 setting and +1 setting.

What are the advantages of factorial design? It helps to analyze and interpret your results in a

scientific  manner,  you  can  carry  out  the  response  surface  methodology, and qualitative  and

quantitative factors may be analyzed together. For example, you can have temperature, pressure

and  the  type  of  catalyst  carried  out  in  your  analysis.  Temperature,  pressure  will  be  having

continuous range of values, whereas the type of catalyst maybe catalyst A, catalyst B and so on.

So it is a discontinuous variable or a qualitative variable, but using design of experiments and

factorial design you can account for all the 3 factors simultaneously. And this factorial design is

compulsory for industrial competitiveness.

(Refer Slide Time: 04:51)



And the advantages of factorial design are manifold, the design is orthogonal as the different

effects and their interactions contribute to the sum of squares independently. So when you have

an orthogonal design, each factor contributes the response in its own way, so the variability in the

response is contributed independently by the different factors.

(Refer Slide Time: 05:24)

And  factorial  design  of  experiments  enables  us  to  extract  required  information  from  the

experiments,  even the face of distractions  created from unpreventable random variations.  So

there are going to be random variations throughout the course of our experiments, despite the

distractions from that the design of experiments especially the factorial design will help us to

find or identify the main effects and their interactions.



One more important thing especially in industry is design of experiments help us to extract rich

informative content from data using limited number of experiments.

(Refer Slide Time: 06:09)

Another important concept in factorial design is the interaction between factors, what is really

meant by interaction between factors? What will happen is the role of factor A will depend upon

the level of factor B, at 1 level of factor B A may behave in 1 manner, and that another level of

factor B, A may behave in another manner. In which case the 2 factors are said to interact, the 2

factors that are not independent of one another are said to interact.

When factors interact, the change in response due to change in one factor depends on the level of

the other factors.

(Refer Slide Time: 06:55)



So if the change in level of the first factor causes the certain change in output response at 1 level

of the second factor, and identical change in the first factor level at the second level of the second

factor  will  produce a  markedly different  output response.  So for this  you please look at  the

example I had given on cricket scores from a batsman depending on whether he had taken tea or

beer before coming out to play.

(Refer Slide Time: 07:26)

Now if you look at the typical analysis of variance table in factorial design of experiments, you

have  a  source  of  variability  due  to  A treatments  and  B  treatments,  and  then  you  have  the

interaction between A and B, then you have the contribution from the error. And so you have sum



of squares of factor A, sum of squares of factor B, sum of squares of factor AB, sum of squares

of error.

And again you have the degrees of freedom a-1 for A and b-1 for B, and interaction has a-1*b-1

degrees of freedom, and error has ab*n-1. We calculate the mean squares as usual by dividing the

sum of squares by the degrees of freedom the respective degrees of freedom, and so this is what

you have. So to find F0 for A, we find the mean square A by mean square error. For F0 for B, we

find mean square B by mean square error.

For finding out the F0 for interaction between A and B we take means square interaction and

divided with the mean square error. So when you have these 3 F values you compare it with the F

alpha  numerator  and denominator  degrees  of  freedom,  so the numerator  degrees  of  freedom

would be corresponding to the different factors, and denominator degrees of freedom would be

corresponding to the error degrees of freedom.

If the computed value of F0 for the different factors and the interaction or higher than F alpha

numerator, denominator degrees of freedom, then those F values are lying in the rejection region.

So the F alpha numerator and denominator degrees of freedom would define the critical F value,

and if that critically F value is exceeded by one or more of these 3 statistics, then those particular

factors are said to lie in the rejection region, and we can reject those appropriate hypotheses.

The hypothesis here would have been the treatment A is having no effect at all, mu A=mu or tau

A, the effect of factor A=0 so tau A=0. Similarly, for factor B we say that mu B=mu, the overall

average or mu B=mu +tau B, the null hypothesis says that tau B=0. Similarly, for the interaction,

if your F statistic lies in the rejection region, you reject the null hypothesis and say that factor A

is important  or factor  B is  important  or factor  AB, the interaction between AB is important

depending upon whether the F value is lying in the rejection region or not.

