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Welcome back to the course on statistics for experimentalists. Today, we will be talking about

regression analysis. So far we have been looking at design of experiments, factorial design,

fractional factorial design. Will take a small break from the design of experiments and look at

regression analysis. You will also find a lot of similarities between design of experiments and

regression analysis.

For example, the analysis of variance concept will also be extensively used. The t-test will

also be used in the regression analysis. Simply put regression analysis indicates development

of empirical correlations to the experimental data. We are not modeling from first principles.

We are trying to find the relationship between the factors that are influencing the experiment

and the response recorded from the experiments.

This has lot of significance, it is not giving the data to a spreadsheet or to a curve fitting

program and getting a high value of R squared. You all know what is R squared and we aim

for R squared values of 0.99 and we add as many terms as possible to remodel equation to

achieve this high R squared. The important thing is the models should be simple and it should

not be unwieldable.

So the more number of terms you have in  the model  equation even though it  may look

impressive on paper. It will be very difficult to apply and the predictive capabilities of the

model may also decline. It may work well for a given set of data but may not do so for other

set of data from some other source. So anyway with this brief introduction let us get started.

Rather  than  looking  at  simple  least  squares  method,  we  will  be  applying  linear  algebra

concepts to do multiple regression analysis.
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The  references  for  the  subject  are  Draper  and  Smith  Applied  Regression  Analysis,  third

edition, New Delhi, Wiley India and the book by Montgomery and Runger, Applied Statistics

and Probability for Engineers, fifth edition, New Delhi, Wiley.

(Refer Slide Time: 02:54)

And this is the prescribed text book for the course on statistics for experimentalists. You also

have the book written by Montgomery, Design and Analysis  of Experiments  and another

good book is written by Kutner, Nachtschiem, Netner, Applied Linear Regression Models,

fourth edition, New Delhi published by McGraw Hill.
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So now let us come to the multiple regression model,  so we will take simple model first

where Y is the response and the model parameters are beta 0, beta 1, beta 2, X1 and X2 are

the factors or the independent variables, epsilon is the error term. This is a very interesting

model. We say that the response Y is governed by a combination of 2 factors X1 and X2. The

important question is whether this error term is because of random effects alone.

We have started cautiously with a simple model and then the unaccounted extra effects are

ascribed to this error term. The error may be random or may be a combination of random

effects and also the unexplained portion from the model. If this model was inadequate, then

the error term will absorb the unaccounted part of the response. So in such situations, the

epsilon term here cannot be thought of random error.
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Now  we  are  talking  about  multiple  regression  models  and  why  is  it  called  multiple

regression. X1 and X2 are called as regressor variables and if there is more than one regressor

variable, we use the term multiple and the term linear is usually associated with these kind of

regression models because the parameters beta 0, beta 1, beta 2 are linear in nature.

And here if you want to make it nonlinear, you can develop a model Y=sin beta 1 X1 or

Y=beta 0+e power beta 1 X1. Then you cannot term the regression model as linear because

the parameters are nonlinear in nature.

(Refer Slide Time: 06:39)

Before we proceed further into the course, I would like to recommend something, please

refresh your concepts on linear algebra. You do not have to go very deep into the subject of

linear  algebra to understand what is  being covered in this  course. If  you are new to this

subject or you have done your maths long time back, there is nothing to worry.

You can take elementary book on linear algebra, look up the concepts of expressing numbers

or arrays in suitable  matrix forms, understand about the dimensions of the matrices,  how

many rows are there, how many columns are there and what is meant by inverse of a matrix.

You do not have to go into the detailed techniques of finding the inverse of the matrix. There

are different tools available, different software available to find the inverse of matrices.

We have to understand what is meant by inverse of a matrix and you should also know about

matrix addition,  matrix multiplication,  multiplying a square matrix with a column matrix.

When  you  can  multiply  a  square  matrix  with  the  column  matrix,  what  should  be  the



dimensions of these square matrix and column matrices so that the multiplication is possible.

So these are the basic concepts you should become familiar with.

I would imagine that it would take you maximum a couple of days to become familiar or

refresh these concepts. If you can do that then the matrix manipulations will become very

straight forward and we can carry out the regression analysis in a more efficient manner. So

coming back to the multiple regression model, there are more than one independent variables.

