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Hello, in this lecture 28, we will be looking at concepts pertaining to orthogonal models.

(Refer Slide Time: 00:23)

The references are given in the current slide and the slide to follow. The first book is by Box and

Draper,  Responses  Surfaces,  Mixtures  and Ridge Analyses,  it  is  slightly  advanced  book for

people who want to deepen their understanding and knowledge on the subject may refer to this

book.
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The other book where this slide material is mainly based upon is the one written by Meyers,

Montgomery, Anderson-Cook, the title of the book is Response Surface Methodology Process

and  Product  Optimization  Using  Designed  Experiments,  3rd  edition,  John  Wiley  and  Sons,

published in 2009. This is an excellent book, where the concepts are explained in a very clear

manner, it  is  not  very mathematically  regress,  so people with the basic  knowledge in  linear

algebra should be able to follow the material given in this book quite easily.

(Refer Slide Time: 01:28)

And of  course  the  other  book is  the  book written  by  Montgomery  Design and Analysis  of

Experiments, 7th edition, John Wiley and Sons, New York 2010.
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Other few references are by Kutner, Nachtsheim and Neter, Applied Linear Regression Models.

And Draper and Smith Applied Regression Analysis. So there are quite a few interesting books

written on this subject.

(Refer Slide Time: 01:48)

Now let us come to orthogonal designs. What is an orthogonal design? An orthogonal design

involves a matrix X, and it comprises of vectors that relate directly to the model factors. So if

your model is having the contribution from factor A, factor B, interaction AB, A squared, B

squared, then the model will look something like this, it will have 1 x1, x2, x1 x2, x1 squared, x2

squared, these are all column vectors.



So when you enter the model in the matrix form, the first column could be the matrix of 1’s, the

second column would be the values corresponding to the settings of factor x1, similarly, the

settings of factor x2, and then settings corresponding to x1 x2, then x1 squared, x2 square etc.

depending upon the complexity and length of the model.

(Refer Slide Time: 03:12)

So here 1 refers to the vectors of 1’s,  and xi refers to the single factors,  xi  xj  refers to the

interaction  between  factors,  and  xi  square  refers  to  higher  order  quadratic  terms  that  more

completely account for the curvature.

(Refer Slide Time: 03:34)



Now if  2 columns of the design matrix  are  orthogonal,  it  implies  that  the levels  of  these 2

variables are linearly independent.

(Refer Slide Time: 03:40)

The important implication of linear independence is that the contributions of these 2 variables to

the process response may be evaluated independent of one another, if the interaction column is

also linearly independent of the rest then its share may also be evaluated independently. So this is

a very useful concept in regression analysis and design of experiments, in planned design of

experiments the way the experimental points are set, it makes the design orthogonal in nature.

So  we  can  say  that  the  factor  A contributes  to  the  model  independent  of  how factor  B  is

contributing to the model. Similarly, even if you have interaction AB in an orthogonal design,

AB contributes to the model independent of how A and B contribute to the model, because the

column vectors in the matrix are linearly independent of one another. So this is a very beautiful

concept, what I am trying to say here is suppose you will have a model.

And in the model you say that the Y hat or Y predicted =beta 0 hat +beta 1 hat x1+beta 2 hat x2,

then you will find the coefficients beta 1 hat and beta 2 hat. Suppose you for some reason decide

to omit the factor A altogether in the orthogonal design, then your model will be beta hat 0+beta

hat 2 x2, the value of beta hat 2 will be same as it was in the previous full model. So let me go to

the board and explain what I mean by that.



(Refer Slide Time: 05:52)

Suppose you have an existing model okay, so this is the existing model and you want to try a

new model where you put only beta hat 0+beta hat 2 X2, you do not have the contribution from

beta  hat  1  X1,  then  you will  find  that  the  parameters  beta  hat  2  in  this  old  model  is  =the

parameter  beta  hat  2  in  the  new  model,  this  is  because  of  the  orthogonal  design.  So  the

contribution of factor X1 and the contribution of factor X2 are evaluated independent of each

other.

