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Welcome back. Today we will be looking at new lecture on response surface methodology.

Again you might  have come across this  term when you were reading research papers or

books on statistical design of experiments. This is a very popular tool and widely used in the

industry. This is simply based on the concepts we have studied until now and involves an

optimization exercise.

(Refer Slide Time: 00:47)

So the purpose of any experimental work would be to identify optimum conditions for the

production so that you want to either maximize the yield conversion to the decide product or

minimize the power consumption or minimize the time required to complete the job. So these

are all important optimization objectives and now we are adding a new dimension to our

experimental design strategies.

We were earlier  looking at  the issues like rotatability, spherical  nature of the design,  the

scaled prediction variance, variance of the regression coefficients, the analysis of variance,

the residual sum of squares, lack-of-fit and so on. The new dimension comes in the form of

identifying the direction in which we do the experiments and obtain eventually the optimum

conditions.



We also have to ensure that the conditions we have reached are truly optimum. They are

maximum conditions if you want to maximize our objective function or minimum conditions

if you want to minimize our objective function. We also have mathematical tools available

with us to indeed verify we have reached the optimum and not for example a saddle point.

(Refer Slide Time: 02:38)

When we start doing experiments, we are really unsure where exactly the optimum conditions

are. We cannot afford to wander in the wilderness of n-dimensional experimental space in

search for the optimum. A logical procedure is required to find the optimum conditions. So

we do some preliminary experiments to get an idea about the features of the experimental

design space.

What do I mean by features of an experimental design space? We want to see in the design

space of consideration whether only the main factors are contributing or there is interaction

between the factors. We also want to see whether there is quadratic terms or curvature effects

assuming importance even in our restricted design space. The curvature or quadratic effects

manifest themselves in the form of X1 squared and X2 squared terms in the model equation.

So we want to first check whether these terms are important. By restricting ourselves to a

narrow  design  space  initially,  we  ensure  that  we  get  an  idea  about  the  features  of  the

experiment  without  getting  complicated  by  the  curvature  or  quadratic  terms.  Even  if

interaction terms are not there, it  is well and good. So the response surface methodology



deals with the identifying the optimum settings of the factors in a systematic and planned

fashion.

(Refer Slide Time: 04:19)

So let us represent the process initially only in terms of the main factors X1 and X2. We are

not considering the interaction between X1 and X2 and when interactions are not considered,

then even more complicated terms like X1 squared and X2 squared are not at all considered

but this is a simplified model we are starting with but we have to ensure that our model is

adequate or correct and the interaction terms and the quadratic terms are indeed not present.

So here Y represents the response, X1 is the independent variable 1 or the factor 1, X2 is the

independent variable 2 and epsilon is the independent error term, which is assumed to be

normally distributed with mean 0 and constant  variance sigma squared.  We do not know

sigma squared.

(Refer Slide Time: 05:15)



So after we fit the model parameters, the model is represented by Y hat=beta hat 0+sigma=1

to 2 beta hat i Xi. This is the prediction for any coordinate point in the experimental design

space.

(Refer Slide Time: 05:41)

So what is meant by the method of steepest ascent? Even though we generally talk about the

method of steepest ascent you may also have to look at steepest descent as well.  If your

objective function is to maximize or if your exercise is to maximize the objective function

then  you  are  looking  for  the  direction  of  steepest  ascent  and  if  your  objective  function

involves minimization, then you are looking for the direction of steepest descent.

So what is steepest ascent? The steepest ascent method is a sequential  process where we

move in the direction of maximum increase in the response and if minimization is required it



is called as the method of steepest descent. So once we are in the preliminary region, we want

to move ahead then we have to move as rapidly or as quickly as possible in the direction

where the response is increasing the fastest okay.

So in that way we are hopeful that we would eventually reach the optimum condition as early

as  possible.  So  how  to  identify  the  direction  of  steepest  ascent  in  maximization  of  the

objection  function problems? We want to  look at  the direction  of steepest  descent  in  the

minimization of objective function problems.