(Refer Slide Time: 10:49)



Then we move on to multiple regression, where we have the experimental response in terms of

beta 0+beta 1 X1+beta 2 X2+random experimental error, so the response Y is not only strictly

determined by factors X1 and X2, but also by a random error component, so beta 1 and beta 2

are called as partial regression coefficient 1 and partial regression coefficient 2 respectively.

(Refer Slide Time: 11:21)

So this  is  a  very interesting  diagram,  here we plot  the response versus X.  And we find the

response is scattered in the 2 dimensional plane, and we try to fit a line which passes in the best

possible manner through the points, we try to balance the line through these points, there can be

more than 3 such points. What is of importance is the regression line represents the true value,

and the experiments are showing deviations from the true value because of random fluctuations.



So that distribution of the fluctuations from the true regression value is described by a normal

distribution centered around the true line value, and the variance of this distribution is sigma

squared, the sigma squared is also called as the error variance. Because of the random fluctuation

or random errors only the data points are deviating from this straight line. So the mean of these

normal distributions correspond to the regression line value Y=beta 0+beta 1 X.

But there are deviation from this because of random error contributions, and when we do the

experiments  next  time you may get  the data  point  lying somewhere here,  or  it  may be line

somewhere here, because it is a random phenomena.

(Refer Slide Time: 13:08)

We can also do multiple regression model especially with linear algebra in a very swift manner,

so we describe a general multiple regression model as Y=beta 0+beta 1 X1+beta 2 X2+so on to

beta k Xk+ epsilon, and this has k regressor variables, this is a multiple regression model with k

regressor variables, so they are also called as factors or regressor variables X1, X2 so on to Xk.

The parameters beta 0, beta 1, beta 2 so on to beta k are called as partial regression coefficients.

(Refer Slide Time: 13:48)



Now we can have a matrix approach to multiple linear regression, so if there are k regressor

variables  X1,  X2 so on to  Xk and with n observations,  here the  index i  represents  the run

number.  You  can  have  n  runs  performed,  so  Xi1,  Xi2,  Xi3  and  Xik  are  the  X  values

corresponding to the ith run for factors 1, 2, 3, 4 so on to k. And the model is given by beta

0+beta 1 Xi 1+beta 2 Xi 2+so on to beta k Xik+ epsilon i, where epsilon i is the random error

component.

And usually the number of experimental settings should be greater than the number of regression

parameters, so this may be represented in matrix notation as Y=X beta+ epsilon.

(Refer Slide Time: 14:42)



So you have the column vector here Y=Y1, Y2 so on to Yn, X=1 X11, X12, X13, so on to X1k.

This perhaps maybe main factor A, main factor B, X13 may have been interaction between the 2

factors and so on. You can even have quadratic terms like X11 squared or X22 squared and so

on, and so you have for n experimental settings.  And then you have the beta column vector

comprising of beta 0, beta 1 so on to beta k. 

Epsilon is the column vector corresponding to random error component epsilon 1 epsilon 2 so on

to epsilon n.

(Refer Slide Time: 15:31)

So when we defined the matrix approach to multiple regression Y=X beta+ epsilon, using these

coefficients in the following model will help us to predict the response of the various values of

Xi. So we were knocking off the error component, because this is the prediction, we say that Y

hat=beta hat 0+beta hat 1 X1+beta hat 2 X2+so on to beta hat k Xk, note that we are having k

regression parameters beta hat 1, beta hat 2, so on to beta hat k, beta hat 0 is the intercept in the

multi-dimensional space.

(Refer Slide Time: 16:13)



So when we want to find the least square estimators for beta, we can solve this equation for beta

hat X prime X inverse X prime Y gives you beta hat.

