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Lecture – 41
Regression Analysis: Example Set 8

Hello. In today's class, we will be looking at the regression concepts through the working of an

example problem.

(Refer Slide Time: 00:24)

The references are the book written by Draper and Smith titled Applied Regression Analysis,

Kutner et al Applied Linear Regression Models, fourth edition, McGraw-Hill.

(Refer Slide Time: 00:40)



And then the prescribed textbook Montgomery and Ranger Applied Statistics and Probability for

Engineers fifth edition and Montgomery's Design and Analysis of Experiments.

(Refer Slide Time: 00:54)

The problem statement  goes  like  this.  A new washing machine  prototype  is  developed by a

company. It's unique design enables efficient removal of dirt but at the same time, it is felt that

the colour of the cloth also gets excessively removed during the washing.

(Refer Slide Time: 01:13)



So the washing machine is subject to some trials where in the colour in the wash liquid C is

analysed using a photometer. The variables considered while washing with good quality water

are listed as follows.

(Refer Slide Time: 01:30)

Temperature of the water X1. Amount of detergent powder used X2. The washing time is set to a

standard 40 minutes’ cycle.

(Refer Slide Time: 01:43)



The data collected are given in the form of a table below. We have to develop the model. The

model is not given to us and if you look at the table, right table, I will first describe.

(Refer Slide Time: 02:04)

You can see the temperature of water is kept either at 30 degrees or 40 degrees or 50 degrees in

the first 9 readings. The amount of powder used varies between 3 grams to 9 grams.

(Refer Slide Time: 02:26)



The data  table  continues  and we have temperature at  45 degrees Centigrade  and 35 degrees

Centigrade. Mass of powder is 4.5 grams and 7.5 grams. The concentration in PPM is also given

in the last column. Let us now go to the questions. Before we look at the questions, since the

temperature was varying between 30 to 60 degrees Centigrade and the mass of the powder was

between 3 and 9 grams.

There is an approximate one order of magnitude difference between the 2 variables. So it  is

better if we code the variables. So the variables are coded in the range between -1 to 1.

(Refer Slide Time: 03:23)

So we have to consider a linear regression model involving the main effects only. Write down



this model. Show how the parameters are obtained.

(Refer Slide Time: 03:34)

Present the variance-covariance matrix. Constructed the ANOVA table explaining the different

calculations. Explain how you obtained R squared and adjusted R squared. Is there any lack of it

in the model?

(Refer Slide Time: 03:47)

Demonstrative the extra  sum of squares approach. Build the model sequentially  and indicate

whether the additional terms are important. Show the results of the final model if the coding of

the variables had not been done. So we saw the data already.
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It is the actual data and when you express the data in the coded form, we get a table like this. The

lowest setting of temperatures is kept at -1. The lowest setting of powder used, the weight of

powder used rather is also set at -1 and the maximum value of temperatures is set at +1. So all

these are minimum and the maximum amount of powder used which is 9 grams is coded at +1.

So the intermediate setting is coded 0. 

Similarly, the intermediate powder loading in the machine which is 6 grams is coded at 0. We do

not touch the colour in the liquid. We keep the data as it is.

(Refer Slide Time: 04:56)

And since we are also doing additional  4 runs at  intermediate  settings at  45 degrees,  gets  a



coding of 0.5 and 4.5. Let us see what is -0.5 correspond to that is 4.5 grams. So that is coming

as -0.5 grams, sorry -0.5, the coded format and 7.5 grams is coming as +0.5. So 7.5-6 is 1.5 and

9-6 is 3. So 1.5/3 is 0.5. So this is how we have coded the different variables or the factors? Why

do we do the coding.

The raw data was varying by about an order of magnitude. So the coefficient in the regression

model associated with this raw data would be high and the regression coefficient associated with

this raw data of temperature would be correspondingly low and this kind of order of magnitude

difference may actually increase. In other words, one variable would be in the order of 1000s and

the other variable would be in the order of fractions. So the difference between the 2 would be

very considerable and the regression coefficient is also would correspondingly adjust.

