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Welcome back in today's lecture. We will continue with regression analysis.

(Refer Slide Time: 00:25)

So we were discussing about the extra sum of squares method and we test the null hypothesis

beta1 = 0 using the statistics  sum of squares of regression beta hat1 given that beta hat2 is

already present in the model/r degrees of freedom for beta hat1/mean square error. So, we know

that  beta2  hat  and beta1  hat  are  not  necessarily  single  parameters.  They represent  block  of

parameters. They are actually column vectors as was discussed in the previous class.
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So if the computed value of the test statistic F0 is > f alpha r numerator degrees of freedom/n - p

denominator  degrees  of  freedom,  then  the  null  hypothesis  is  rejected  as  at  least  1  of  the

parameters in beta1 is not 0 and at least 1 of the variables x1, x2, so on to xr in x1 contributes

significantly to the regression model.

This is called as the partial F test. Beta1 is vector of parameter that is why it is represented in

bold and if we reject the null hypothesis at least 1 of the parameters in the newly added model is

not 0 and at least 1 of the variables in the fresh set x1, x2 so on to xr contributes significantly to

the  regression  model.  So  the  new variables  are  considered  at  least  1  of  them brings  value

addition to the regression. This is also known as the partial F test.
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So the extra sum of squares method is a very useful technique and what we can do is to use it to

measure the contribution of each individual regressor variable xj as if it was the last variable

added in the model. So what we do is let us arbitrarily pick up a regressor variable xj. Then we

see the impact of adding xj to the modeling process by first developing a model without the xj

parameter. So we have a regression model equation.

Now we can see the impact of adding the regressor variable xj to it so we do it by conducting a

test of sum of squares of regression brought in by beta hat j given that beta hat1, beta hat2 so on

to beta hat j - 1, beta hat j + 1 so on to beta hat k were already present in the model. So this is

also a kind of extra sum of squares technique. So instead of adding a block of parameters we are

considering only 1 parameter here which means that we are considering the effect of beta hat j.

So j can be any value from 1 to 2 on to k.

It need not necessarily be the first parameter or the last parameter all the time. You have to first

develop a model without the parameter beta j, so without the regression parameter beta j. In other

words you are not accounting for the regressor variable xj. So other than that you consider all the

other variables and develop it. Then you see the impact of bringing in the beta j * the regression

model equation.
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What this means? the sum of squares of regression due to beta hat j given that beta hat1, beta

hat2 so on to beta hat j - 1, beta hat j + 1 so on to beta hat k are already present in the model. This

means what is the increase in the regression sum of squares due to adding xj to a model that

already includes x1 so on to xj - 1, xj + 1 so on to xk. The sum of squares obviously will be

positive; it can be never negative.

So when you are considering a new regressor variable xj obviously the sum of squares associated

with it will add on to the existing sum of squares due to the other parameters beta hat1 so on to

beta hat j - 1, beta hat j + 1 so on to beta hat k. So what is the value addition brought in by this

particular parameter beta hat j. It is very interesting and you can see the impact of each and every

parameter by doing this exercise.
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So the partial F test is a general procedure as the effect of a set of variables may be measured. It

is used in model building where a best set of regressors are chosen for use in the model. So by

doing this analysis you can identify the best set of variables which are having maximum impact

on the response  so that  you build  a  economical  compact  and efficient  model  with only the

regressor variables actually influencing the process or including the model and the other model

terms or other regressor variables are excluded from the model.

(Refer Slide Time: 07:07)

Now let us look at the errors. The errors you may recall was defined in the regression model, the

response is equal to the true value of the response + epsilon, where epsilon is the error. The true

value of a response was given as eta and the actual response was given as y. If there were no



errors in the experiment, then miraculously all the responses would be equal to the true value and

when we repeat the experiments n number of times, we will get the same value eta i.

So we get different values because of the errors and we also noted that the errors are normally

distributed with mean 0 and variance sigma square. The errors were normally distributed around

0 with the zero as the average and the constant variance of sigma square. The observations yi as

shown previously are also normally distributed and independently distributed with mean beta 0 +

I = 1 to k sigma beta I xij and variance sigma square.