(Refer Slide Time: 07:05)

So let us look at process involving only 2 main factors. There is no interaction between the 2

factors and you are having X1 represented as shown here and we assume that the scale for X2

is the same as that for X1 and then what we do is we want to see how to progress the fastest

where the response would be increasing very rapidly and you can see that these are constant

response values as long as they are in the black line.

The constant value is Z=5, then when you go to the next line this represents locus of all

points where the response value is 15, this corresponds to 25 and this corresponds to 35 and

as I said earlier the scales are the same on both the axis and if you want to progress along the

direction  of  steepest  increase  in  the  responses  then  we  have  to  take  a  path  which  is

perpendicular to the lines.

And since only main factors are involved, we are showing the response contours in the form

of straight lines. If there were considerable interactions between the 2 parameters X1 and X2,



the lines here would have become curves. They would have been twisted because of the

interaction effects, but fortunately as far as this model is concerned it is a simple one and it is

an additive model where only the factors X1, X2 influence the process.

Even the interaction between the 2 factors X1 and X2 is negligible. That is why the contours

are straight lines and the direction of steepest ascent is given in terms of a line, which is

perpendicular to the constant value line.

(Refer Slide Time: 08:57)

The direction of steepest ascent is the direction in which Y hat increases most rapidly. It is

taken as the line through the center of the region of interest and normal to the fitted surface.

(Refer Slide Time: 09:09)



The steps along the path are proportional to the regression coefficients, modulus of beta hat i.

So how do we take the steps along the path of the steepest ascent? Please note that the steps

along the path are proportional to the regression coefficients. So we cannot assume equal

importance to both the axis. For example, if you are having 2 factors, we are looking at a 2-

dimensional space.

And we cannot say that if I move one step in the X1 direction, I will also move 1 step in the

Y1 direction because each factor may not be contributing equally to the process response and

hence it  is  clear  that  the direction  of the steepest  ascent  would depend upon the relative

importance of the two factors and the steps would be determined accordingly. So how long do

we conduct the experiments along the direction of steepest ascent?

Please note that we are conducting experiments along the direction of steepest ascent and we

are not predicting the responses. So we conduct the experiments as long as the response

values are increasing and a point may be reached where the values may begin to drop. So we

have reached the conditions where the maximum responses obtained. Then we have to pause

here a bit and then reevaluate our experimental design strategy.

(Refer Slide Time: 10:51)

So let us do this understanding of response surface methodology through an illustration. The

problem statement goes like this. Machine is used for production of powders of a certain size

and the machine operates at constant speed and is fed with the material. It may be a rock or

whatever. The production rate in kilograms per hour of the machine depends upon the power



supply to the machine and the raw material feed rate. The data are presented in the coded

format.

(Refer Slide Time: 11:26)

So to obtain an idea about the experimental error, the experiments have been repeated at the

geometric  center  of  the design and the additional  role  of  center  points  will  be explained

shortly.

(Refer Slide Time: 11:36)

So we have the  experimental  data  in  coded format.  They are  given here  X1,  X2 and Y

kg/hour and X1 and X2 are not having any units because they are coded variables and they

are representing a 2 power 2 design as shown here 1 1 1 -1 -1 1 -1 -1 settings  and the

responses are given here and you also have the center points. Repeats are carried out at the

center points.



And these are the responses obtained from the 4 repeats. So we calculate the variance of the

data obtained at the center points. So we essentially find the variance of 68, 65, 61 and 62

which comes out to be a whole number 10 and this is a measure of the error variance and it is

denoted by sigma hat squared or estimated error variance sigma hat squared. So this is the

estimation of the pure error only due to random factors.