(Refer Slide Time: 16:27)

So next we go on to the variance-covariance matrix which is a very important one, and we want

to  look  at  the  variances  of  the  estimated  parameters,  if  the  variances  are  small  then  those

parameters  are  being  estimated  quite  precisely. So  you have  the  X prime  X inverse  matrix

multiplied by sigma squared, and this is what you have here.

(Refer Slide Time: 17:00)



The sum of squares of the error is given by Y prime Y-beta hat X prime Y, there is a typo let me

just correct it. So we have sum of squares of error as Y prime Y-beta hat X prime Y that may be

represented as Y prime Y-sigma=1 to n Yi whole square/n-beta hat prime X prime Y-sigma i=1 to

n Yi whole squared/n. The sum of squares of error is written as the sum of squares of total-sum

of squares of regression, so this them here represents the regression sum of squares.

Here, we are knocking off sigma i=1 to n Yi squared/n to correspond to the sum of squares given

by the intercept beta hat 0.

(Refer Slide Time: 18:02)



So we again have the analysis of variance table source of variation due to regression, and errors

are residual sum of squares of error. So you have k and n-p degrees of freedom, and total sum of

squares is having a degree of freedom of n-1. And again we find the mean square regression to

mean square error, so we get sum of squares of regression by k which is mean square regression,

sum of squares of error is given by is divided by n-p degrees of freedom to give mean square

error.

The ratio of mean square regression to mean square error will give you the appropriate F0 value,

which  you  can  test  to  see  whether  this  F0  value  is  lying  in  the  rejection  region  or  in  the

acceptance region.

(Refer Slide Time: 18:47)

And then we also talk about R squared which is sum of squares regression/total sum of squares,

this  represents  the  proportion  of  the  total  variability  accounted  or  explained  by  the  linear

regression model.
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Here, an adjusted R square we have mean square of the error and model total sum of squares are

used, and here we penalize the model for having too many parameters, R squared adjusted=1-

sum of squares of error/n-p/sum of squares of total/n-1. Here, we are using the mean square of

the error and the model sum of squares, so here we are dividing by n-p when the number of

parameters increases, then n-p will decrease, 1/n-p will increase, so this term will increase and

the R-squared value will go down.

So the suggested procedure is keep adding more parameters to your model until the R-squared

adjusted starts to decrease, so it starts to penalize the model for having too many parameters. So

if  the  adjusted  R  squared  value  also  increases  along  with  R  squared  upon  adding  of  the

parameter, then that particular parameter you have added to the model is making a effective

contribution.

(Refer Slide Time: 20:16)



So now how to analyze for lack of fit, so what we do is we take the residual sum of squares.

What is the residual sum of squares? It is the residual is defined as the balanced or leftover when

you subtract the experimental response with the model prediction, so the balance is called as the

residue, and the residual sum of squares are obtained by summing the square of these residues.

So the residual sum of square is split into lack of fit sum of squares and the pure error sum of

squares.

So the degrees of freedom of residual sum of squares nr, and that is split into lack of fit sum of

squares and pure error sum of squares, pure error sum of squares is having degrees of freedom

ne, and lack of fit sum of squares is having nr-ne. And when we divide the lack of fit sum of

squares by nr-ne we get mean square lack of fit, when we divide pure error sum of squares with

ne, we get mean squared pure error.

Now what we do is we compare the mean square lack of fit with mean squared pure error using

nr-ne numerator degrees of freedom and ne denominator degrees of freedom. If the f test says

that these 2 are comparable, and it does not lie in the rejection region, then we can say that the

model does not have any lack of fit. Because the lack of fit sum of squares are comparable to the

pure error sum of squares, there is no further incentive to develop the model further.



But on the other hand, if the mean square lack of fit is considerably higher from the mean square

pure error, then the f statistic would be lying in the rejection region, then you have to conclude

that there is sufficient scope for model expansion, and the lack of fit is significant. So we have to

consider the addition of more terms in your equation. How do you get the pure error? The pure

error is obtained by carrying out genuine repeats in your experimental runs.