So  this  may  lead  to  wide  variation  in  the  estimated  regression  coefficients.  The  regression

coefficient with the higher number may be in the order of 10 power -2 or 10 power -3, whereas

the regression coefficient associated with the variable which is having very low values would

correspondingly be quite high in the order of 10 power 2 or 10 power 3. And this may lead to a

kind of an unwieldy model. The problem is also increased if the units are changed by mistake.

So this becomes a dimensional equation and when you have a dimensional equation, the units are

very  important.  Suppose  somebody  by  mistake  puts  Kelvin  instead  of  Centigrade,  then  the

regression  would give  wrong answers.  Similarly, if  the  powder,  by mistake  the  person puts

milligrams, then again the wrong results would be obtained but once you do the coding properly

and the user is warned that the variables are coded, then the problem is solved. It is another

advantage of coding. The regression variables become independent of units in the coded format.

(Refer Slide Time: 07:57)



So let us look at the regression analysis involving the main factors only. So we will write down

the model. The predicted colour is given in terms of beta0 hat+beta 1 hat X1+beta 2 hat X2. Just

correct the typo here, right. This is a very important term in the regression model. It gives the

value of the concentration when both X1 and X2 are 0. There is more to this beta0 hat which we

will see in the coming slides.

(Refer Slide Time: 08:38)

So the next part of the question is, show how the parameters are obtained? We first express the

data in the matrix form which I will show in the next few slides and once the X prime X matrix

is set up, then we take the inverse of the X prime X matrix and we also take the X prime Y

matrix and we pre-multiply the X prime Y matrix with X prime X inverse and we get the vector



of the estimated parameters.

(Refer Slide Time: 09:12)

So we have the X matrix. The first column is the column of ones and the second column is

having -1 1 -1 1 -1 1 0.5 -0.5 0.5 -0.5 and the third column is having data like this. So all of them

are coded and the Y matrix represents the concentrations recorded at each experimental setting.

So when you add up the elements of the first column, we will get the number 13 because there

are 13 settings in the experimental program 1 2 3 4 5 6 7 8 9 10 11 12 13. So we have 13

elements in the first column and we also have 13 observations here in the Y column vector. This

shows that 13 experiments have been carried out.

(Refer Slide Time: 10:23)



So when you take X prime X, X prime here would correspond to changing columns into rows

and rows into columns. So that would be the transpose of X. When you take X and pre-multiply

it with the transpose of X X prime, we get X prime X and that comes to nicely 13 0 0 0 7 0 0 0 7.

So this is very nice matrix because there are no off diagonal elements. The off diagonal terms are

all 0 and inverting this matrix is a piece of cake. A matrix inverse is so defined that when you

multiply a given matrix with its inverse, you should get the identity matrix.

So we obtain the inverse of this X prime X matrix by taking 1/13 1/7 and 1/7. You also have the

X prime Y matrix which is given by these 3 row elements and we can also find out the beta hat.

The parameters for the regression model which is X prime X inverse X prime Y and we get beta

hat as these numbers. I request you to do these calculations on your own and make sure that the

answers I am getting are matching with your answers.

(Refer Slide Time: 12:02)

And what is the significance of beta0 hat when the experimental observations are put in the

coded format, experimental settings are rather put in the coded format. We are not putting the

response in the coded format, only the experimental settings are put in the coded format. We

carry out the regression parameter estimation and we get the different parameters. We get beta0

hat as 187.27. This means that the average of the responses is 187.27. 

This is not true for the uncoded case. Please note the important distinction when we code it in the



way I have shown, we get the average as the beta0 hat, that is the average response.

(Refer Slide Time: 12:58)

Now you can present the variance-covariance matrix V in the following form. This we saw in

one  of  the  previous  lectures  and  the  variance  of  the  regression  parameter  or  the  regression

coefficient is given by the diagonal terms of the variance-covariance matrix multiplied by sigma

squared.  So variance  of beta hat  j=Cjj  sigma squared and then we have also the covariance

between 2 regression coefficients or regression parameters, beta hat I and beta hat j is given by

Cij sigma squared.