(Refer Slide Time: 12:36)

Now the conventional 2 power 2 factorial design is enhanced or augmented by 4 center points

and the replicates of the center are used to estimate the experimental error and allow for

checking for the adequacy of the first order model. It tells us whether our first order model

we have proposed is sufficient or we need to consider the effects of curvature by the addition

of the quadratic terms beta 11 hat X1 squared or beta hat 11 X1 squared and beta hat 22 X2

squared.

This represents the contributions from the quadratic effects. So let us see how to use the

center runs to detect whether quadratic effects are significant or not.

(Refer Slide Time: 13:27)



So before we do that let us fit the design based on the available data points.

(Refer Slide Time: 13:35)

So the first order model which we get is of the form Y hat=beta hat 0+sigma i=1 to 2 beta hat

i Xi. This first order model assumes that the variables X1 and X2 have only an additive effect

on the response.

(Refer Slide Time: 13:51)



So the first order model has center points, it can estimate the pure error, the first order model

involving 4 factorial points will not only enable you to find the main effects but also to find

the interaction because we are having 4 independent settings for a 2 power 2 design, we can

find the intercept beta hat 0, then we can find the contribution from factor 1 or the importance

of contribution from factor 1 which is beta hat 1.

And the importance of contribution from factor 2 is given from the beta hat 2 coefficient. So

that makes it 3, we have 4 independent settings and so the remaining independent setting may

be also used up in the calculation of the interaction term beta hat 12 that means we are using

4 independent settings to find 4 parameters. We cannot estimate anymore parameters from a 2

power 2 design.

So even this limited design with center points has enabled us to find a model with main

factors and the interaction between the 2 main factors and also it has given us a good idea

about the experimental error.

(Refer Slide Time: 15:22)



Further the center points are invaluable in telling us whether quadratic effects are important

or not.  It  cannot  tell  you exactly  what those quadratic  contributions  are.  It  will  only tell

whether you need to consider the quadratic terms or you may at present omit the quadratic

terms.

(Refer Slide Time: 15:46)

So first let us look at the estimation of error before we go into the testing for the significance

of the quadratic terms. Let us do the simple things first which would be the estimation of the

experimental error. That is a very straightforward task. We had to just find the variance of the

4 center points. There are different ways of doing it. Sigma Xi-X bar whole squared/n-1 or

you may also do sigma Xi squared-sigma X whole squared/n whole thing divided by n-1/.



Well you have come across these kinds of calculations in the previous lectures. Let us take

the  shortcut  formula  here.  So  sigma hat  squared=68  squared+65 squared+61 squared+62

squared. What are these points? These are nothing but the values obtained at the center. They

are the repeat points at the center and 256 would be sum of all these 4 observations. 68 the 65

is 133, 194, 194+62 is 256 so that is what you have here.

And 4 would be the total number of repeats which is 1, 2, 3, 4 and then this 3 represents the

degrees of freedom for the 4 data points since we are already calculating the mean from the 4

data points, we lose a degree of freedom there and we have only 3 as the degrees of freedom

and we get sigma hat squared as 10.

(Refer Slide Time: 17:20)

And how do you find the main and interaction effects? To do it in a very economical manner

and universal manner, I would suggest you to adopt the regression approach. You have the X

matrix and you have the Y vector of responses or the experimental values obtained and you

simply use the regression approach to identify the model parameters.

Let us very straightforward and if you have software like MATLAB or Scilab or any software

which  can  do these  kind of  matrix  manipulations  routinely  then  the  coefficients  may be

identified very quickly but from a learning point of view even for this design with the center

points, we can identify the main effects and the interaction effects using the factorial design

approach.



We use the table of contrast and from that we may identify different effects. We know that

once the effects are identified, the coefficients are estimated by dividing the effects/2 because

the effects represent the change from going from -1 coded value to +1 coded value a jump of

2 units but our regression equation involves the response when there is a change in 1 unit of a

particular factor.

So the effects are divided by 2 to get the coefficients either you use the regression approach

or you may use the factorial approach to estimate the parameters. So if you want you can do

these calculations since it is only a 2 power 2 design you may do these very easily and you

may verify whether the results you obtain are matching with the results which are going to be

present.