You fix all the factors at certain value, and then repeat at the same value more than once, then

you chose some other set of values for the factors repeat this experiments more than once at such

factor settings, like this if you do you will be able to get genuine repeats which will help you to

find the pure error sum of squares, and then you will get the mean square pure error. So this is a

lack of fit test is a very important in linear regression analysis and it  helps you to stop at a

particular stage of model development.

(Refer Slide Time: 23:39)

So the next important concept we discussed is about orthogonal designs, we touched upon the

advantages of orthogonal designs a few slides back. And if the 2 columns of the design matrix

are orthogonal, it implies the levels of these 2 factors are linearly independent. The important

implication of linear independent is that the roles of the 2 variables on the process response are

being assessed independent of each other.



When you are having factorial design, they are orthogonal based designs, and when you have

factor  A,  factor  B  you  can  see  that  A factor  is  treated  independent  of  the  B  factor,  the

contribution brought in by the A factor is independent of whether you are considering the B

factor or not. Then we talked about AB interaction, how the experimental response goes from

one value to  another  value upon changing A from lower level  to  upper level  depends upon

whether B was at a lower level or B was at a higher level.

Then the 2 factors A and B are said to interact, but we are talking about orthogonal designs and

we say that A effect is found independent of the B effect, so when you have AB interaction the

AB interaction effect is also found independent of the A effect and the B effect. So when you

develop a model and you do not consider the interaction term between A and B, the factor A

would still have a particular value.

Let us say the effect brought in by factor A is 20, if you consider interaction between A and B

also, the effect of A would be till 20, so it does not matter whether AB is present in the model or

not, the effect of A computed to be the same. Similarly, the effect of B maybe 10, the effect of B

is 10 independent of whether A is present in the model or AB is present in the model. Suppose

you have a full-fledged model and we are considering AB and AB.

Then the factor B would have an effect of let us say 10 units, if you do not have factor A and

factor AB, we would still have 10 units, so this is very important. And the best way to understand

this is to actually do a problem, develop a model for the orthogonal case, find the effects first you

have only A, then you have B, then you have AB. Then you will find that A effect, B effect and

AB effect are found independent of each other.

(Refer Slide Time: 26:15)



And in  our  model  development  we have  to  be careful,  suppose  we are  having only 4 runs

corresponding to the 2 power 2 factorial design, so we are having only 4 runs this is the column

vector of 1’s, this is the column vector corresponding to X1, corresponding to X2 and X1 X2. So

you are having all these so 4 independent runs and so you can estimate 4 independent parameters

beta hat 0, beta hat 1, beta hat 12.

However, if you want to estimate more parameters from your experimental design, for example

you want to consider the quadratic terms also in your design like putting beta hat 11 and beta hat

22, you will find that the beta hat 11 corresponding to X1 squared and beta hat 22 corresponding

to X2 square, X1 squared is having all 1’s and X2 squared is also having all 1’s. And if you look

at the X matrix the 1’s are corresponding with the column vector of 1’s.

The columns are not linearly independent anymore, you can say that there are linearly dependent

columns, there are 3 columns which are not linearly independent, and that would lead to all kinds

of difficulties in your estimation of the parameters. So it is important that you are restrained

yourself depending upon the size of the run, you do not try to fit too many parameters in your

model, do not go for the greedy model.

Look at number of parameters you want to estimate and number of experimental runs available,

you would think that number of experimental runs and number of parameters can be the same,



then it is no longer a regression analysis but procedure for solving A equations in A unknowns, so

you will get the exact fit to the experimental data. Normally, we conduct experiments in such a

way that we conduct a large number of experimental  runs and then we estimate only a few

parameters.

So that we have sufficient scope for accounting for experimental error and also for lack of fit

test.

