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Hello,  welcome  back.  In  today’s  class,  we  will  be  looking  at  hypothesis  testing  in  linear

regression. So, what is the motivation for doing this test? When we develop a linear regression

model, we want to see which of the variables we had taken are considered in the experiment are

really important. At the beginning, when we are not having prior knowledge or experience, we

really do not know which variables are important, which variables are not important?

So we would like to include as many variables as possible in our experimental program and we

perform the experiment and we get the data. Now we want to analyze the data and identify which

of the variables are really significant and influence the experiments strongly. So how do we go

about it that is what we are going to see in today's lecture? So as the slide indicates.

(Refer Slide Time: 01:43)

The test is meant to check whether there is a linear relationship between the response Y and the

subset of the regressor variables X1, X2 so on to Xk. So these regressor variables are actually the

variables we are investigating in the experiment.

(Refer Slide Time: 02:09)



So we carry out the hypothesis testing in multiple linear regression our null hypothesis is beta1 =

beta2 so on to beta k = 0. I will make a small correction here. So we have beta1 = beta2 so on to

beta  k = 0 that  is  a null  hypothesis.  So what  it  really  means is  that  none of  the regression

coefficients are having numbers that are significantly different from 0. Look the beta1, beta2 so

on to beta k may take either negative values or positive values.

If they take positive values, it means that they are positively affecting the response. For example,

the yield of a chemic reaction may increase with increasing temperature. On the other hand, if

you have a negative value for beta j then it means that when the variable increases, it actually has

a  negative  effect  on  the  response.  For  example,  when  pressure  increases,  the  volume  may

decrease. So it depends upon the experiment we are looking at.

When the beta j that is one of the regression coefficients become 0, then beta j xj will be 0. This

means that whatever maybe the value taken by xj, the effect of that particular variable on the

experiment is insignificant. So this is what we are trying to test. The null hypothesis says that all

the regression coefficients are 0 that means none of the variables are really affecting the process.

This is the most skeptical point of view a person may take at the beginning of the experiment,

but as experimenters we should be really skeptical and not have some preconceived notions. See

the alternate hypothesis says that beta j  != 0 for at  least 1 j.  This means that among all  the



regression coefficients at least one of them is nonzero. In other words, there is at least 1 variable

in the experiment which is actually affecting the process response.

(Refer Slide Time: 05:02)

So when we accept the null hypothesis, we agree that none of the regression coefficients are

taking a value other than 0. So we say that H0 be null hypothesis is beta1 = beta2 so on to beta k

= 0.  If we agree with this,  then none of the variables  are really affecting the response.  The

alternate hypothesis is for at least 1j, beta1 or beta2 or so on to beta k, at least one of them is

nonzero. It may be negative or it may be positive.

So the rejection of H0 implies that at least one of the regressor variables X1, X2 so on to Xk

contributes significantly to the linear regression model. So here we are having k independent

variables X1, X2 so on to Xk and these are the regression coefficients which are attached to these

regressor variables and when then say that beta j takes a value 0, beta j xj will be = 0 and there

will not be any effect of that particular regressor variable xj on the process response. So how to

carry out this hypothesis testing?

(Refer Slide Time: 06:38)



So we have the experimental data with us and we first find the total sum of squares and then we

split  it  into regression sum of squares and residual  sum of squares.  So I have indicated this

briefly here. Sum of squares total = sum of squares regression + sum of squares residual.

(Refer Slide Time: 07:19)

So whenever we compute the squares we also have to find the degrees of freedom. Whenever we

want to compute the variance not only we find the deviation from the mean, but we also divided

by n - 1 where n is the total number of observations. So the sum of squares is actually divided by

a certain value which is related to the data size.



In our present analysis also whenever we are considering linear regression we have the total sum

of squares and we have to scale it by the appropriate or associated degrees of freedom. So the

total sum of squares has n - 1 degrees of freedom, where n is the total number of observations.