So we talked about the errors now what about the response? The response is nothing but, a

particular value a constant value eta i + the error. So when your errors are normally distributed

when you add a constant to it then the response also will be normally distributed and the true

value which is adding to the average of 0 would be nothing but the correct exact model beta0 + i

= 1 to k sigma beta i xij. So I am not sure how many of you could follow this verbal statements

so I will just show a diagram in the next slide, which we have also seen previously.

(Refer Slide Time: 09:17)

So for easier representation, I am just considering only on regressor variable x1 and here it can

be generally called as x and this is the response of y versus x. You can have several points, but I

am just showing 2 points for illustration. Looking at this representation, where we have only



regressor variables for convenience and that regressor variable is x we are plotting the response y

versus x and this solid line here is the true model given by y = beta0 + beta1 x.

So this is != beta0 hat + beta1 hat. It is actually the true model that is why it is called a true line,

given by beta0 + beta1 x. So please note the distinction between beta0 and beta1 which are

actually the exact or the 2 parameters representing the process whereas beta hat0 and beta hat1

would be the predicted parameters for beta0 and beta1. So having that out of the way we see that

we are having these data points scattered around this true line.

If this experiments were perfect and uninfluenced by errors the 2 dots would have fallen on the

solid line,  but they are sort  of scattered.  So these are the responses and these responses are

normally distributed and the mean value of the response for example this is response 1 and this is

response 2. There can be several such responses. I am just showing 2 for illustration and the line

is drawn in a such a way so that the responses are on either side of the line.

So this response is above the line and this response is below the line. So you can see that the

responses because of the error are normally distributed with the mean value given by the true line

beta0 + beta1 x and the variance of this distribution is sigma square. So what it means is, because

of random effects the points here my fall anywhere in this region. Of course, it may even go

beyond that, but the probability of that occurrence would be very less.

This is the normal distribution and it depends on the value of sigma square. If the sigma square is

pretty  high,  then  there  is  a  possibility  that  the  point  may  be  even  further  off  because  the

distribution would be more broad and on the same line if the sigma square is very small then this

distribution would be narrow and the points would be lying closer to the line. So this is the value

x1, let us say the first setting of the regressor variable x or xA.

For example, and this is the response. So the true value would be y at 0.A = beta0 + beta1 xA.

Similarly, this is xB for the regressor variable x. So then the yB the response at B would be beta0

+  beta1  xB that  would  be  the  mean  value  or  the  true  value,  but  the  actual  value  may  be

somewhere away from the mean value.



(Refer Slide Time: 13:18)

So now, we have discussed about extra sum of squares and the T test and so on. So now let us

look at the confidence intervals on the regression coefficients. So the vector beta hat may be

shown to be normally distributed with mean vector beta and covariance matrix x prime x inverse

sigma square. Now we are not dealing with the individual entities, but we are actually dealing

with the collection of regression coefficients and they are given is the column vector.

And so that would have a mean vector beta and a covariance matrix x prime x inverse sigma

square. We have already seen what is the covariance matrix in one of our earlier lectures?

(Refer Slide Time: 14:10)



Now we have T statistics which may be defined as T = beta hat j - beta j. This is the actual

regressed value  of  the parameter  and this  is  the true value  and we also have the sigma hat

squared because sigma square is not known so we need to have an estimate of the sigma square

for which we use if you recollect the residual sum of squares/n - p where n is the number of data

points and p is the number of parameters and Cjj is the x prime x inverse matrices diagonal

coefficient corresponding to j.

The x prime x inverse matrix is matrix which may comprise of off diagonal term 0 or nonzero,

but we are not interested in the off diagonal terms, we are only interested in the diagonal term

and we pick up the diagonal corresponding to j for example if we are looking at beta1 then we

will be looking at c11, first row first column element. If you are looking at beta2, then j will be =

2 and so we will be looking at C22, second row second element.

So we will be looking at the value of the variance covariance matrix along the diagonal and since

the sigma hat square was based on n - p degrees of freedom, the n - p degrees of freedom were

associated with the residual sum of squares. The T distribution is also associated with n - p

degrees of freedom. n is the number of data points and p is the number of parameters.

(Refer Slide Time: 16:15)

So now we can define the 100 * 1- alpha % confidence interval for the regression coefficient beta

j, j running from 0, 1, 2, so on to k in the multiple linear regression model. So we have this beta



hat j - T alpha/2 n - p standard error of beta hat j <= beta j, <= beta hat j + t alpha/2 n - p standard

error of beta hat j. I think this should look very familiar to you in our phase 1 of the lectures

where we discussed about T distributions, the hypothesis testing, confidence intervals.