(Refer Slide Time: 28:28)

In certain experimental design strategies, we require center runs, we can do factorial design and

you can repeat the experiments at factorial point factorial design points, but that may probably

lead to large number of repetition of the runs and maybe also expensive. So rather than doing

that you may want to carry out experiments at the center of your experimental design space, so

that repeats are only conducted at the center of the experimental design space which is midway

from all the experimental settings.

So that center runs are very important, because you are able to get an idea about the pure error.

And it is an important augmentation to the factorial design, and it does not contribute to the

linear effects and the interaction terms, and it helps to see qualitatively whether curvature is there

or not.
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Another important parameter which people do not really understand or use in their design of

experiments is the scaled prediction variance, there is a bit of linear algebra associated with it

and that may be the reason why people do not really appreciate and utilize it. It is associated with

the prediction nature of your model,  so your model is going to predict  certain values in the

experimental designs space. And how good, and what is the quality of the model predictions?

If the model predictions have wide variance associated with them, then those predictions cannot

be  really  relied  upon,  so we want  to  have  a  controlled  scaled  prediction  of  variance  scaled

prediction variance, for which we have to focus on the experimental design. For finding out the

scaled  prediction  variance,  we do not  have to  conduct  the experiments  as  such,  we have to

choose upon the suitable experimental design strategy.

And by looking at the X matrix,  we calculate X prime X, and then we calculate X prime X

inverse, and then we identify a certain set of coordinates in the experimental design space, and

then  we  compute  the  scaled  prediction  variance.  And  once  we  have  the  scaled  prediction

variance,  we look at  different  points  in  the  domain,  and see  whether  the  scaled  production

variance is kept under check in most of these points.

If there are certain points in the experimental design space where the scaled prediction variance

suits up, then that particular design is not to be recommended.



(Refer Slide Time: 30:55)

So you can have different definitions for the prediction variance, in the first definition you have

sigma squared and x m prime X prime X inverse x m*sigma squared, x m is the co-ordinate

point expanded into the model space. Please look at the appropriate slide for this definition. Then

we also have the  unscaled  prediction  variance,  where you divide the prediction  variance  by

sigma squared and you get x m prime X prime X inverse x m.

And  then  you  also  have  the  scaled  prediction  variance,  where  you  multiply  the  unscaled

prediction variance by the size of the run, you cannot officially make your scaled prediction

variance as small as possible by increasing the number of runs, if you want to compare different

designs then you have to put them on a common bases, and to do that you multiply by n which is

the  size  of  the  run.  And  the  scaled  prediction  variance  is  the  very  important  parameter  in

statistical design comparisons, we have SPV=n x m prime X prime X inverse x m.

(Refer Slide Time: 32:00)



Okay, coming to this next slide, we have what is called as estimated prediction variance, please

note that we do not know the value of sigma squared the error variance. In such cases we try to

replace the sigma squared the suitable error estimate, and that would be the mean square of the

residuals, the residual sum of squares is divided by degrees of freedom for the residual sum of

squares.

If you have n experimental points, and then you have p parameters including the intercept beta

hat 0, beta hat 1 so on. So you have p parameters note that p=k+1, where k is the number of

regression coefficients okay, so you have n-p as the degrees of freedom for the residual sum of

squares, so you can divide the residual sum of squares by n-p to get the mean square error, and

that can be used instead of sigma squared.

We call  it  as sigma hat square to the note that it  is an estimated one, and once you get the

estimated prediction variance we can find the square root to get the standard error.

(Refer Slide Time: 33:13)



We talked a lot about second order models, we looked at many research papers, we also talked

about second order models.  Why should there be so much fuss about second order models?

Because  experimental  design  space  may  no  longer  be  planar,  but  or  have  only  simple

interactions, it may also be characterized by peaks and or valleys. And second order models are

required to estimate this response and enabled identification of an optimal solution if any.