The sum of squares of regression has k degrees of freedom where k is related to the total number

of regression coefficients in the following manner.

(Refer Slide Time: 08:30)

So we have p = k + 1. I think we have already come across this earlier to re-iterate p is the total

number of parameters  and that  includes  the parameter  beta  0.  The so called  intersect  of the

regression model. The residual sum of squares will then have n - p degrees of freedom, where n

is the total number of responses.

(Refer Slide Time: 09:13)



So now we can go to the analysis of variance table. We have in the ANOVA table the usual

entities. The source of variation, the sum of squares associated with the source of variation, the

degrees of freedom and we divide the sum of squares with the associated degrees of freedom to

get the mean square. So k = p - 1 that means the total number of parameters - 1. Here we are not

considering the intercept.

We are only considering the regression coefficients beta1, beta2, so on to beta k and when we

divide the sum of squares of regression with the k degrees of freedom, we get the mean square

regression and then we also have the residual sum of the squares. This is a very important aspect

in regression analysis because only by looking at the residuals and the pattern of the residuals we

can really judge about the quality of the fit.

So we have the residual sum of squares as sum of squares of E again instead of rather writing

residuals I have used the subscript E residuals may also be associated with error because it is a

difference between the experimental value and the model prediction. So the residual is defined as

the difference between the experimental value in the model prediction and so we have the error

with respect to the model prediction.

And the sum of squares associated with the residuals is given by SSE and the degrees of freedom

associated with it is n - p so the mean square would be sum of squares of the residuals divided by



n - p that will give you mean square residuals. So we take the ration of mean square regression to

the mean square residua to get the F0 value. So we also have the total sum of squares SST which

is having n - 1 degrees of freedom. So it will look like n - p + k and k is nothing but p -1. So n - p

+ p - 1 will give us n - 1 degrees of freedom. So when you add up these 2 you get the total

degrees of freedom as n – 1

(Refer Slide Time: 11:54)

So that is what this slide also tells. Repeating, n is the total number of observations and p is the

total number of parameters including the intercept parameter beta 0 and so we have k = n - 1 - n -

p and we get k = p- 1. What I am doing is we saw that k and n - p add up to give n - 1. This is

telling the same thing in a different way we just subtract n - p from n - 1 and we get p - 1 k = p -

1. So we can take whatever route we want.

(Refer Slide Time: 12:36)



The  regression  mean  square  scaled  by  error  variance  sigma  square  follows  a  chi-square

distribution  with  k  degrees  of  freedom.  We have  to  make  a  proper  judgment  regarding  the

observed mean squares. So we have mean square regression. We have mean square error or mean

square residuals.  So the ratio  of the 2 we consider and we have to test  it  against  a suitable

distribution. What is that suitable distribution?

We also know that the mean square regression and the mean square residual are independent and

we divide both of them by sigma square and we then have the mean square regression/sigma

square to form the chi-square distribution with the k degrees of freedom. So when we divide

MSR/sigma square it leads to a chi-square distribution with k degrees of freedom and when you

divide MSR/sigma square you have to divide MSE also by sigma square and you get another chi-

square distribution with n - p degrees of freedom and the ratio of the 2 chi-square distributions is

the F distribution.

(Refer Slide Time: 14:13)



So  the  regression  and  residual  mean  squares  are  independent  and  the  ratio  follows  an  F

distribution with k numerator and n - p denominator degrees of freedom. So you can see that we

have F0 here and that the sum of squares of regression/k and this is the sum of squares of the

residuals or the sum of square of the error/n - p. The k degrees of freedom are in the numerator

and n - p degrees of freedom are in the denominator.

What I am trying to say here is the k degrees of freedom are associated with the sum of squares

in the numerator and the n - p degrees of freedom are associated with the sum of squares of the

residuals which is in the denominator. So we have F0 = mean square regression by mean square

error. The sigma square actually cancels out. So we can simply take F0 as MSR/MSE.