So beta  hat 0 or beta  hat  0,  beta  hat 2 i=0 and j=2. So we are looking at  the Cij  C02 and

C02*sigma squared, that gives a covariance between the 2 parameters and you can also see that

C02 will match with C02 here. This should be actually written as C02 and this is C20 if you

number the rows from 0, 1 and 2 but the matrix is symmetric, the variance-covariance matrix is

symmetric and so C02 will match with C20.

Similarly, C01 here will match with C10, so they are pretty much written as C01 itself and so on.

The important thing to note here is the diagonal elements of this matrix give the variances of the

appropriate regression parameters whereas the off diagonal terms give the covariance between a

pair of regression parameters.
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So now we can present the variance-covariance matrix in terms of numbers. We found X prime

X inverse as 1/13 0 0 0 1/7 0 0 0 1/7 sigma squared but we hit a roadblock here. We are unable to

get a value for sigma squared because sigma squared is not provided. So we have to do with the

best estimate of sigma squared. So we will use an estimated sigma squared. The sigma squared

of course refers to the error variance which is assumed to be constant. 

The errors are assumed to be normally distributed with 0 mean and constant variance sigma

squared.  So that  sigma squared  is  known to us  in  many situations.  So we have  to  have an

estimate of the sigma squared.

(Refer Slide Time: 16:08)



First let us find the residual sum of squares. We use the mean square residuals as surrogate for

sigma squared. So to find the mean square residuals, we need to find the residual sum of squares,

divide the residual sum of squares by the degrees of freedom for the residual sum of squares and

we get the mean square residuals. So we have Y prime Y=494813.74. How did we get Y prime

Y? We go back to the Y vector here. We take the transpose of this vector.

You can visualise that all  these column elements becoming row elements when you take the

transpose of Y. Then you multiply Y prime with Y. What will then happen is, you are essentially

finding out 234 squared+257.5 squared and so on. So all the elements in the response vector are

squared and added to get Y prime Y. You may verify this by doing the calculations yourself. So

that the X care of Y prime Y, the residual sum of squares we saw is given by Y prime Y-beta hat

prime X prime Y.

And sometimes the residual  sum of squares may also be called  as the error  sum of squares

because that represents the deviation between the experimental value and the model prediction

and that represents the error. We also distinguish this residual sum of squares from the pure error

sum  of  squares  that  we  saw  in  the  previous  lecture.  Pure  error  is  obtained  from repeated

measurements. So we have beta hat prime X prime Y as 490988.15.

What  is  that  beta  hat  prime X prime Y. We estimated  the  parameters  beta  hat,  we take  the

transpose of this and then we multiply with X prime Y matrix and that gives us the regression

sum  of  squares.  It  is  important  to  note  that  this  regression  sum  of  squares  includes  the

contribution from the beta 0 regression coefficient. So we subtract Y prime Y with beta hat prime

X prime Y, we get sum of squares of the residuals as 3825.59.
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The degrees of freedom for the mean square error or mean square residuals is n-p which is 13-3.

You  have  3  parameters  estimated  from  the  year  regression.  You  have  13  experimental

observations. So we have 10 degrees of freedom for the mean square error and the residual sum

of squares we saw from the previous slide as 3825.59 and that you divided by 10, the degrees of

freedom attached to the residual sum of squares and we get 382.56. 

So an estimate  of the error  variance  given by sigma hat  squared is  the mean square of the

residuals which is 382.56 or sigma hat=19.56.

(Refer Slide Time: 20:00)

And now we can estimate the variance of the different regression parameters because we have



plugged in instead of sigma squared, we have used sigma hat squared and sigma hat squared was

382.56. Now we can easily estimate the variance of the individual regression parameters. There

is no problem with the covariance terms because they are all identically 0.

(Refer Slide Time: 20:31)

So once we have this 382.56/13 is approximately 30 and that is what we have here because

13*30 is 390 and then the variance of beta hat 1 is 382.56/7 which would be 54.65, that is fine

and variance of beta 2 hat is also 54.65 because these 2 elements are identical and covariance

between a pair of regression parameters is 0.

(Refer Slide Time: 21:15)

Once you get the variance of the different parameters,  we can find the standard error of the



different parameters and we take the square root of these variances and we get 5.425, 7.4 and

again 7.4. We can compare these estimated standard errors with the beta 0 hat, beta hat 1 and

beta hat 2; beta hat 0, beta hat 1, beta hat 2. so we can see that these values are quite okay except

for this particular term, here the parameter is -6.