(Refer Slide Time: 33:48)

So second order models are of the form Y=beta 0+i=1 to k beta i xi+ sigma i sigma j beta ij xi

xj+ sigma i=1 to k beta ii xi square+ epsilon, so you are accounting for the main affects, you are

accounting  for  binary  interactions  and you are  accounting  for  the  quadratic  terms.  And this

would require an estimation of totally 1+k+kC2+k which is 1+2 k+k*k-1/2 parameters.
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And one important second order design is the central  composite design, where you have the

regular  factorial  design  and  it  is  augmented  by  axial  points.  I  am showing  it  for  a  design

involving only 2 factors, so that I can represent it on a 2 dimensional diagram, so you have the

regular factorial points and then you have the center points which help you to find the pure error

and also tell qualitatively whether the curvature effects are there.

In addition to the center and factorial points you also have the axial points, and these axial points

are important augmentation for the central composite design.

(Refer Slide Time: 35:03)



So the role played by center points in the central composite design are it helps in the detection of

second order or curvature effects beta 11+beta 22, but not in their individual estimation. The

number of central points decides the distribution of scaled prediction variance in the region of

interest, so what I am trying to say is the prediction capability of your model may also depend

upon the number of center points considered.

(Refer Slide Time: 35:31)

The actual terms help in the contribution or help in the estimation rather of the individual pure

quadratic effects, and if the axial points were not present, only the sum of the quadratic term

significance beta 11+beta 22 could have been gauged using the center points.
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And the axial points also do not help in the estimation of the interaction effects, and that is

obtained  from  the  factorial  points,  the  center  points  and  the  axial  points  contribute  to  the

flexibility of the central composite design.

(Refer Slide Time: 36:06)

An important alternative to the CCD is the BBD, an alternative to the central composite design

as  the  Box-Behnken  design.  It  is  a  creative  approach  to  planned  experimentation  involves

relatively smaller number of runs, it is an involves balanced incomplete block design.

(Refer Slide Time: 36:28)

so for 3 factors you have the Box-Behnken design, here you have a regular 2 power 2 factorial

for factor AB, and C is kept at the center point. In the next phase you leave B at the center point



and then construct a 2 power 2 factorial for A and C. For the next phase you consider B and C

and then you have A at the center. After you have exhausted all the 3 combinations, you then

have a set of center points defined here.

(Refer Slide Time: 36:59)

So when you have large number of factors let us say 6 factors instead of going for a 2 power to

design for a certain subset of factors you go for a 2 power 3 design. So first block or first phase

you consider X2 X3 and X5, here you construct 2 power 3 design involving these factors. Then

after doing out the 8 settings corresponding to X1 X2 and X4, you go to X2 X3 and X4 carry out

the 2 power3 design. In such a case all the remaining factors would be at the center values

Similarly, you go around taking 3 factors at a time, and construct all your 2 power 3 designs out

of these factors. So the important thing to notice you are considering 3 factors out of the 6 at any

given  time,  so  those  3  factors  would  constitute  a  2  power  3  factorial  design,  whereas  the

remaining factors be at  the center values.  Finally, after  exhausting all  the combinations,  you

come to the center runs, where all the factors are kept at the center values.
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And once we know how to do CCD and BBD, we can then do the response surface methodology

where the objective is to find the optimum value.

(Refer Slide Time: 38:25)

So the current level of operation may be very far away from the optimum, and we cannot afford

to wander around in the n dimensional space wasting resources, manpower and time. So we need

a structured and we need a well-thought-out procedure to quickly progress towards the optimal

solution, for this we use the method of steepest ascent.
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So I am demonstrating this  method for 2 variables,  here you are having X1 X2, and this is

responses are obtained from 2 power 2 factorial design, and we are showing no interactions the

contours are not curved, but they are linear. And to proceed along the direction of steepest ascent

you go in the direction perpendicular as shown here perpendicular to the contour lines. These are

response lines; we are going in direction perpendicular to them.