Their contribution is independent of each other to the observed response, this is only true in the

case of orthogonal design, so you can see the advantages of this. We have already seen examples

of the orthogonal design in our examples set on regression analysis.
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So let us look at the X matrix and you can see that this is 2 power 2 design, this is the column

vector of 1’s, this would be the settings corresponding to factor 1 -1, -1, 1 1. This would be the

settings corresponding to factor 2 -1, +1, -1, +1. And you will have x1 x2 and that would be

product of these 2 columns -1*-1 would be+1,-1*1 would be -1, 1*-1 is -1, 1*1 is 1, x1 squared

is obtained by squaring these terms in this column, x2 squared is obtained by squaring these

terms in this column okay.

So we are having essentially 1, 2, 3, 4 columns, and we also have the additional column shown in

red x1 squared and x2 square.  Let  us now develop the model Y hat  =beta hat 0+beta hat 1

x1+beta hat 2 x2+beta hat 12 x1 x2, you can see that the green colored model is having 1, 2, 3, 4

parameters, and that would be the maximum number of parameters which can be estimated from

this design, because you are having only 4 independent settings.

And so the maximum number of parameters would be 4, but if you have a greedy model and you

also try to evaluate the additional terms like beta hat 11 and beta hat 22, then can you run into

trouble because you do not have 6 independent settings to obtain these 6 parameters.

(Refer Slide Time: 09:48)



Now  let  us  look  at  the  X  matrix,  this  is  X  matrix  again  exactly  same  as  the  X  matrix

corresponding to the green colored vectors.  So the rank of this X matrix=4, and X prime X

would be taking transpose of the X matrix and multiplying the transpose with X matrix again,

you will get a diagonal matrix having 4 along the diagonals. And when you look at the matrix

which is made up of the entries corresponding to x1 squared and x2 squared.

Then you have in addition to the old X matrix also these 2 additional columns of 1’s, and of

course you can see that this x1 squared is exactly same as the vectors of 1’s, x2 squared also

replica of the vector of 1’s. Now when you look at this augmented matrix X, the rank of X is still

4, and when you look at the X prime X you get a matrix as shown here, and the problem is we

run into trouble when we take the inverse for this particular matrix.

(Refer Slide Time: 11:22)



So you have X prime X inverse, for this case has 1/4, 1/4, 1/4, 1/4 along the diagonals, there is

no problem in evaluating this particular matrix. But if you try to take the inverse of this X prime

X matrix as given here then you will find that it is not defined, so what I am trying to say here is

do not try to expand the scope of your model when the number of independent settings in the

model is limited.

In the current case of a 2 power 2 design, we had only 4 independent settings and so we could

estimate only 4 independent parameters, and the moment we try to increase the scope of the

model by adding the quadratic  terms, then we found that we cannot estimate the parameters

because the X prime X inverse matrix was not defined in such a situation.

(Refer Slide Time: 12:25)



So what is an orthogonal design if you take the transpose of any vector and then multiply the

transpose with the another vector a different one, suppose I am taking the ith column vector take

a transpose of ith column vector, then I  pre-multiply  the transpose of the ith  column vector

against the column vector xj i !=j I will get 0. So if you take this particular case, if I take the

transpose of this it will be a 1 row by 4 column vector a transpose of a vector, and that would be

1, 1, 1, 1 horizontally.

And then I multiply this with the column vector here -1, -1, 1, 1, I will find that it will be a -1, -1,

-2, +1, +1,+2, so -2+2 will become 0. The same concept applies for any binary combinations of

vectors 1 being a transpose and another being the regular column vector, if I multiply that too, I

will get 0. So this is the property of the orthogonal design, the important precautions you should

take is that you should not take i=j. Then the negative and positive elements would be squared,

and all of them would be positive and the sum will !=0.
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Now let us look at first order orthogonal designs, let us take care 2 power k factorial designs

where k is  the  number of factors  keeping the levels  at  the extremes of + or  -1 enables  the

variance associated with the predicted model’s coefficients at a minimum. So this is another

advantage of factorial design, we are keeping the design settings at the extremes -1, +1, -1, -1,

+1, -1, +1, +1. So we are having a design space the experimental settings are kept at the extreme

ends, and this helps to minimize the variance of the estimated parameters.