And here we have 7.393 that is a cause for worry as for as the first regression coefficient is

concerned. The others are looking okay. It is about 1/10th of the estimated parameter value.

(Refer Slide Time: 22:22)

So we can construct the ANOVA table explaining the different calculations. So for doing this, we

need the total sum of squares, regression sum of squares and the error sum of squares.

(Refer Slide Time: 22:38)



The total sum of squares by now should be very easy for you to find. It is simply the deviation of

Yi with respect to the average value of the responses that is Y bar. We take the deviation, square

them. We take every deviation, square every deviation and then add them up. So we get i=1 to n

Yi-Y bar whole squared where n is the number of experiments performed which is 13, Yi is the

experimental response and Y bar is the average of the experimental responses. In this case, it

comes to 187.277.

(Refer Slide Time: 23:28)

So we total this number and we can also write Yi-Y bar whole squared as Y prime Y-i=1 to n Yi

whole squared/n. Actually you can show this term upon expansion as sigma i=1 to n Yi squared-n

Y bar squared. Let me just use the board to expand it and then show what happens and why we



get this particular term.

(Refer Slide Time: 24:03)

So we get this particular expression without any problem. Main thing is you may wonder how

we got Yi squared-n Y bar squared, that is again very straightforward. We expanded sigma I=1 to

n. This is one half of the story and this would be Yi squared-2YiY bar+Y bar squared and this

becomes sigma Yi squared i=1 to n-2 sigma YiY bar+n Y bar squared, that is because we are

adding a constant term n times and this becomes sigma Yi squared-, this can be written as nY

bar+nY bar squared and so that is what we get here.

So the total sum of squares becomes 38869.34. Sometimes you may see a different value for total

sum of squares. You may see the value as 494813.7 and that you may calculate as the total sum

of squares but in some places, the total sum of squares may be reported as 38869.34. The reason

is we are having an actual total sum of squares which is Y prime Y and after we adjust the total

sum of squares for the beta hat 0, then the sum of squares becomes the lower value. 

So to account for beta 0 parameter, we subtract the actual total sum of squares with the nY bar

squared.  We know that  if  beta 0 is  the only regression coefficient  considered,  then that  will

become an average of the responses. So beta 0 will take on the value, will take up the value of

the average of the responses and the sum of squares contribution from beta 0 would be nY bar

squared where n is the number of experiments and to account for beta 0.



We subtract nY bar squared from the actual total sum of squares Y prime Y and that is why we

get 38869.34. So we are removing the effect of beta 0 from our regression analysis.

(Refer Slide Time: 28:05)

Similarly, for the regression, the total regression sum of squares is given by beta prime hat X

prime Y and to remove the regression contribution from beta 0 hat, we again subtract nY bar

squared and the sum of square of regression due to parameters beta 1 hat and beta 2 hat is given

by 35043.74. So this is where you have to be careful. You have to see in which situations beta 0

hat is present. Now we are coming to regression sum of squares.

Previously we were looking at total sum of squares. In the current analysis, we are removing the

effect of beta hat 0 and the total sum of squares, we removed nY bar squared to remove the effect

of beta hat 0 from the total sum of squares. Similarly, we also have to remove the influence of

beta hat 0 from the regression sum of squares. We know that the regression sum of squares is

given by beta hat prime X prime Y. 

To remove the influence of beta hat 0, we simply subtract nY bar squared again from beta hat

prime X prime Y and the sum of squares of regression becomes 35043.74.
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Now we can  write  down the  different  contributions  in  the  ANOVA table  and  we  have  the

regression source of variation excluding the effect of beta 0 as 35043.74. The degrees of freedom

correspond to beta hat 1 and beta hat 2, both of which are independent and so we have 2 degrees

of freedom here and the mean square is obtained by dividing the sum of squares with the degrees

of freedom.

The residual sum of squares is also computed. The residual sum of squares is given in the second

row. It is the difference between the total sum of squares and the regression sum of squares. If

you are computing the total sum of squares without removing the contribution from beta hat 0,

then you should also compute the regression sum of squares without excluding the effect of beta

hat 0.