(Refer Slide Time: 39:21)

So once we keep doing experiments, please remember that we cannot use the developed model to

identify  the  values  or  outcomes  along  the  direction  of  steepest  ascent,  but  we  actually  do

experiments out of this design space, and we keep doing the experiments until we reach a stage

where we find the values passing through an optimum. Here, we construct a central composite



design around this optimal point, and then evaluate all the parameters in the model. And we also

see whether the optimum is minimum or maximum or a saddle point.

(Refer Slide Time: 39:56)

So this central composite design around the optimal point is shown, for example here you have

the factorial points, here you have the axial points, finally the repeats.

(Refer Slide Time: 40:09)

So now you can fit a second order model as given by the following equation.

(Refer Slide Time: 40:16)



And once you have identified all the model parameters, then you have to identify the stationary

point. You have to first locate where the stationary point is, the stationary point is where the

where dou Y hat/dou Xk, where Xk can be X1 X2 depending on the number of independent

factors  you  have  considered  that  all  the  partial  derivative  should  be  set  to  0.  So  from the

identified model equation you can set all the partial derivatives with respect to the X values to be

0, solve the resulting set of perhaps non-linear algebraic equations, and find the set of stationary

conditions.

(Refer Slide Time: 40:56)

There is another way of doing it that is from the matrix method, here you identify what is called

as a small b matrix and the capital B matrix. What is the small b matrix and the capital B matrix?



(Refer Slide Time: 41:04)

The small B matrix is the column vector of all the main factor parameters, and then you have the

capital B matrix whose structure is interesting, here along the diagonal we have the coefficients

for the quadratic terms, and along the off diagonal we have one half of the interaction term. So

this matrix is symmetric for example beta 12 location will be=the 21 location, so here also you

have beta hat 12/2 and in 12 or 21 location also you will have beta hat 12/2. 

So this b matrix is a symmetric matrix bij=bji that is the matrix being symmetric, in such a case

to account for the interaction effect twice we are dividing it by 2. On the other hand, the diagonal

terms are all the quadratic coefficients beta hat 11, beta hat 22 and beta hat kk. So once you have

the  capital  B and the  small  b  matrices,  evaluating  the  locating  the  stationary  point  is  quite

straight forward, this is obtained by the solution to the equation b+2BX=0, remember here we

are dealing with matrices.
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So once you solve the above equation, we get the stationary point coordinates as-1/2 B inverse of

b, so the predicted value of Y at the stationary point is Y hat S=beta hat 0+1/2 of XS prime b,

where XS is given by this equation.

(Refer Slide Time: 42:54)

So you can look at the response surface, and it can see for this particular  example it  passes

through a minimum, so we have a minimum solution here.

(Refer Slide Time: 43:04)



So in order to identify whether the identified stationary point is maximum or minimum or a

saddle point, we have to check their  eigenvalues,  if  all the eigenvalues are positive then the

obtained solution the stationary point corresponds to a minimum, and if all the eigenvalues are

negative  the  identified  stationary  point  is  a  maximum.  And  if  you  have  some  eigenvalues

positive  and  some  eigenvalues  negative,  then  it  corresponds  to  a  saddle  point  another  true

optimal location.

(Refer Slide Time: 43:33)

So the CCD and BBD runs are augmented with center runs, they are very popular among the

practitioners.
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And the statistical designed experiments are evaluated based on the factors such as good fit to the

data, it should allow for lack of fit and it should allow for sequential construction of models of

increasing order or complexity.

(Refer Slide Time: 43:53)

And you should have enough repeats of the center, to have an estimate of the pure error, and it

should be robust to the presence of outliers in the data, and it should be cost effective that means

it should involve less number of runs, and it provides us good prediction of scaled prediction

variance. So this completes our discussion on experimental design strategies, we have covered

quite a lot of ground that should be enough for researchers, who are planning to do designed

experiments.



We have covered sufficient theory as well as done significant number of problems. I request you

to go through them, and solve as many problems on your own, and then also become familiar

with statistical software like MINITAB design expert and so on. So I wish you all the best in

your application of this statistic principles we learnt for your experimental program, thanks for

your attention.