(Refer Slide Time: 14:52)

So the question that arises naturally is suppose you have an orthogonal design, how do you go

about estimating the parameters. Well you can do it in 2 ways, 1 you can use the regular design



of experiments approach, and estimate the effects and then the model positions, or you can use

the matrix approach in linear regression.

(Refer Slide Time: 15:15)

So as I said earlier in an orthogonal design with levels set at + or -1 the variance of the model

parameters variance of beta hat i/sigma square is minimized. Here, i =1, 2, so on to k, and k is

the number of factors, here obviously you are not including that intercept beta hat 0, and if you

can include that also you will have k+1 which =P number of parameters.

The variance of the predicted coefficient is given by the variance of beta hat i and that you scale

it by sigma squared you will get the variance covariance matrix X prime X inverse. So this X

prime X and the X prime X inverse matrix are very, very important.
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And for an orthogonal design, we know that the X prime X inverse is a diagonal matrix with the

off diagonal elements are 0, and setting the X vector at the extremes minimize the estimated

parameter variance. So we have already seen that for an orthogonal designed such as the one we

considered previously, this is an orthogonal design that 2 power 2 design, and you can see that

the X prime X matrix is a diagonal matrix.

And the X prime X inverse matrix is also diagonal matrix at 1/4, 1/4, 1/4, ¼, so this arrangement

minimizes the variance of the estimated regression coefficients.

(Refer Slide Time: 17:07)



Now let us look at the implications of different models. So the first model we are considering on

the left hand side is a half fraction of 2 power 3-1 design that means we should be having 4 runs

only, but it is clear that we are having 8 runs here, the reason for that is quite simple we are

repeating the 4 experiments of a 2 power 3-1 design. So you can see that the first 2 rows are

identical, the 3rd and 4th rows are identical, the 5th and 6th rows are identical and the 7th and

8th cross are identical.

That means each experimental setting in the 2 power 3-1 design is repeated. We also look at the

regular 2 power 3 full factorial model, here you have all the possible settings for a 2 power 3

factorial design, and the main thing to notice is there are no repeats. On the other hand, for 2

power 3-1 design you had repeats, but on the other hand you would not have the full set, you do

not have the full set of independent settings possible.

(Refer Slide Time: 18:22)

So when you look at the 2 power 3 full design it will lead to an X prime X inverse matrix

containing diagonal elements of 1/8 which =0.125.
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So you are having an X matrix corresponding to a full 2 power 3 design, if I take X prime X

inverse matrix which is the straight forward think to do by now, I will get I think 1/8, 1/8, 1/8,

1/8 along the diagonals, and off diagonal terms would not be present.

(Refer Slide Time: 19:01)

Right, but what is the advantage of here 2 power 3-1 design? Why do we have to go for 2 power

3-1  design?  May be  performing  2  power  3  full  design  was  expensive,  so  the  experimenter

decided to go for 2 power 3-1 design. On the other hand, he still conducted the 8 experiments the

same  number  as  a  full  2  power  3  design,  so  the  experimenter  was  more  focusing  on  the

estimation of the pure error.



He probably had some insight into the model based on previous experience, and so instead of

wasting  time  and  resources  and  doing  the  complete  set,  he  probably  wanted  to  get  more

information on the pure error term. So a 2 power 3-1 design strategy will  unfortunately not

enable you to find the full set of parameters that are possible from a full 2 power 3 design, a 2

power 3 design has 8 independent settings and so you should be theoretically able to estimate 8

parameters of the model, so you can build your model up to 8 parameters.