On the other hand, if you are computing the total sum of squares by excluding the effect of beta

hat 0, then from the regression sum of squares also you should remove the effect of beta hat 0. So

it is a question of whether you are subtracting nY bar squared from the total sum of squares and

regression sum of squares.  If  you are subtracting  it  from the total  sum of squares,  you also

subtract it from the regression sum of squares.

The difference between the regression sum of squares and the total sum of squares or rather it is

the other way round, the difference between the total sum of squares and the regression sum of



squares will give you the residual sum of squares which in this case is 3825.59. The degrees of

freedom for  residual  sum of  squares  would  be  n-p  where  n  is  the  number  of  experimental

observation which is 13 and p is the total number of parameters beta hat 0, beta hat 1 and beta

hat 2.

So we have 3 parameters. P=3 and so n-p will be equal to 10, 13-3, so 10 and so the mean square

is obtained by residual sum of squares divided by 10, we get created 382.56. So we have the total

sum of squares excluding beta  0 based on adding these 2 and we have the total  degrees of

freedom which is 12. We had 13 data points. Since we excluded the effect of beta 0 regression

coefficient, we have 12 degrees of freedom.

(Refer Slide Time: 32:03)

We  have  the  residual  sum  of  squares  given  as  the  difference  between  the  experimental

observation  and the  predicted  values  and that  is  squared  and added.  So every  experimental

observation is subtracted with the corresponding predicted value, that deviation is squared and all

such deviations are added to give the total residual sum of squares and that may be shown to be

equal to Y prime Y-beta hat prime X prime Y.

And here we are subtracting nY bar squared in both these terms and that is also another way of

finding the residual sum of squares where you are correcting for beta 0 parameter. Anyway it

does not  matter  with the residual  sum of squares  and we get 3825.56 whether  you add and



subtract this nY bar square or do it directly but one thing you have to be very careful is when you

are calculating the residual sum of squares, you cannot use the total sum of squares uncorrected

for beta 0 and regression sum of squares corrected for beta 0, then you will get a wrong residual

sum of squares.

So you correct total sum of squares for beta 0, you also correct regression sum of squares for

beta 0, the difference between the 2 will give you the correct residual sum of squares or you take

the total sum of squares directly, you take the total regression sum of squares, the difference

between the 2 will give you the residual sum of squares. So correcting for one term for the beta 0

and not correcting the other term for beta 0 will lead to a wrong estimate of residual sum of

squares. So this is to be carefully kept track of.

(Refer Slide Time: 34:10)

So now we have the numbers in the ANOVA table. We have the source of variation, regression

and residuals. Sum of squares are also noted here and the degrees of freedom are given here and

the mean square values are put here. So the regression sum of squares is 35043.74 that we saw

previously, 35043.74 and the  residual  sum of  squares  is  3825.56.  Another  thing  again  I  am

warning you here is the regression sum of squares is excluding the contribution from the beta 0

parameter.

So that is what we did when we calculated the regression sum of squares and the residual sum of



squares are given here. We have 2 parameters. Since beta 0 is excluded, we have parameters beta

1 and beta 2. So you have 2 degrees of freedom here and you have 10-p degrees of freedom

which is 13-3 and that is 10 and the mean square is obtained by dividing the sum of squares with

degrees of freedom.

So you get 17521.87 and 382.56. The ratio of these 2 will give 45.8. Without any further testing,

we can be reasonably sure that this is lying in the rejection region. This statistic is lying in the

rejection region because the regression sum of squares is about 50 times higher than the residual

sum of squares. So we cannot really say that the 2 contributions are similar. If it is, let us say, in

the order of 382.56, so this is around 400 and if you have got the regression sum of squares also

as 500 or 600, then the 2 would have been quite comparable but this is 50 times more.

The  regression  sum of  squares  is  50  times  more  than  the  residual  sum of  squares.  So  the

contribution to the total variation from the regression sum of squares is 50 times more than the

residual sum of squares. So we have reasons to believe that the regression sum of squares is

definitely contributing towards explaining the variation in the observed responses and the critical

value is only 4.103.