We had if you recollect x bar - t alpha/2 s/root n where s is the standard deviation of the sample

s/root n <= mu <= x bar + t alpha/2 n - p * s/root n. In some cases, we had sigma/root n, in some

cases we had s/root n so it depends on whether we use the T distribution or the z distribution if

the  population  variance  was  known then  and  the  population  was  normal  distribution  or  the

sample size was pretty high greater than 30 so that we can bring in the central limit theorem into

play.

Then we can use z alpha/2 * sigma/root n in the cases where the parent distribution is normally

distributed and the variance sigma squared is not known which is usually the case then we have

to make do with the sample standard deviation and so we have s the sample standard deviation

and so we put x bar - t alpha/2 * s/root n. so whatever we have studied earlier is making perfect

sense now, now are developing the confidence intervals for the regression coefficient beta j.

And that is why we have the predicted or the sampled if you want to put in that way value of beta

j so that would be beta hat j and then you have the T distribution value corresponding to the

chosen level of significance of alpha and n - p degrees of freedom. You can always read up this

value from the T tables or go t a spread sheet and then calculate the T value and then you also

have the standard error of beta hat j.

So this will give you the confidence interval and what do you use with this confidence interval. If

the confidence interval is such that you have a negative lower limit and positive upper limit, then

the beta j is pretty much worthless. On the other hand, if the lower limit of beta j is let us say

very close to the upper limit of beta j the lower limit would be on the left hand side and the upper

limit would be on the right hand side so if the upper limit and the lower limit are pretty close to

each other they can be negative or positive.



But if they are very close to each other, then that parameter beta j has been precisely identified,

but if you have a case where the left hand side is negative and the right hand side is positive then

what  do you make out  of  that  beta  j  is  it  acting  towards  increasing  the  response  when the

regressor variable xj increases or is it acting towards decreasing the response when the regressor

variable xj increases.

So under such a scenario we cannot make any definitive conclusion about the beta j and we

pretty much say that it is insignificant. So the moral of the story is the lower limit and the upper

limit of beta j should bare the same sign. If they have a negative value, then that beta j is acting

towards decreasing the model response when xj increases. If the beta j has both positive lower

limit and positive upper limit then the beta j is taking a positive value and when xj increases the

effect of xj is to increase the process response.

(Refer Slide Time: 20:54)

Now whenever you do regression analysis either manually which is very rare or you do with the

help of software or a spread sheet the program through a lot of results and sometimes we do not

really know what those results mean, the most popular of that would be r square and if the r

square value is let us say 0.99 we feel very happy and we feel the achievement of fitting an

excellent model to the given data. Actually let us see there a few pit falls in this kind of feeling

when you have a very high value of r square. Let us see what those are.
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Now the coefficient of determination R square, now we have a name for it instead of just a

symbol coefficient of determination I do not know how many of you were aware of it previously.

The coefficient of determination is simply the ratio of the regression sum of squares the total sum

of squares. The regression sum of squares is a very valuable entity. It sorts of gives you the

effective worth of the regression model.

We also looked at the extra sum of squares and the partially of test and so on. So we were always

talking about the sum of squares of the regression brought in by a particular parameter or a set of

parameters.  So collectively they represent the total  sum of squares of the regression and we

compare the sum of squares of the regression with the total sum of squares in the model and see

what fraction of the total sum of squares is contributed by the sum of squares of regression.

If miraculously you have a situation where the regression entirely contributes to the total sum of

squares, then R square will be = 1. So you would like by looking at this equation, the R square

value to be as close as 1 to be good enough, but I have seen papers especially in the biological

sciences where people report values of R square of 0.68, 0.7 and so on. So it all depends upon

the application, what would be an acceptable value. So what exactly is R square.

R square other than being the sum of squares of regression, the total sum of squares which does

not really make sense to somebody who is not familiar with the subject R squares represents the



proportion of the total variability accounted or explained by the linear regression model. So you

have certain amount of variability in your process and what fraction or portion of the variability

may be explained by your developed regression model.