(Refer Slide Time: 19:06)

So when you look the values the main effect is having a value of 24, the main effect B is

having a value of 30 and the interaction is having a value of 0 and the coefficient for the

different effects or different factors rather are 12, 15 and 0 and the sum of squares again may

be easily calculated from the contrast and they turn out to be 576 for A and 900 for B and for

AB it is 0.

(Refer Slide Time: 19:51)



We can now construct the ANOVA table and we have the degrees of freedom listed out here.

Since we are having 4 repeats, we are having 3 degrees of freedom for the repeats and we

found mean square error or the variance as 10 and we also have the mean squares for factors

A, B and AB and so you have F0 value as 576/10, for AB it is actually 0. So the probability P

value comes out to be 1 for AB.

And  so  that  tells  us  you  can  comprehensively  reject  the  coefficient  associated  with  the

interaction between A and B but you can see that both effects A and B are highly significant

because their P values are very small. The critical f value is given by f 0.05, 1, 3 and that

turns out to be 10.13 and since these actual F values are much, much higher than the critical f

value, they lie in the rejection region.

And hence you may reject the null hypothesis, which states that the coefficient corresponding

to factor A and the coefficient corresponding to factor B are both 0. So we reject the null

hypothesis and say that both the factors are significant. Only the insignificant factor is the

interaction between the 2 factors A and B.

(Refer Slide Time: 21:22)



So from the analysis of variance test from there we get the F and associated p values and

perhaps even from visual inspection, which is usually not trustworthy it can be shown that the

interaction term is currently unnecessary. If an interaction term were to be added, then we

would have had an additional coefficient beta hat 12 and that would have been present here

but as far as this model goes we can neglect the beta hat 12 because the interaction effect is

not significant.

(Refer Slide Time: 21:57)

So  finally  we  have  the  fitted  model  as  Y hat=63+12X1+15X2  and  we  considered  the

coefficients  are  given  here.  So  in  the  preliminary  model  in  the  preliminary  designed

experiment, we have the model given as shown here.

(Refer Slide Time: 22:25)



Now let us move on to the checks that are in place for the sufficiency of the linear model. We

said that the quadratic effects may be actually important even in this preliminary design space

and should we add beta hat 11 X1 squared and beta hat 22 X2 squared or we can get away

without adding those model terms that is what we have to check next. So what we do here is

quite simple.

We take the average of the 4 corner points of the factorial design Y bar F and compare it with

the average of the center point values Y bar C. So if you go back to the table as shown here,

so these are all the factorial points and these are the responses at the factorial points and these

are all the center points and these are the values at the center points. So if you want to take

the average Y bar F it would mean the average of the factorial points.

And that would be 152 16 216+36 is 252 so 252/4 is 63 and this we saw has 133 194 256

256/4 is 64 so the average of the factorial points is 63 and the average of the center points is

64. So the difference between the two is very small.  So we can imagine that Y bar F the

average of the factorial points is located close to Y bar C which is the average of the center

points.

If you are going to have the second order effects of the quadratic effects important, then what

would have happened is the center points would have been located very far off from the

factorial  points. Then, the average of the factorial  points would have been quite different

from the average of the center points. So if the average is between the center and factorial



points are pretty much the same, then we can understand intuitively that the center points are

located very close to the plane containing the factorial points.

In other words, if you look at the model surface you do not see any strong peaks and valleys

okay.

(Refer Slide Time: 25:32)

So we were looking at the importance of the curvature terms. If you have strong curvature in

your design space then the response surface would be characterized by peaks and valleys,

which would mean that if you are taking a plane of 4 points, there may be a region in the

center which is considerably at elevation with respect to the plane formed by the 4 points.

That shows that there is a strong curvature and peak in this experimental design space.