(Refer Slide Time: 15:21)



We do the usual F test by now you should be familiar with the implementation of the F test. We

have also done some practice problems or example sets earlier. So I request you to go through

those problems and refresh your memory. So we also know that we reject the null hypothesis H0

if the test statistics computed above is > f alpha, k, n - p. Alpha is the significance level usually

taken as 0.05. So if it lies in the critical region or in the rejection region, then we reject the null

hypothesis.

(Refer Slide Time: 16:08)

So continuing with our discussion on the resolution of the total sum of squares, the total sum of

squares  is  given  by  sigma I  =  1  to  n  yi  -  y  bar  whole  squared  where  yi  is  the  actual  ith



experimental data recorded by the experimenter and y bar is the average of all the n experimental

observations.

(Refer Slide Time: 16:42)

So you have this relationship given here. This may be expanded and simplified the derivation is

fairly straight forward and you get sigma I = 1 to n yi square - sigma I = 1 to n yi whole square/n.

This indicates the sum of the square of all the responses and this is the sum of the observations is

squared. So please do not confuse this with this term. Here the individual observation is squared.

Similarly, all the other observations are also squared. Then the sum is taken.

Here, first the sum is taken and then it is squared. So this may be represented by y prime y.

Sigma I = 1 to n yi squared is nothing but y prime y. So you have the column vector of the

responses and a transpose is taken for the column vector and then it is multiplied with the actual

response column vector and when you do that you will  get the sum of the square of all the

observations and then you also have the sum of the observations squared/n. Here n is the total

number of responses. So this is the total sum of squares.

(Refer Slide Time: 18:42)



And as you can see we are gradually moving on to the representation of various sum of squares

using  matrix  notation.  The  matrix  method  is  quite  convenient  and  it  helps  us  to  do  the

calculations  which are otherwise tedious in a very efficient  manner. So we have the sum of

squares of the residuals as y prime y - beta hat prime x prime y. So the sum of squares of the

residuals may be written as y prime y - sigma = 1 to n yi whole square/n - beta hat prime x prime

y - sigma = 1 to n yi whole square/n.

What I am doing here is I am subtracting and adding this term sigma = 1 to n yi whole squared/n

and that leads to by definition the sum of squares of the total here and we also have this term as a

sum of squares of regression. We started off by saying that sum of squares total = sum of squares

regression + sum of squares residual. So we have the expression for the sum of squares of the

residuals.

And we also have the expression for the sum of squares total and so when we subtract the sum of

squares of the residuals from the total sum of squares, we get the regression sum of squares. So

this blue term here represents the sum of squares of regression. So when you have the linear

regression parameters estimated and you have the x matrix and you have the y column vector

you can get the regression sum of squares by considering a beta hat prime x prime y - sigma = 1

to n yi whole square/n.



Beta hat is nothing but the vector of the estimated regression parameters including the intercept

beta hat 0 and then x is the matrix x matrix so x prime would be the transpose of the x matrix.

We have already seen how to set up the x matrix in one of the earlier lectures and then y is the

vector of observations. So we have sum of squares of residual as sum of squares of total - sum of

squares of regression and we have the sum of squares of error given by his relation and then the

sum of squares of regression is given by this relation.

(Refer Slide Time: 21:40)

So, now coming back to the hypothesis tests on individual regression coefficients. So we have to

see whether a particular regression coefficient beta j is actually taking up a particular value beta

j0  or  it  is  not  taking  that  particular  value.  So  now we  are  concentrating  on  the  individual

regression coefficients and whether they take up a value or not. So you can put 0 here and say

that pretty much the regression coefficient is insignificant and does not affect the model or it

does not affect the response in fact and then the alternate hypothesis is the value is != 0.

But it may be < 0 or > 0. so to be more general in suffixing the value to be 0 all the time instead

of fixing beta j0 to be 0 all the time, we can fix it to some other value 100 for example, so it need

not  be  always  0.  You  can  also  hypothesize  on  a  particular  value  taken  by  the  regression

parameter.  Instead  of  looking  at  the  whole  bunch  of  regression  parameters  now  we  are

concentrating on a single regression parameter.