If the variability is predominantly explained by your regression model, then the R square value

would be quite close to 1 and you may have the satisfaction of developing a reasonably good

model. So but there is a word of caution that may be added when we use R square. For example,

if you have 5 data points and you fit a model with 5 parameters R squared will be = 1. All the

variability would have been explained by the regression model.

Here you are not doing regression or linear regression curve fitting, in fact you are trying to fit 5

unknowns and you are having 5 equations  and so essentially  solving for 5  equations  and 5

unknowns and obviously the 5 unknowns you are estimating should actually satisfy all the 5

equations. So all the variabilities account for and the R square value will be equal to 1 that is not

acceptable.

We normally work with large data set let us say 40 or 50 data points and we try to fit only a few

parameters 3 or 4 parameters. Unless the model is exact miraculously and the data have been

generated with exactly no error which is very unlikely you will not have a situation where the 5

parameters  in  the  regression  model  will  be  able  to  account  for  the  responses  of  the  40

experimental sets. So there will always be some discrepancy.
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So, how to increase the value of R square? The R square value may be increased by increasing

the number of terms in the model and thereby increasing the number of coefficients that may be

adjusted so that the model can be made to fit the data excellently. In the extreme case, if you fit a

model for 40 experimental points with 40 parameters then you will get an exact fit.

But imaging having a model with 40 parameters it will run to half a page or full page and that

model will look really ugly. We have to see what would be the best set of parameters which will

give you a reasonably high value of R square. So what is the reasonable high value of R square?

How do you quantify it? So again to sort of summarize what I have said so far.
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A complex model running to half a page or a single page becomes cumbersome to handle more

empirical in nature and difficult to explain physically as to why this model is able to fit the data.

What is the physical meaning of the model and so on? For example, if you have a temperature to

the power of 3 or temperature to the power of 4 what is the physical reason that the response is

affected by the fourth power of temperature? Is it radiation?

If it is not a radiation if it is a simple reaction problem why do you have power of T to the power

of 4 as a simple illustration and also if your data is very noisy it is subject to lot of error then

when you fit a model with many parameters to it,  it  may not be really successful when you

slightly change the value of the regressor variables. For example, model was developed for the

certain set of values of xj and why some model develops in the first place so that you do not have

to keep on doing experiments time after time. Once you have a develop model, you can use it to

represent the process in future design calculations or simulations and so on.

So you do not have to resort doing experimentation every time, but when you are having a noisy

data and you have fitted a model with too many parameters, then when you change the value of x

slightly or even use the same values of x you will find to a surprise that the model which was

developed with so many parameters and worked well with those set of data may not be doing a

good job with the new set of data. So this is a problem you may encounter often because your

experiments are very variable.

And every time you cannot be fitting a new regression model to explain the particular set of

experimental data. You would have a experimental data set collection that is the reason why you

should do the experiments as carefully as possible trying to minimize the errors and unwanted

errors or unavoidable errors you have to live with, but you should deliberately not introduce any

systematic error in your experiments. 

So you have to collect the data properly and fit a satisfactory regression model. You should not

try to aim for regression coefficient  of 1 all  the time.  Now that brings us to the concept  of

adjusted R square.
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And what we do is the concept is pretty much the same, it is the regression sum of squares/total

sum of squares and the regression sum of squares may be written as total sum of squares - error

sum of squares/total sum of squares so that is why you will get 1 - error sum of squares/total sum

of squares. just back to the equation. This can be written as total sum of squares - error sum of

squares and when you divide by sum of squares of total  you will get 1 - sum of squares of

error/sum of squares of total. 

I think you can figure it out. This is total sum of squares - error sum of squares/total sum of

squares. You just make the division and you will find it is equal to 1 - error sum of squares/total

sum of squares and that is similar to what we have written here, but here we have scaled the sum

of squares of error, by sum of squares total with the associated degrees of freedom. The degrees

of freedom for sum of squares of error is n - p and the degrees of freedom for sum of squares of

total is n - 1. 

So here we scale sum of squares of error/n - p sum of squares total/n - 1. So rather than using

sum of squares we are using mean square. There is a strong justification for scaling the sum of

squares by the degrees of freedom. What is it?
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So if you want this R square adjusted to be as close as 1 to be possible, then this term, the

numerator term should be as small as possible.  How will  the numerator term be as small as

possible? When either the sum of squares of error is very very small, or this n - p is quite high,

but when you keep on adding more and more parameters this n - p term will become smaller and

since this becomes smaller the numerator term will start to increase.