And hence this  F0 statistic  is  much higher than that and so it  is lying in the critical,  in the

rejection  region  rather  and  so  we  reject  the  null  hypothesis  which  says  that  regression

contribution is 0.
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Is first  easy to find the R squared, the coefficient  of determination.  R square is obtained by

seeing the fraction of regression sum of squares to the total sum of squares. So the regression

sum of squares is 35043.74 and the total sum of squares would be the contribution of 35043.74

and the contribution of 3825.56, that number we have already that is 38869.34. So the sum of

squares total is 38869.34 and the regression is 35043.74. 

So we can take regression sum of squares with the total sum of squares and that would give us R

squared, that can be verified. So let me write down the R squared value.

(Refer Slide Time: 38:11)

So this is what we get as R squared, the coefficient of determination.



(Refer Slide Time: 39:21)

Then we have to find the adjusted R squared. The adjusted R squared is obtained by using the

mean square error and the mean square total. We get the mean square error by dividing the sum

of squares of the residuals by n-p and the mean square total is obtained by dividing sum of

squares of total with n-1. 

So we are penalising the R squared for adding more parameters and you can see that when more

parameters are added, the degrees of freedom for the error would actually decrease and the term

in the numerator will increase and that would reduce the actual R squared value and so we are

adjusting the R squared value for adding more parameters and that is why it is called as adjusted

R squared.

(Refer Slide Time: 40:35)



And so we have 1-3825.56, that is the residual sum of squares/n-p 13-3 that is 10 and this is the

total sum of squares/the degrees of freedom which is not 13 because 1 is used for finding the

mean of the observations. So we have this ratio and we get 0.882 and these are the values which

are  tabulated  in  the  slide  and you  can  see  that  adjusted  R  square  is  less  spectacular  when

compared to the coefficient of determination, it is 0.882 which is lower than 0.9016. Sometimes

the discrepancy between these 2 may be quite high.
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So now we have to do the lack of fit analysis. We do not have a prior estimate of pure error or

repeated measurements to get an independent estimate of pure error from which the lack of fit

sum of squares may be computed. So for computing the lack of fit, we have to actually partition



the residual sum of squares into lack of fit sum of squares and pure error sum of squares.

So  for  doing  the  partitioning  exercise,  we  need  to  have  an  idea  about  the  pure  error.

Unfortunately, in this experimental sequence, the repeats were not carried out. May be the people

who  are  running  the  experiments  thoughts  they  will  get  identical  values  if  they  repeat  the

experiment, so they did not carry out the repeats. So an independent estimate of the pure error

could not be obtained.

(Refer Slide Time: 42:24)

So as I was explaining in the previous lecture, we have the residual sum of squares split into lack

of fit sum of squares and pure error sum of squares. We get the mean square lack of fit and mean

square pure error and we compared the mean square lack of fit with mean square pure error and

make the appropriate conclusions. If mean square lack of fit is much higher than mean square

pure error, then the model developed is inadequate but if these 2 are comparable, then the model

is adequate and both of them are independent estimates of sigma squared.
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So what we may do is we can artificially create repeats and let us see the trouble created by

artificially creating the repeats. We will consider modelling only the intercept and X1. So we are

ignoring  the  effect  of  X2.  We are ignoring the  effect  of  the  amount  of  powder used in  the

machine and if we ignore that, let us see what happens?
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Then the model we are testing is C hat=beta hat 0+beta hat 1X1. This entire procedure looks very

suspicious and that is going to be justified in the next set of calculations but what it does show

us,  suppose you had started  with this  model,  what  would have  been the  lack of  fit  sum of

squares. Even though this procedure is based on the assumption that X2 is not significant which

we do not know yet, okay. 



So what we have to do is see what is going to happen if we assume a priori that the X2 is not

going to have an effect, so we will only test with this model.

(Refer Slide Time: 44:37)

Then it is as if we are hiding this particular column totally and it then appears that we have

repeats here. For example, this is 30 40 50 30 40 50 30 40 50. So it will appear as if we have

repeated the experiment not once but 2 times, that means we are having 3 repeated observations.

(Refer Slide Time: 45:05)

So it looks very nice and if you go further, you have 2 repeats, 45 and 45 here, 35 and 35 here.