It may be a good idea for you to not proceed with the lecture as of now just pause a bit and then

think yourself how you will carry out the test for this particular case. We have already come

across this earlier and I would like you to think about it and then write down on a notebook you

must be carrying with you as to how you would proceed. So I hope you have at least made an

attempt and let us see how to do it.

(Refer Slide Time: 23:45)

So we have the tests on individual regression coefficients so the H0 is beta j = beta j0 and H1 is

beta j != beta j0 and then as you can see here we carry out a T test. So you must recollect the T

test now if you are unable to remember I request you to just go back and refresh your memory.

So T0 = beta j hat - beta j0/square root of sigma square Cjj that is beta j hat - beta j0 by standard

error of beta hat j. Now we know that the T test is associated with the certain degrees of freedom

and what degrees of freedom we should use in the T test.

Very interesting result is use the degrees of freedom which you had used for the residual sum of

squares in the T test also and you should also by now be familiar with what is meant by the

standard error of beta j hat and you should recollect that it is sigma squared Cjj where Cjj is the

diagonal jjth element of the variance, co-variance matrix and sigma square is the error variance.

Unfortunately, we do not know the error variance that true value of the error variance so what we

do is we use the standard error instead.

(Refer Slide Time: 25:45)



So as I said earlier just now Cjj is the diagonal element of the variance-covariance matrix and the

variance-covariance matrix is given by x prime x inverse corresponding to beta hat j.

(Refer Slide Time: 25:59)

Now let  us  see  a  regression  sum of  squares  due to  the  intersect  beta  hat  0.  This  is  a  very

interesting thing and in some places it may be skipped and that may lead to some loss of clarity

in understanding the concept of linear regression. In some ANOA tables you would find the sum

of squares corrected for beta hat 0 or in some tables of ANOA you will find uncorrected total

sum of squares.



So what is really the correction all about? So it depends on whether we consider the intercept or

not. So we know the total sum of squares is y prime y - sigma is = 1 to n yi whole square/n. The

actual total sum of squares based on the responses is y prime y. You simply square each response

in total it up and that gives you the actual total sum of squares. So your detecting some portion

from the actual total sum of squares that is you are detecting I = 1 to n sigma yi whole square/n.

So this is the correction you are doing to the total sum of squares.

(Refer Slide Time: 27:28)

The regression sum of squares does not include the intercept beta hat 0 contribution and has

contributions only from beta hat 1, beta hat 2, beta hat 3 so on to beta hat k. So that is the reason

why since you are having these 1 to k which is k independent regression parameters you have k

degrees of freedom.

(Refer Slide Time: 27:57)



So what actually happens is the contribution to the sum of squares due to beta hat 0 is sigma = 1

to n yi whole squared by n. So we are removing the contribution to the total sum of squares that

is y prime y with the subtraction by n y bar square. Sigma = 1 to n yi whole square/n is n y bar

square and what we are doing is we are subtracting from the total sum of squares n y bar square.

We call that as the contribution by the intercept parameter beta hat 0.

(Refer Slide Time: 28:55)

Why should it by n y bar square? So this is a very simple explanation to this it is quite nice

actually. So when you consider no other parameter except beta hat 0 in your regression model

then the regression parameter beta hat 0 would be simply the average of the experimental data



points. What does it mean? Suppose we are very lazy to fit a regression model considering the

variables. We say that y predicted = beta hat 0 only.

So  then  what  will  happen  is  if  you  carry  out  the  regression  analysis  we  will  find  that  the

estimated beta 0 parameter would be only y bar the average of all the responses. So when you

have scattered data then let us say that we are having only one regressor variable x1. So we are

having y1 as a function of x1 and when you plot the data on the graph sheet you will find that

you will have scattered data and when you are fitting only a simple mode then the model will be

nothing but y hat = y bar where y bar is the average of the responses and you will have one

horizontal line passing through the data points. Let me illustrate this on the board.