So we are having a center and then we have 4 factorial points. If the center point response is

considerably different from the corner point responses, then we may suspect the presence of

peak or curvature in the design space between the factorial points and the center points. On

the other hand, if the center point values are comparable and very close to the 4 factorial

points average, then we may think that they are very close.

And we do not have any strong peak in the design space we have considered. So with this

intuitive understanding we can carry out certain tests. So the first step is to find the difference

between Y bar F and Y bar C.

(Refer Slide Time: 27:08)



So if the difference between Y bar F and Y bar C is considerable then we can conclude that

curvature effects may be important.

(Refer Slide Time: 27:19)

What is  that  quadratic  effect  of the second order effects? If  they are significant  then the

model  should  have  in  addition  to  the  regular  intercept,  main  factors,  and  then  binary

interaction. It should also have beta hat 11 and beta hat 22.

(Refer Slide Time: 27:38)



So what we are doing here is checking for the linear model sufficiency by estimating the

quadratic effects.

(Refer Slide Time: 27:46)

The  quadratic  effects  are  characterized  by  beta  hat  11 and beta  hat  22  with  the  current

experimental  design  involving  4  factorial  points  and  4  center  points.  We are  unable  to

estimate beta hat 11 and beta hat 22 for the simple reason that we do not have sufficient

degrees of freedom. So we are not in a position to estimate them explicitly but we may have

an idea of the importance of beta hat 11+beta hat 22.

(Refer Slide Time: 28:27)



And that is given by the estimator Y bar C-Y bar F. Y bar C-Y bar F is acting as an estimator

for beta 11+beta 22. So we can call Y bar C-Y bar F as beta hat 11+beta hat 22.

(Refer Slide Time: 28:56)

And so the difference between Y bar C-Y bar F we saw from our calculations that it is 64-63

and that is equal to 1. So an estimate of beta 11+beta 22 has been obtained from Y bar C-Y

bar F and that turns out to be 1.

(Refer Slide Time: 29:24)



So the null hypothesis which involves the actual parameters and not the estimated ones please

note that. H0 is given by beta 11+beta 22=0 and H1 is given by beta 11+beta 22 !=0.

(Refer Slide Time: 29:43)

So we are using the actual population parameters in our hypothesis statements and again to

repeat Y bar C-Y bar F is used as an estimator for the coefficients beta 11+beta 22.

(Refer Slide Time: 30:01)



So we can do a t-test which is based upon the estimator Y bar F-Y bar C-the null hypothesis

statement which says that beta 11+beta 22=0 that is why we put 0 here and then we have the

variance of Y bar F-Y bar C.

(Refer Slide Time: 30:31)

And this may be written as Y bar F-Y bar C whole thing divided by sigma*root of 1/nF+1/nC

where n is the number of factorial points and nC is the number of center points and we can

convert this t-test into an F test or convert the t statistic into an F statistic by squaring this

term  and  we  get  f0=t0  squares  which  is  Y  bar  F-Y  bar  C  whole  squared/sigma

squared*1/nF+1/nC.

So  whatever  we  have  studied  in  the  first  phase  of  this  course,  hypothesis  testing  and

important  probability  distributions  we  are  making  use  now  and  we  do  not  know sigma



squared but we have an easy solution for that. We have repeats at the center and we can use

the mean square error as a surrogate value for sigma squared and we call that as a sigma hat

squared.

(Refer Slide Time: 31:39)

So now the variance is based on center points and it may be substituted as an estimate for the

error  variance  and  so  you  have  f0=Y  bar  F-Y  bar  C  whole  squared/sigma  hat

squared*1/nF+1/nC.

(Refer Slide Time: 31:55)

So converting this into an F statistic, we test the equivalent to the null hypothesis that the

numerator  sum of  squares,  degrees  of  freedom  is  1  given  by  Y bar  F-Y bar  C  whole

squared/1/nF+1/nC is equivalent to the mean square error.

(Refer Slide Time: 32:14)



So this F-statistic is tested with 1 and nC-1 numerator and denominator, degrees of freedom

respectively.