However, for 2 power 3-1 design you are having only 4 independent settings, and so you will be

able to estimate only 4 parameters. So you are losing the ability to estimate 4 parameters, and so

your 2 power 3-1 design strategy will not have any degree of freedom for lack of fit,  if you

estimate the 4 parameters. But on the other hand, if you look at the 2 power 3 design and you are

estimating only 4 or 5 parameters, then you have sufficient degrees of freedom to test your model

for lack of fit.

(Refer Slide Time: 21:02)

So when you look at the 2 power 3-1 design where each design setting is repeated you do not do

the full design you do only half the complete design but you do repeats. So in this if you are

estimating 4 parameters since there are only 4 independent settings, you do not have any degrees

of freedom for testing the lack of fit.
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So in the full 2 power 3 design, in addition to the intercept coefficient namely beta hat 0, 7 other

coefficients may be detected these are the coefficients corresponding to the main factors beta hat

1 beta hat 2 beta hat 3, and then you can also look at the interactions between the 2 factors beta

hat ij i !=j, and then ternary interaction term beta hat 1, 2, 3. So you can estimate the main

effects,  and  you  can  estimate  the  binary  interactions  and  you can  also  estimate  the  ternary

interaction between the factors. So these are the 8 coefficients including beta hat 0.

(Refer Slide Time: 22:06)

And if you are fitting a model with only the main factors that out means out of the 8 possible

parameters  you  are  estimating  only  4  beta  hat  0,  and  then  the  regression  coefficient

corresponding to factor A, regression coefficient corresponding to factor B, regression coefficient



corresponding to factor C that would make it as only 4 parameters. And in such a case that our

table indicates 4 degrees of freedom for lack of fit.

So 8-4=4, 8 parameters are maximum possible but you have estimated only 4, so you have 8-4=4

degrees of freedom for testing the lack of fit. But what is the drawback in the full 2 power 3

model  you exhausted all  the settings  all  independent  settings  have been exhausted,  and that

consumed all the full 8 runs, so you are not in a position to repeat your experimental settings.

Suppose your management says that fine you can do a maximum of 8 experiments.

So one group proposes a 2 power 3-1 designs with repeats, on the other hand there is another

group which goes in for a full 2 power 3 model, on one hand the group which proposed 2 power

3-1 design will have an estimate of the pure error but it not be able to estimate all the interactions

including the ternary interaction. Whereas the group which went in for a 2 power 3 design will

not be able to get an idea on the pure error.

And on the other hand, it would be able to estimate as many as 8 parameters. So which model is

good that depends upon the process and the prior knowledge on the process you have.

(Refer Slide Time: 24:10)

So when you look at the 2 approaches, they have the same variance of beta hat i/sigma square,

because the X prime X inverse matrix is same in both the cases, and that is actually 1/8.



(Refer Slide Time: 24:26)

So the 2 power 3 and 2 power 3-1 design with 4 repeats have different scopes of application, the

latter is used the 2 power 3-1 design is used if you have prior knowledge or experience that the

lack of interaction term effects are known beforehand, so you know previously that there is no

interaction between the factors of your model, so the interaction terms are neglected. And if the

binary  interaction  terms  are  neglected,  then  there  is  even  a  very  little  chance  the  ternary

interactions would kick in.

(Refer Slide Time: 25:09)

So let us expand on this topic a bit more the query is, why cannot you use the fractional design

for detecting higher order terms? So the main problem is there is aliasing between single and 2



factors, and the X prime X inverse matrix becomes singular as some of the columns are not

linearly independent.

(Refer Slide Time: 25:35)

So let us look at 2 power 3-1 design, so you have the 1’s, you have the settings corresponding to

factor 1, settings corresponding to factor 2 and settings corresponding to factor 3. So obviously

the runs are repeated so you are doing 8 runs, but you have only 4 independent settings. Now I

can estimate only the intercept beta hat 0, beta hat 1, beta hat 2 and beta hat 3, suppose I am

trying to estimate the interaction also.