(Refer Slide Time: 30:49)

So what we have here is the experimental data we are plotting y as a function of x1 obviously

there is a effect of x1 on the response that is why you are finding that when x1 increases the data

also increases, but if we take up a regression model saying that y hat = beta 0. This is our very

simple regression model. Then all we are doing is fitting a straight line which is nothing but the

average of all the responses and so we get a horizontal or a straight line parallel to the x axis and

that straight line is nothing but the average value y bar.

(Refer Slide Time: 32:28)



So since beta hat 0 = y bar, the sum of squares contribution from beta hat 0 will be y bar square +

y bar square for n experimental data points and you will  get n y bar squared. So this is the

contribution to the sum of squares by the parameter beta hat 0. So if you want to correct your

sum of squares and the regression sum of squares with the contribution from beta hat 0 then you

subtract it with n y bar square and that is what we are doing.

Now let us go back to the resolution of the residual sum of squares and even before that we

looked at the resolution of the total sum of squares you can see that the sum of squares of total

we have subtracted the contribution by the parameter beta hat 0 and that is y prime y - n y bar

square. So the n y bar square represents the contribution from the intercept beta hat 0. So when

you are subtracting n y bar square from the total sum of squares you should also subtract n y bar

square on the other side of the equality so that you maintain the balance.

So we see that this is the total sum of squares and this is the regression sum of squares y prime y

is the actual total  sum of squares beta hat prime x prime y is the regression sum of squares

including all the regression coefficients and we are subtracting here n y bar square and then we

are also subtracting n y bar square so this is the total sum of squares corrected for beta hat 0 and

this is the regression sum of squares excluding the parameter beta hat 0.



So I hope now you have understood why we subtract  n y bar square from the total  sum of

squares and from the regression sum of squares. Then we looked at the contribution from beta

hat 0 and the regression sum of squares when it is subtracted by n y bar square does not include

the contribution from beta hat 0. So the number of degrees of freedom is reduced by 1 because

we are removing beta hat 0 from the list of P parameters so p - 1 will be = k.

(Refer Slide Time: 35:15)

Now let us look at the extra sum of squares method. This is a very interesting issue. What we

saw earlier was looking at individual regression coefficients so we can keep doing it for all the

regression variables or regression coefficients. We can start with the beta 1 hat then we can look

at beta 2 hat and so on to beta k hat. So that is the somewhat tedious process and sometimes you

may also have an existing model and when you report the existing model to your supervisor.

He may say that you have considered only a model with 2 variables why do not you consider or

build a model with 5 variables? So what I am trying to say is we can use the matrix linear algebra

concepts to do this pretty efficiently rather than do 1 variable or 1 regression variable at a time

which is a somewhat tedious process. We can first analyze the model with a certain bunch of

variables and that would be an existing model.

And then we can also see the impact of adding another bunch of variables to the already existing

model and we can then decide whether adding the additional bunch of variables also has any



impact or value addition to the regression model. So normally the simpler the model, the less

number of variables the model has. It is elegant and it is convenient to use and it is also efficient.

So  you  have  done  lot  of  work  and  then  reduced  complicated  process  by  describing  its

dependence with only a few selected variables and when you present this model to let us say to

the management, the people there may be a bit disappointed. 

We thought it is such a complicated process why do you have only few variables describing the

response. It looks like other parameters or other regressor variables also might influence the

experiment. So why do not you go back and check your model. So what we can do is instead of

adding 1 regressor variable by considering the effect of 1 regression coefficient at a time we can

take a whole bunch of regressor variables with their associated regression coefficients and use a

method called as extra sum of squares approach to see the impact on the process response.