(Refer Slide Time: 32:21)

So how do you calculate the sum of squares of the pure quadratic? So when you simplify this

particular  expression  which  is  given  here,  we  get  nF*nC  Y  bar  F-Y  bar  C  whole

squared/nF+nC which is number of factorial points 2 power 2 which is 4, number of center

points 4 and Y bar F-Y bar C whole squared is 1 squared/4+4 which is 8 that turns out to be

2.

So when you divide sum of squares of the pure quadratic by sigma hat squared, we get 2/10

which is equal to 0.2 so the F value is 0.2.

(Refer Slide Time: 33:02)



And this F value is associated with the P value of 0.685, which is very high and tells that the

curvature terms is insignificant because the P value is much higher than 0.05 so both the main

effects are significant while the interaction and the pure curvature effects are not significant.

(Refer Slide Time: 33:24)

So we can say that the model may be well represented by Y hat=63+12X1+15X2. In order to

find the direction of steepest ascent what we do is we convert this into X2 versus X1 form.

When we do that we can show very easily that 15X2 is Y hat-12X1-63 so X2=-63/15 which

is -4.2 and then you have for X1 -12X1/15 which is -0.8 and then for Y hat coefficient it will

be simply 1/15 which turns out to be 0.06667.

(Refer Slide Time: 34:15)



So what we have to do is use this equation to find the path of steepest ascent. So what we do

here is we draw contour lines for constant Y hat using this equation. We fix Y hat at a certain

value and then draw this line then we fix Y hat and another value and draw another line. This

way we can generate sufficient number of contour lines in the experimental design space of

interest.

(Refer Slide Time: 34:49)

And what is the slope m1 of this equation? The slope is given by -0.8 because we are plotting

X2 versus X1 where Y is a parameter and it is kept at different, different values. So the main

important defining relationship is between X2 and X1 and if I take the slope of this particular

equation dX2/dX1 would be=-0.8.



And that is the slope and if you want to find the direction normal to this slope, then we have

to find a slope which is bearing a relation m1m2=-1, m1 is the slope of the original line, m2

is the slope of the new line in the direction of steepest ascent. To get the slope of the line in

the direction of steepest ascent, we have to find m2 and the relation is m1m2=-1. Since m1 is

known we can easily find out m2.

So the slope m1 of this equation which was given before that is Y hat=63+12X1+15X2 or X2

is -4.2-0.8 X1+0.06667. So the slope initially is -0.8 and we have to find m2 the slope of the

line of steepest ascent such that the relation m1m2=-1 is satisfied. This equation comes in the

normal calculations. So here we get m2=-1/-0.8 which is 1.25.

(Refer Slide Time: 36:40)

So here we are sketching the responses, we are fixing different responses for Y, Y is 5, Y is

30, Y is 70 and Y is 100. So these are different responses and you can see that for each of this

response Y, there is a line so for Y=5 we have this line, for Y=30 we have this line, for Y=70

we have this line and Y=100 we have this line and all of these lines have a slope of -0.8. In

order to identify the direction of steepest ascent, we have to find a line with slope of 1.25.

And the line is represented here. Since the scales are not the same in both X and Y axis, you

can see that this line is not exactly perpendicular to the lines but it is slightly at an angle but it

still represents the direction of steepest ascent because it is drawn with the slope of m2=1.25

right.

(Refer Slide Time: 37:48)



So this is a close-up view of the same figure which is showed previously and it can be seen

that this is the path taken in the direction of steepest ascent and the slope of this particular

line is 1.25. I am drawing this line starting from the center of the design, which is the origin

and so you can see that for every one step along the X1 direction I am taking a step of 1.25

along the X2 direction.

(Refer Slide Time: 38:24)

Now I have the direction of steepest ascent and please remember that the values are on the

coded format. So persisting in the same coded format if I take a step of 1 unit along the X1

direction, I take a step of 1.25 units along the Y direction or X2 direction, not the Y direction,

Y is the response. If I take a step of 1 unit along the X1 direction, I take a step of 1.25 units

along the X2 direction.