If I do X1 X2 to bring in that interaction effect into that model unfortunately, this X1 X2 column

vector will be exactly identical to the X3 column vector. Similarly, X2 X3 column vector which

is the second binary interaction would be identical  with the X1 column vector, and you can

figure out that X1 X3 column vector would be identical with X2 column vector, and X1 X2 X3 is

aliasing with the column vector of 1’s.

So this X matrix made up of all these elements is definitely going to have a lower rank, and the

inverse of the X prime X matrix will lead to difficulties, it  cannot be estimated,  because the

columns in the design are not linearly independent of each other.
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Now let us look at the orthogonal design involving an experimental scheme with as many as 5

factors.  So  let  us  construct  an  orthogonal  design  involving  one-half  fraction  of  2  power  5

factorial design, the full factorial design will involve 2 power 5 which =32 runs, obviously this is

too many, so we want to restrict the number of runs. So we going for a 2 power 5-1 factorial

design which is one-half fraction of a full 2 power 5 design and so we have 16 runs. So what are

the terms in the model that may be fitted using the given design?

(Refer Slide Time: 27:59)

When we consider the 2 power 5 design we have 1 intercept, 5 first order coefficients, 5 main

factors, 10 binary interactions, and then you have again 10 ternary interactions, and 5 quaternary

interactions and 1 5 factor interaction. So this is the complete set in a model, where we consider



only the main effects and the interaction between the factors. So that would be a total of 1+5=6,

6+10=16, 16+10=26, 26+5=31+1=32.

So in a full 2 power 5 design involving 32 independence settings, you would have been in a

position to estimate the constant beta hat 0, the 5 main factors, 10 binary interactions, 10 ternary

interactions, 5 quaternary interactions and one 5 factor interaction. But we are having only 16

independent settings and so. If we are going sequentially in the model development, we have

possible the estimation of 1 intercept,  5 first order coefficient that makes it 6, and 10 binary

interactions that makes it 16, beyond it we cannot estimate any more parameters.

(Refer Slide Time: 29:55)

So when you have such a case 2 power 5-1 design, and you have estimated the intercept, the

main factors and the binary interaction, what would be the lack of fit degrees of freedom? Since

you have exhausted all the 16 independent settings to estimate the parameters associated with

these terms, the lack of fit degrees of freedom would be 0.
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And the next query is quite simple,  show that the design is indeed orthogonal not only with

respect to main factors but also with the associated interactions. This is a very straightforward

thing to do, you can write down the X matrix, you can first write the vector of 1’s corresponding

to the 16 experiments,  and then you can write the half fraction design, so you write the full

factorial for a 2 power 4 design.

And then we know from our concepts of fractional factorial design, how to accommodate for 5th

factor, let us say the 5th factor is factor E, then to set up the column of factor E, we have to use

the design generator I=ABCDE or E=ABCD. I request you to refresh these concepts, and you

can write down the X matrix corresponding to a 2 power 5-1 fractional factorial design. And

once you have written down this matrix.

And you have also included the possible binary interactions in the X matrix, you can see that

they are comprising of number of columns, these columns are having a set of -1 and +1 values,

except the first column which is the matrix of 1’s which will have all elements as 1, the other

columns would be having a mixture of +1’s and -1’s, and if you take any 2 columns you take the

transpose of the first column and then you multiply that with the other column vector, you will

get it as 0.



So any inner product of any 2 column vector that are not from identical columns is indeed 0 that

can be easily shown.

(Refer Slide Time: 32:42)

And is there any aliasing in this design? No, all the columns are independent of each other and

hence the experimental levels may be varied independent of each other, there is no aliasing in

this 2 power 5-1 design. As long as you restrict yourself to the constant, the main factors and the

binary interactions. The moment you go for ternary interactions or quaternary interactions then

there would be aliasing.
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So up to this model you are not going to have the dangerous aliasing, because you can estimate

the parameters from different experimental settings.