So what we are doing is, we are going to conduct a hypothesis test to see whether the new bunch

of regression coefficients are indeed valuable and if the test says that none of the new added

regression coefficients are significant all of them may be pretty much taken to be 0 then you may

go  to  the  management  and  say  look  my  original  model  was  in  fact  adequate.  There  was

absolutely very negligible impact of considering the effect of additional variables.

So what we do here is something which may be a bit difficult for people who are not familiar

with linear algebra, but actually it is very simple. So let us look at the beta column vector which

is comprised of 2 sub vectors if you can call it like that beta1 and beta 2. So beta 2 is column

vector and beta 1 is also another column vector. When you put them one below another it leads to

the complete column vector beta. 

So beta 2 is a preexisting or model, which is already exists and beta 1 is the set of regression

coefficients which you want to add to an already existing model.

(Refer Slide Time: 40:07)



So let us say that beta 1 comprises of r regression coefficients and beta 2 is comprising of p - r

regression coefficients.  So we say that  H0 beta1 = 0 and H1 beta  1 != 0.  There is  a small

difference here from what we have done earlier. Earlier we were looking at scalars or just single

values beta 1, but now I am putting beta 1 in bold that means, it is a vector comprising of r

regression coefficients beta 1 hat, beta 2 hat so on to beta r hat.

So we are saying that  the entire  bunch of  entities  in  that  beta1  column vector  = 0 and the

alternate hypothesis says that beta1 != 0 and so you are having the new model represented by

beta1 and the already existing model by beta2.

(Refer Slide Time: 41:21)



So the regression coefficient  vector beta  is  split  into what was already present  in the model

equation beta 2 and what is currently being added to it which is beta1.

(Refer Slide Time: 41:36)

So we want to see what is the impact of adding the new terms in beta 1 vector to an already

existing model?

(Refer Slide Time: 41:44)

So what we do here is we first look at the full model so that is what we have to do first. We know

the sum of squares of regression including the parameter beta hat 0 as beta hat prime x prime y.

Let me sort of revise. When you include the intercept also we have beta hat prime x prime y, but



if you want to exclude the parameter intercept beta hat 0 then you have to subtract n y bar square,

but you are doing it here.

You are considering all the parameters including the intercept beta hat 0 that is why you have

sum of squares of regression as beta hat prime, x prime y and then you have the mean square

error as y prime y - beta hat prime x prime y and that you scale it by the n - p degrees of freedom

and also another thing you have to notice whether you consider beta hat 0 the mean square error

does not really care because the n y bar square you subtract it  from y prime y you are also

subtracting from beta hat prime x prime y so that the n y bar square actually cancels out.

So whether you consider ny bar square or not consider ny bar square it does not really matter to

mean square error because you are subtracting consistently n y bar square from y prime y and

also from beta hat prime x prime y so that thing actually cancels out and so this mean square

does  not  really  bother  about  it.  In  other  words,  it  does  not  really  care  whether  you  are

considering the model with the intercept of without the intercept.

So we have the mean square residual or the mean square error here and let me sort of make a

correction here to be consistent with what I had written earlier I will change this mean square

error to mean square residual since both of them have the same starting alphabet r we use MSE,

but we use mean square residual when we use the full form.

(Refer Slide Time: 44:33)



So, I would like to conclude by saying that the mean square residual does not really depend upon

whether you have considered the actual total sum of squares or the corrected sum of squares. Be

it total sum of squares or regression sum of squares. If you are considering the corrected sum of

squares the n y bar square will consistently cancel out here and here, but if you are using it well

and good. No problem we are considering the parameter beta hat 0 and the mean square residual

value will be unchanged.

(Refer Slide Time: 45:13)

So the sum of squares of regression beta hat 0 is a regression sum of squares due to beta hat not

corresponding to the full model including all the partial regression coefficients beta hat 0, beta

hat 1, so on to beta hat k. So as beta hat 0 is included, the term n y bar square is not subtracted.



(Refer Slide Time: 45:33)

So there are full model this is what we have being considering until now is now split into a

model already existing with a subset of the coefficients and a new model with additional set of

regression coefficients.