Please note that the step size is along each of the two directions need not be the same because

the regression coefficients are different. There is a different weightage given factor 1 and

different weightage given for factor 2 and hence the direction of steepest ascent also has to

respect these different weightages and when you are doing experiments in real life, please

keep a track on your actual experimental value corresponding to the coded variables okay.

Sometimes when you are going along the direction of steepest ascent, you are going 1, 1.25

and 2, 2.5 and so on the response may be increasing all the time but you may not be able to

go beyond a certain point for the simple reason because the pump would have saturated or the

flow rate would have hit its maximum upper bound. So you have to stop at that particular

point.

So in some cases you cannot do experiments indefinitely until you get to the true optimum

because you may hit a bound crossed by the boundaries of your experimental design. You

may not be able to cross the boundary for various practical reasons. So what I am trying to

say here is when you are going along a particular direction in the coded format keep also a

track on the actual values.

We know that the coded format is done in order to put the factors independent of units and

assign them equal importance. Now once you have a coded value, you should also have the

uncoded value. In one of my earlier lectures, I have given you the formula for converting

coded values into uncoded values and vice versa.

Please refer to that. So when you are going along this direction of steepest ascent, please

make sure that you are not hitting a bound created by the constraints of your experimental

program.

(Refer Slide Time: 41:22)



Alright and another important thing is in the direction of steepest ascent you are doing the

experiments, you are not using the prediction model which you had developed earlier. The

prediction model was carried out over a narrow design space and you ensured that there is no

curvature effects present in that narrow design space and then it also help you to identify the

path of the steepest ascent.

So from that preliminary region, you are going along the path of steepest ascent and that is

helping you to proceed as quickly as possible but once you have crossed that -1 +1 boundary

corresponding to that narrow design space, you should stop using the model prediction. You

should  actually  perform experiments  along  the  path  of  the  steepest  ascent  and  from the

experimental responses decide when to stop okay.

I have hit my bounds, so I cannot go further on from here so I will stop or I am reaching an

optimum response value and I will pause here to reevaluate my design strategy. So if you are

lucky enough to get into the second stage where your responses showing a maximum value

and then declining, you want to stop at that point and pause a bit and reevaluate your design

strategy.

(Refer Slide Time: 42:52)



So the experimenter has to meticulously do the experiment and measure the responses. He

proceeds according to the table given in the next slide. The observed yield increases until a

value of about 95 observed at 2, 2.5 in the coded format and then starts decreasing.

(Refer Slide Time: 43:09)

So that particular figure is as follows. This is where you started and then when you proceed

you find at the third step you are having a maximum value corresponding to about 95 and

then  the  value  start  declining.  The  production  rate  in  kilograms  per  hour  has  reached

maximum of 95 at about the third step and remember that you are going for 1 unit along the

X1 direction, you are going 1.25 units along the X2 direction.

So this is the point where you have to pause a bit and reevaluate your design strategy.

(Refer Slide Time: 43:51)



So what we do is once you have reached that optimum location, you will be having a new set

of coordinates corresponding to that. There again you recode your experimental settings as -1

and +1. Again this is very straightforward and this  helps us to carry out the design on a

uniform basis. So that we do not have odd numbers, odd values like 1.27, 3.56 and so on. We

are always working with -1 +1.

So  whenever  we  adopt  a  new  experimental  design  strategy,  we  have  to  recode  those

experimental settings as -1 +1 format but we have to keep track on all the transformations so

at  any  point  we  should  be  able  to  convert  the  coded  values  into  the  actual  uncoded

experimental settings. That is what is of interest to the experimenter and these things are done

very easily.

I will just go to the board and tell you how the coding and uncoding is done.