And  so  the  adjusted  R  square  will  start  to  decrease,  because  when  the  numerator  starts  to

increase, the R square adjusted will start to decrease so that is penalty for adding more and more

parameters. Suppose you add a parameter which is having a strong influence on the process the

sum of square of error will drastically reduce so even though the n - p has decreased by 1 the

sum of squares of error has decreased even more considerably and so the overall effect would be

to reduce the term on the other side of the negative sign.

So this term will decrease so the R square adjusted would be quite high, but on the other hand if

the  sum of  squares  of  error  decreases  only  by  a  small  amount  and  you  are  adding  many

parameters to this, n - p will start to decrease very quickly and this will start to increase the

numerator term and then the numerator term increases R square adjusted will decrease. So that is

why we should not be in a hurry to keep on adding more and more regressor variables to our

model just to get the R square to be 1.



So it is a good practice to look at the R square adjusted, also and see, whether it is satisfactory.

Sometimes, I have seen cases where the regression R square value is 0.97 or 0.98 whereas the R

square adjusted would be only 0.84 or 0.85. Suppose when you add the additional parameter, the

regression coefficient goes to 0.975 or so, but the R square adjusted reduces to 0.83, then really

the effect of the additional parameter is pretty much worthless. It is useless. 

So please look at the variation of R square adjusted when you add more parameters rather than

only looking at R square.

(Refer Slide Time: 33:50)

So as I said earlier, unless the sum of squares of error is considerably reduced by adding the extra

term to the model equation, the R square adjusted will increase in the number of parameters. So

there is a type here I will just correct it. The adjusted R square will decrease.
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So, unless the sum of squares is considerably reduced by adding the extra term to the model

equation, the adjusted R square will decrease upon increasing the number of parameters.

(Refer Slide Time: 34:28)

Now we come to another term called as the prediction error sum of squares and this is called as

press, sum of the computer outputs also report this value and this term is also similar to the sum

of squares of the residual what we do is we sum the square of the deviations between the actual

responses and the corresponding model predicted values. What is the difference here? You are

having the actual response in the corresponding mode prediction, the difference between the 2 is

squared. So this is also looking like some residual sum of squares. So what is nu here impress?
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We will see, so the main differences that the prediction for the ith data is based on a model

equation that excluded that particular data point, but use the remaining data points to develop the

model equation. So when you are considering the error sum of squares or the residual sum of

squares for a particular ith data, obviously you are going to subtract the response with the model

predicted value and square it. So what is the difference here?

The main difference is when you are looking at the residual sum of squares for the ith data point,

the prediction is based on a model that actually excluded the ith data point, for example if I am

calculating the residual sum of squares for the first data point, I would develop a model with the

remaining data points and I would have a model which did not use the first data point. Then I

will use the model to predict the response for the first experimental data point.

Then the difference between the experimental value and the prediction value is squared to give

the residual sum of squares or the error sum of squares for the first data point. Now when I am

going to the next second data point, I will first develop a model without the second data point. So

I will have a model equation. Then I will subtract the experimental response for the second data

point with the model prediction based on the remaining data points except the second.

All other data points, then that model prediction is subtracted from the second experimental data

point response and that is squared. Similarly, I do it for all the remaining data points in the set.



This may look to be a bit tedious, but there are ways in which this can be done much faster, but

that is beyond the scope of this course. So we want the press value to be also quite small.

(Refer Slide Time: 37:25)

So that is why let me sort of summarize the main difference to watch out for is that the prediction

for the ith data is based on a regression model equation that excluded that particular data point,

but use the remaining data points to develop the model equation. So the same treatment is meted

out to other data points as well when they are compared to the corresponding individual model

predictions.
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So earlier, we were looking at prediction error sum of squares or the press now you will  be

looking at sequential sum of squares. As the name implies it is the gradual model development

focusing on first the main effects, then the second order effects or in other words the product of

factors taken 2 at a time. So once we are done with the main effects, then we consider the effect

of adding factors 2 at a time to a model already containing the main effects.