(Refer Slide Time: 33:25)

And how many residual degrees of freedom does this design have? If you have utilized all the 16

independent settings to find 16 model parameters, the residual degrees of freedom would be 0,

the lack of repeats also ensure that the degrees of freedom for pure error is also=0, and you also

unable to test for lack of fit, so the lack of fit degrees of freedom is also 0. The residual degrees

of freedom is the sum of the pure error and the lack of fit degrees of freedom.

There are no lack of fit degrees of freedom as was seen previously, there are also no repeats in

this design and hence pure error degrees of freedom is 0. Hence, there are no residual degrees of

freedom, and the design illustrated is said to be saturated.
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What  would  be  the  R square  for  this  saturated  design?  R squared  value  would  be  =100%,

because you are using all the independent settings to estimate a corresponding number of the

model parameters. So we will be able to achieve the perfect fit to your model, and that R square

value would be=1 or expressed in percentage would be=100%. Well this is misleading because

your model has now got as many as 16 parameters.

These 16 parameters are difficult  to work with unwieldy, and when you tried for a different

setting there maybe give completely different predictions. So there are a lot of issues with 16

parameters, normally your model even an empirical one or a linear regression model would be

having and not more than 4 or 5 parameters at the most. Now let us talk about Center Runs.
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So what are center runs? And why are they required? Center runs are either single or multiple

repeats of the experiment at the geometric center of the experimental design in the coded format.

Suppose we have an experimental design and it is coded in terms of -1, +1 and so on, we look at

the geometric center of such a design and that would be at 0, 0, 0 corresponding to the midpoints

of the independent factors.

(Refer Slide Time: 35:56)

So center runs are very important to experimental design, you have a factorial design and you

add center points you are enhancing or augmenting the factorial design. The addition of center

runs to an orthogonal design does not alter the orthogonal property as they simply comprised of



0’s in the coded format. So if you have an orthogonal design and you add center points to it, it

does not disturb the orthogonality.
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And  the  design  including  the  center  points  will  unfortunately  make  the  variance  of  the

parameters slightly higher. So it is no longer a variant optimal design, as the design points are no

longer  restricted  to  the  extreme corners  of  the  experimental  space.  In  the  previous  factorial

designs without center points all the experimental settings where at +1, -1 combinations, and

since  these  are  located  at  the  very  edge  of  the  boundaries,  the  variance  of  the  estimated

parameters was minimum.

And so it was a variance optimal design, but the moment you have center points you are having

some design conditions or experimental conditions at the center also, they are no longer at the

extreme ends. So this makes the design a non-variance optimal one. So if that is so why do we

need center runs? What help or what additional benefit do they bring about?
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Before we get into that let us understand about the center runs a bit more, the center runs do not

contribute to the linear effects and the interaction, they do not contribute to the main effects and

the interaction. Suppose you have a factorial design without center runs and you estimate the

main effects and the interaction, then you include the center runs in this orthogonal design the

main effects and the interactions values and the corresponding coefficients will not be altered.

Suppose you have a design with the center runs, you have another design without center runs.

Both of them will predict the same value of the main factor affects and the interaction effects. So

it does not really matter whether you have center runs or not, as far as the estimation of these

coefficients are concerned. So center runs are repeated runs, so they help you to get an idea about

the experimental error which is very important. Only when you know the extent of experimental

error would you be able to comment upon the significance and relevance of the factors in the

experiment.

And  depending  upon  the  significance  or  relevance  of  the  factors  in  the  experiment  that

corresponding  coefficients  will  appear  in  the  model  developed.  And  so  in  addition  to  the

estimation of the pure experimental error, the center runs are also helpful for detecting whether

curvature effects are important are not. The center runs cannot explicitly bring in the contribution

due to curvature,  but it  can only indicate  whether  the curvature effects  are  important  or not

important. So we will take a small break here.