So it looks as if we have solved the problem by ignoring the effect of the mass of powder used



but we do not know whether that is the correct procedure because the mass of powder used may

have an important implication in the process. So just let us take a look at the repeated sets. We

will take a look at it here.

We will compare these two 45 degrees and you are seeing on one hand it is 226.9, on the other

hand, it is 141.4. So when you do repeats, you are getting 141 and then you are getting 226 or

227. So almost 2 times variations there between these 2 readings and even if you compare this 35

with this 35, 162 appears to be very far from 218, okay. So if this was 140 and this was 160, it is

okay. If  this  was 160 and this  was 170 or  150,  it  is  okay, that  may be  because of  random

fluctuations.

But this looks to be too large a random fluctuation,  too large a fluctuation to be ascribed to

random phenomena. Let us go back to the table and we will see that for conditions of 30, you

have 234 and you have 194 and another 30 is 150. So for the same experimental condition of 30

degrees  centigrade,  the colour  varies from 153 to 234, that  is  a huge difference.  So by just

looking at the data itself we can see that ignoring the mass of powder was not such a good idea.

What it is doing is it is exaggerating the role played by experimental error plus there is also a

moral in this story, if you are doing experiments and you find when you repeat the experiments

that you get larger variations in the repeats, then there is probably another factor influencing the

process response which you have not identified. So you should rather than doing more and more

repeats and getting more and more variability, see what is the factor in the experiment which is

actually causing these different variabilities that should be your focus.

(Refer Slide Time: 47:45)



So we will put the data in the coded format. You can see that the black colours are all -1 -1 -1.

They represent a one set of conditions. 0 0 0, they represent another set of conditions. 1 1 1,

which are coded in red, they correspond to another set of repeated conditions, pseudo-repeated

conditions and other column is whitened out.

(Refer Slide Time: 48:10)

And similarly you have Tc which is 0.5 and 0.5 and you also have Pc -0.5 and -0.5. So you have

2 repeat conditions here. So you have 5 sets of repeated data. These are 2 sets of repeated data

and then in this slide, you have 3 sets of repeated data. So totally we have 5 sets of repeated data.

(Refer Slide Time: 48:35)



So you have the reduced model, C hat=beta hat 0+beta hat 1X1 and we can again calculate the

parameters regression sum of squares, residual sum of squares and so on.

(Refer Slide Time: 48:51)

So we have the new X matrix where we have contribution only from the X1 regressor variable or

we have contributions only from temperature expressed in the code format. We have removed the

column containing the coded values for the mass of detergent powder used. When we look at the

column vector Y, it can be seen that the responses are the same as before. We have not made any

modification to the responses column vector. 

Only thing is, we have removed the second column from the X matrix.  From the original X



matrix, we get the new X1 matrix which contains the vector of once and then the coded values

for temperature.

(Refer Slide Time: 49:41)

So we can carry out the exercise and that is not going to be very difficult. We can see that the X1

prime X1 matrix would be 13 0 0 7, X1 prime Y would be 24 34 .6 -42 and then we have the

inverse of this matrix which is 1/13 and 1/7 and then we get the parameters 187.27 and -6. It is

very interesting to note that even though we have removed the effect of the mass of detergent, we

are getting the same, otherwise same X1 prime X1 matrix, X1 prime Y matrix.

And then the inverse is also 1/13 1/7, we had an additional 1/7 as the diagonal element that is no

longer present and then we also have the parameters which are the same as before. We have

187.27 and -6. Let us just go back a few slides and we will see that these values are exactly the

same for the first 2 entries. So in the X1 prime X1 matrix, we do not have the last 7. When you

look at the X1 prime Y matrix, we do not have the last entry here. We have 2434.6 and -42.

Then X prime X inverse matrix, we have 1/13 1/7 and beta hat, we have 187.27 and -6. We do

not have -70.5. So the values are exactly the same as before and this shows the advantage of

doing the analysis in the coded format. We have an orthogonal design which I will talk about in

my next lecture. So we have the data as I had presented, right. So we will do further analysis of

these results in the coming lecture. Thank you for your attention.