And once we have done that so we have now a model with main effects and then the second

order interactions or product of 2 factors. Suppose you have model A with main effects A, B, and

C. First you develop a model with only main effects A, B, and C then you will look out the

second order effects AB, BC, AC, and after having developed this model then consider the effect

of third order interactions which would be ABC.

So you are developing the model as main effects second order interactions and then the third

order interaction. So what we do is represents the contribution to the total sum of squares and the

main  effects,  then  the  additional  contribution  from  second  order  interactions  to  the  model,

already containing the main effects and next the sum of squares brought in by the third order

interactions to the model already containing the remaining terms.

So we can gradually see that there would be less and less impact to total sum of squares by

higher  order  terms.  In  some cases,  the  interactions  may be  contributing  to  the  total  sum of

squares more than the main effects, but beyond second order interactions may be third order

interactions the higher and higher order interaction would be contributing negligibly to the total

sum of squares and their value would really not be there. So it is another way of telling that do

not develop a model beyond the third order interaction.

(Refer Slide Time: 40:12)



So repeating what I said when you add the sum of squares due to 2-way interactions the sum of

squares contribution from main factor is already present when the third order interaction A, B, C

sum of squares is added then the remaining effects sum of squares have been accounted for and

the remaining effects meaning the main effects and the second order interactions.

(Refer Slide Time: 40:33)

Now we come to another term, called as the adjusted sum of squares, this represents the increase

in sum of squares when the term is added to the model which is already containing all the other

terms. The adjacent sum of squares is different from sequential sum of squares. The sequential

sum of squares as the name implies we are doing it sequentially, systematically in an organized

fashion. So what we do is we develop a model without a main effect A let us say.



So we develop a model with B, C then we even do AB, BC, AC, then we also do ABC, then we

finally  add the factor or regressor variable  A at the very end and see the regression sum of

squares brought in by it. So this is the increase in sum of squares when a term is added to the

model which is already containing all the other terms. In an orthogonal design containing equal

number  of  repeats  per  cell  the  sequential  sum of  squares  and  adjusted  sum of  squares  are

identical.

This  is  another beauty of the orthogonal  designs.  The statistically  designed experiments,  the

factorial  design of experiments are usually orthogonal and so you have the advantage of the

adjusted sum of squares being = the sequential  sum of squares.  So it  does not really matter

whether the factor is added in the beginning or in the end it is contributing to the sum of squares

in an identical fashion. But in nonorthogonal designs you can even note that the sequential sum

of squares and adjusted sum of squares are not the same.
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Now we look at the term Bias in the model. So what we do is we fit a model to the experimental

data yi and obtain the model predictions. The residual we know by now is Yi - Y hat and we hope

that the residual which is defined above is only caused by random error. If so, the residual sum of

squares helps us to find the error variance. This is a very important concept. Whatever we are

unable to explain by the model we really hope that it is because of random effects only.



But  if  you  think  a  bit  deeper  the  difference  between  the  experiment  value  and  the  model

prediction may not always be due to experimental error alone may be you have not developed a

sufficiently acceptable model, may be the person who was doing the model development was

very  lazy  and  when  there  are  2  factors  or  2  factors  and  interactions  affecting  the  modular

influencing the model.

He might  have  taken  the  easy way out  and developed  a  regression  equation  with  only  one

regressor  variable  even though 2 regressor variables  and the interactions  are  influencing the

process  physically.  In  such  a  situation  you  cannot  argue  that  the  discrepancy  between  the

experimental value and the model prediction is only because of random error. It can be also

because of an inadequate model. This is what we are going to discuss from the slides on.
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So if the model is however inadequate that is very important. The model is however inadequate,

then the difference above is bloated or increased by not only experimental error, but also due to

model error. This is very important. So you are having experimental error, random error and then

you also have the model error so how do you split or dealing it the 2 errors. The residual sum of

squares is containing both the modeling and also the random error, how do you want to split

them.

(Refer Slide Time: 44:44)



For that purpose, we define a bias and call it as the expected value of the experimental response

and the expected value of the model prediction for the ith experimental  condition.  Expected

value of the experimental response is matching with the expected value of the model prediction

then the bias will be = 0. On the other hand, if the expected value of the experiment response is

different from the expected value of the model prediction then you have a nonzero bias.