(Refer Slide Time: 45:05)



So a thing in coded form is very simple.  This is the actual X value-X average/X max-X

average. So let us say that you are having data points 30, 40, and 50 and if I am looking at 30

then it would be 30-average of 30, 40, 50 is 40/max is 50-40 and this turns out to be 30-40 is

-10/10 which is -1. Now when I am having 40 this is corresponding for X=30. This is -1

coded value.

And for X=40, its coded value=0 which is the center point for that particular X and for X=50,

we have 50-40/50-40, which is +1 as the coded value. So for any experimental set of data we

are able to convert it into -1, +1 coded format.

(Refer Slide Time: 47:00)

So in the new so called optimum location we are again recoding our values and we get the

responses as 85, 95 and 92.5 so at 2 and 2.5 we are getting the maximum response 95. So



these values are now coded values and those coded values are 1, 2, and 3 okay. This is the

original coding. Now we have to recode these values as -1, so 1 will become a new -1, 2 will

become a new 0 and 3 will become a new +1.

Similarly, 1.25 will become a new -1, 2.5 will become a new 0 and 3.75 will become a new

+1. So this methodology I showed in the board can be adopted to code these values into -1,

+1 format.

(Refer Slide Time: 48:09)

So now we are in a new situation where we are hit a maximum. This itself indicates that there

is a curvature and a peak and a valley kind of region in the new experimental design space.

So a simple model  involving the main factors  and the interaction between the two main

factors will be definitely insufficient. So we have to capture the quadratic terms or the peak

and valley coefficients correctly and efficiently.

And for this reason we cannot stick with the original factorial design and the center points,

we need to augment the original factorial design with axial locations. So we are now going in

for the central composite design where we add axial points in addition to the existing factorial

points and center points.

(Refer Slide Time: 49:09)



And for two factors, the axial points are located at + or –root 2 0 and 0 + or – root 2.

(Refer Slide Time: 49:21)

And this is the design matrix for the central composite design and you can see that in the

recoded format we have the factorial point shown in green color, the axial points shown in

blue color and the center points shown in red color and when we do experiments at these

conditions, these are the production rates obtained.

(Refer Slide Time: 49:45)



So at this point, we can also show it graphically or in the form of a figure, you can see that

these were the factorial points and this represents a center points or central points and then

these represent the axial points and they are located at -1.414 +1.414 +1.414 and -1.414. So

these are the axial points. So in addition to the factorial points and center points, we have the

axial points and this represents the central composite design strategy.

(Refer Slide Time: 50:21)

And what is the second order model we are testing with? Second order model we are testing

is beta 0+beta 1 X1+beta 2 X2+beta 12 X1 X2 beta 11 X1 squared beta 22 X2 squared+ the

error term or the predicted expression or the prediction equation is given as Y hat=beta hat

0+beta hat 1 X1+beta hat 2 X2+beta hat 12 X1 X2+beta hat 11 X1 squared+beta hat 22 X2

squared.



So this completes our initial  discussion on the response surface methodology. We will be

looking at another example involving the central composite design and we will see how to

estimate  the  beta  hat  11 and  beta  hat  22  and  we  can  also  see  whether  these  particular

additional terms are significant or not and once we have done that we also have to locate the

optimum condition.

It is not enough that we identify the optimum condition; we have to characterize the optimum

condition also. First, we have to tell whether the obtained optimum condition is a maximum

or a minimum. Sometimes, it can even be neither. You may be sitting on a saddle and there

may not be any change in the value along a particular direction, so that may also happen, we

do not know.

And  even  though  we  may  have  hit  an  extremum point  we  have  to  see  whether  it  is  a

maximum or a minimum and some mathematical tools are available with this and we can use

them.  This is  a  very important  aspect  of experimental  design and perhaps represents  the

ultimate point in experimental design strategies. So we have done experiments in efficient

manner, planned manner using factorial design concept.

And now we have added an additional dimension to the entire exercise by using design of

experiments to find the optimum location. So we will continue in the next lecture with the

suitable example involving the central composite design. Thanks for your attention.