(Refer Slide Time: 45:49)

Let us look at the full model. This is the vector of responses. This is the x matrix. This is the beta

column vector which is the full set of regression coefficients and then you also have the error

column vector you might not probably for whatever reason you might not have considered beta 0

and beta 1. You might have started your model with beta 2, beta 3, so on to beta k only that is



your existing model, but then your boss would say what happened to the intercept what happened

to the variable 1. 

They also look important to me from an (()) (46:31) point of you why do not you include it. So

then new model would be adding beta 0 and beta 1.

(Refer Slide Time: 46:42)

So what we do is this is the full model. We split this into x1 beta1 + x2 beta2 + epsilon. Actually

this  is not simple algebraic  addition.  This is involving matrices.  This is the overall  response

vector y and then you have the x1 beta1 + x2 beta2, beta1 is the new model. It is a new vector

comprising of the new regression coefficients and beta2 is the column vector comprising of the

old regression coefficients and x1 is again a submatrix of x which are dealing with the regressor

variables corresponding to beta 1.

So x1 is the columns of x associated with the beta1 and x2 is the columns of x matrix associated

with beta 2. So just let us go back for example I told you that the new model was based on beta0

and beta1 based on the boss’s recommendation.  So then the x1 matrix will be the submatrix

obtained by taking the first  2 columns that is what  we are looking at.  The intercept  will  be

associated with just 1 and then the beta1 would be associated with x11, x21, so on to xn1.



For example, you will have beta 0 + beta1 x11 and then you will have beta 0 + beta 1 x21. So

you are considering the effect of the intercept and you are also considering the effect of the first

regressor  variable  x1.  So this  is  how we do it.  The  old  model  already  had these  regressor

variables starting from x2, x3, so on to xk. So x2 would be associated with beta2, x3 would be

associated to beta3 and xk would be associated with beta k.

(Refer Slide Time: 49:26)

So we have to consider hypothesis test to check if beta1 is really significant. The reduced model

if the null hypothesis is true becomes y = x2 beta2 + epsilon. Null hypothesis means that there is

no value addition on adding the elements in beta 1 so you are okay with this model y = x2 beta2

+ epsilon. So the coefficients of the reduced model can be found in the usual way by x2 prime,

x2 inverse, x2 prime y.

(Refer Slide Time: 50:05)



So we have the extra sum of squares method. This is the full model. This is the model split into

contributions from beta 1 and then beta2 or in fact it may come again. It is the contributions from

beta 2 and then from beta 1 and the sum of squares of regression due to beta2 hat alone is pretty

straight forward. It is beta hat2 prime x2 prime and so the sum of squares of regression due to

beta hat1 given beta2 hat already present in the model is the beta hat prime x prime y - beta hat2

prime x2 prime y.

In order to find the regression contribution by the new model we take the full model first the

regression sum of squares from the full model and then from that we subtract the regression sum

of squares from the already existing model so that the difference will give you the contribution to

the regression sum of squares from the new model.
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And the degrees of freedom for the original or the full regression sum of squares is p. It includes

all the parameters while the degrees of freedom for the sum of square of regression beta hat1

given beta hat2 is r, because if you recollect we split the beta column vector into 2 parts into 2

column vectors, the first column vector was of size r and the second column vector was of size p

- r. So the full model is having degrees of freedom of p and the new model is having degrees of

freedom of r.
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So the sum of squares of regression beta hat1 given beta hat2 is also termed as the extra sum of

squares due to beta hat 1. So what is the extra regression sum of squares brought in by the new

set of regression coefficients.
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So it is the increase in the regression sum of squares due to including the variables x1, x2, so on

to xr in the model and it is also independent of mean square error. So this concludes our lecture

on the hypothesis testing in linear regression. It is quite elegant and you can see that whatever we

did in our earlier phase or the first phase of the design of experiments namely the hypothesis

testing is also playing a very valuable role here. Thanks for your attention.