(Refer Slide Time: 45:28)

So when you have mean square residual let us say P = 2 for convenience you are having only 2

parameters then the mean square residual is given by I = 1 to n yi - y predicted y, y hat I whole

square/n - p or n - 2. This is the mean square residual.

(Refer Slide Time: 45:53)



If  this  sum of squares arises from an adequate  model,  then the residual squares arises from

random variations only and hence it is an estimate of the error variance sigma square.

We do not know the error variance sigma square. So we are hoping to the residual sum of squares

will give us an idea or an estimate about the error variance, but if the residual sum of squares is

also having the variation due to an inadequate model, then we cannot use the residual sum of

squares to get a good idea or a good estimate on the experimental error. The mean sum of squares

will be higher than the experimental error contribution. So we have to be careful.

(Refer Slide Time: 46:37)



However, if the model is inadequate, then the above sum of squares, the residual sum of squares

also has an addition the contribution from systematic components i.e. due to bias. So we have

sigma square which is the error variance and + sigma Bi square/n - 2. So the residual sum of

squares has contribution from sigma square and the bias contribution.

(Refer Slide Time: 47:12)

How to find out whether we are having an adequate model or an inadequate model? So what we

do here is let us say that we know sigma square from prior knowledge or from experience or

previous data sets and so on, so you have a fair idea about sigma square. So what we do is

compare the residual mean square that is sigma yi - y hat I whole square/n - 2 or n - p and

compared to the prior variance using an F test to see if the residual mean square is significantly

larger than sigma square.

So you compare the residual sum of squares/degrees of freedom with sigma square and then see

whether the residual sum of squares/n - p is comparable to sigma square and for this case if it is

statistically significant, the residual mean square cannot be statistically = sigma square and then

the model is said to have a lack of fit. So we should reconsider the model as it is inadequate in

the present form.

(Refer Slide Time: 48:31)



On the other hand, if you do not have information on sigma square which is usually the case, but

repeat measurements on yi are available. This is another reason why you should perform repeats

in your experiment. So when you have repeat measurements, this is a reflection on the pure error,

because when you repeat experiments you are not going to get the identical response. You will be

having different values of the response for repeated experiments. 

So this you can use to obtain an idea about the random fluctuations or the random variations the

sum of squares caused by true random variations. So we can even call it as sum of squares due to

pure error, because the repeats represent pure error and we are hoping that when you repeat the

experiments you are making sure that all the variables are kept at their assigned values in all the

runs. Even if 1 value of the variable changes slightly then it cannot be called as a genuine repeat. 

So what do you do is repeat measurements on yi are available and this is the reflection of pure

error or unadulterated error as for a given xi 2 or more repeat estimates of yi are taken. Then the

observed differences in the measured values of yi may be attributed only to random effects.

(Refer Slide Time: 49:54)



So continuing with the case to where we do not know sigma square and this is usually more often

the case, it is very essential to have repeat experiments in our program or plan and this is brought

out very nicely by Draper and Smith in year 1998 book.

(Refer Slide Time: 50:20)

Now we are now looking at pure-error sum of squares. So we call the sum of squares pure error

and what we do is, we have repeated experiments across different experimental settings. First,

experimental setting combination we do repeats. Then the next experimental setting combination

we do repeats. So we will assume that the errors in the first repeat is for the first experimental

setting the repeats are analogous to the repeats in the second experimental setting in the sense

that the errors which influence the second settings are random.



And they also are identical with the errors that represent the first experimental setting that means

all the errors which are influencing the first experimental setting and the errors influencing the

second experimental setting come from the same family. You know that the errors are distributed

normally with 0 mean and variance sigma square. So the error variance in the first experimental

setting is identical with the error variance in the second experimental setting. 

So that is what I mean. So with this assumption, we are going to pool the sum of the pure error

so that we get better overall estimate.

(Refer Slide Time: 51:51)

So we have sum of squares of pure error is given by I = 1 to n, j = 1 to n yij - y bar I whole

square.  So  you  are  having  m  repeats  that  means  the  repeats  may  be  different  for  every

experimental setting, but let us assume that normally we conduct same number of repeats for

every experimental setting. Let us call that value as m. So j represents the repeat and I represents

the experimental setting.

So we have sum of squares of pure error is yij - y bar I whole square and then we do it for all the

experimental settings. The degrees of freedom by now you should be able to show that it is n

times m - 1.  Every set  of repeated experiments  would have a degrees of freedom of m - 1



assuming me to be same for all experimental settings. So n * m - 1 will become N - n where n *

m is the total number of runs and N is the number of independent experimental settings.

(Refer Slide Time: 53:03)

Now the lack of fit sum of square is a very important quantity can be defined as follow. Sum of

squares of residuals = sum of squares of lack of fit + sum of squares of pure error. The residual

sum of squares is now split into lack of fit sum of squares and pure error sum of squares. Just

now you have found the pure error sum of squares. The pure error sum of squares was found by

using this relationship. 

Now you can get the sum of squares of lack of it by simply subtracting the residual sum of

squares with the sum of squares of pure error so that will give you the sum of squares for lack of

fit.
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Now you can take the lack of fit mean squares with the pure error mean squares through an F test

at the 100 * 1 - alpha percent confidence level. So you can easily find the degrees of freedom for

the lack of fit sum of squares. You know that the sum of squares of pure error have a degrees of

freedom of N - n please not capital N - small n. the residual sum of squares have the degrees of

freedom of n - p where n is the total number of runs and p is the number of parameters.

So you have n - p and you have capital N - p and you have capital N - small n. The difference

between the degrees of freedom for the sum of squares of residual and the sum of squares of pure

error will give you degrees of freedom for the lack of fit. I request you to work it out yourself. So

the lack of fit mean squares may be compared with the pure error mean square through a F test at

the 100 * 1 - alpha% confidence level.

The numerator and denominator degrees of freedom are n - 2 or generally n - p and N - n degrees

of freedom respectively. So the lack of fit sum of squares will have a degrees of freedom of N - p

were small n is the number of independent settings and p is the number of parameters and the

pure error sum of squares will have the degrees of freedom of capital N - small n. Capital N is

the total number of runs and small n is the number of independent settings.
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If the F statistics falls in the rejection region, then the lack of fit sum of squares is significantly

different from the error sum of squares and the model chosen has to be re-evaluated.

(Refer Slide Time: 55:38)

If the F statistic lies in the acceptance region, both the lack of fit and pure error sum of squares

may be  used  as  independent  estimates  of  sigma squares.  In  fact,  the  mean residual  sum of

squares itself may be then used as a pooled estimate of sigma square. If the sigma squared is

based upon more data points, then that is better. In fact, if the degrees of freedom associated with

the error estimation is higher than that error estimation is more valuable.



So  the  sigma  squared  based  on  the  residual  sum  of  squares  if  the  model  is  adequate  is

recommended as a surrogate for finding sigma square.  What I am trying to say is the mean

square residual can be used as an estimate of sigma squared because it is having higher degrees

of freedom. This is only to be done when the model which is fitted is adequate. If the model is

not adequate, then you cannot use the residual mean square as an estimate for sigma square.

(Refer Slide Time: 56:49)

So this may be nicely represented by flow diagram again given by Draper and Smith. So the

residual sum of squares is split into nr residual degrees of freedom, it splits into lack of fit sum of

squares and pure error sum of squares. Let us call the degrees of freedom associated with pure

error sum of squares as ne and lack of fit sum of squares is nr - ne. So when you divide the sum

of squares with the respective degrees of freedom you get the mean square lack of it.

And mean square pure error and then you compare the mean square lack of fit and the mean

square pure error. The mean square lack of fit is an estimate of sigma square if the model is

correct and sigma square + bias term if the model is insufficient and the mean square pure error

is obviously going to be a reliable and true estimate of sigma square. Right this completes our

discussion on the various aspects of linear regression, the various terms you may often encounter

in a regression output hopefully after this lecture.



You will be able to appreciate the value of the different terms in the regression output rather than

basing your judgment solely on the R square value. In fact, when you are explaining your results

to your thesis supervisor or to your boss in the company or to your R and D manager it will make

a good impression if you are able to provide more insight into the developed regression model

equation.

Having said that please note that these regression model equations have not been really based on

first  principals and it  is only an empirical  equation,  but still  if  it  can represent  the effect of

various variables and the interaction between the variables in a reliable manner, the developed

regression model is very useful, because many times in real life we cannot always model the

processes from first principals. So this completes our discussion and thanks for your attention.