There are independent variables like X1, X2.

These are called as regressor variables and beta 1, beta 2 are called as regression coefficients.

Beta 0 is the intercept and beta 1 is called as the partial regression coefficient 1, beta 2 is

partial regression coefficient 2. The terminology is very important in statistics and statistical

analysis.

(Refer Slide Time: 09:38)

So it is important to define them upfront. Beta 1 and beta 2 are partial regression coefficients

1 and 2. The term partial is used because beta 1 refers to the expected change in the response

due to a change in X1 with X2 being kept constant. What is the expected change in Y when

X2 is kept constant and X1 is varied? Similarly, beta 2 is the expected change in the response

due to change in X2 with X1 being kept constant.
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This  is  a very famous diagram for linear  regression.  For simplicity, I  have just  shown 2

points. There are obviously more points but I am taking only a section of the diagram. If there

are only 2 experimental points, I have shown beta 0 and beta 1 with only 2 experimental data

or experimental observation so I could have fitted a straight line passing exactly  through

these 2 data points.

However, imagine that there are more data points and only a few of them are shown and my

objective in linear regression is to make a line pass through such experimental data points in a

way that it satisfies certain mathematical criteria. What are those mathematical criteria, I will

explain in more detail later but essentially speaking the concept of least squares applies here.

Let us see, this is the deviation between the experimental data point and the model prediction

line Similarly, this is the deviation between the model prediction line and the experimental

data point. So we are trying to balance the deviation between the data and the prediction. So

what we do is we find the deviation between the experimental  data point and the model

prediction.

So that deviation is squared. Now we square the deviations of all the experimental data points

from the model prediction and that sum of square of the deviations is minimized to find the

parameters  beta  0 and beta  1.  You might  have come across this  already in least  squares

method. We are just using the same concept. The only difference is we will be doing with

matrix manipulations.



So that large amounts of data can be handled efficiently. Let us assume that this line which is

given  here  is  the  true  line.  In  other  words,  let  us  say  that  it  accurately  represents  the

relationship between Y and X but the experimental data points are deviating from this true

line  and that  is  because  of random effects.  We talk  about  the error  term being normally

distributed and with constant variance.

So  the  experimental  data  points  are  lying  anywhere  around  the  true  line  here.  The

experimental data point can also lie here. It can lie anywhere as given by the spread around

the true line. So the mean of this distribution is beta 0+beta 1 X. This is also the expected

value of the response. Now the data is scattered around it because of random effects and the

variance of this probability distribution is given by sigma squared.

Now when you come to the next value of X okay, this would be XA and this would be XB.

This is the expected value of Y and this is where the actual data is lying that is because of

random fluctuations. Again you describe a normal distribution around this mean value and

you expect the actual experimental data to lie somewhere here. So what this really shows is

the probability of the experimental data point lying further and further away from the true

line becomes smaller okay.

We expect the experimental data points to lie closer to this straight line. This is the basic

concept. It is important that these distributions describing the scatter of the experimental data

around the true line is normal and these distributions have constant variance. Coming again

the distribution describing the scatter of the experimental data from the mean or true line is

normal.

And the distribution has a variance sigma squared and all the experimental data points are

also described by the normal distribution with mean beta 0+beta 1 X and variance sigma

squared. All these distributions have the same variance.
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So each response is assumed to belong to a normal distribution centered vertically  at  the

coordinate  given by the  regression  line.  The variance  of  all  the  normal  distributions  are

assumed to be identical. The variances of all the normal distributions are assumed to be the

same.

(Refer Slide Time: 17:15)

Now let us be a bit more ambitious instead of talking about one independent variable or two

independent  variables.  Let  us  talk  about  many  independent  variables  or  many  regressor

variables.  So  we  have  a  mathematical  model  explaining  the  relationship  between  the

experimental  response and the  independent  variables.  The unaccounted  portion  is  due  to

experimental error or random error.



We hope that this particular model whatever we are proposing is adequate to describe the

systematic dependency of Y with X1, X2, so on to Xk. So we have k regressor variables. Beta

0 is not associated with any regressor variable. The regressor variables are X1, X2 so on to

Xk. Each regressor variable is associated with the coefficient such as beta 1, beta 2 so on to

beta k.

Beta 0 is not associated with any regressor variables only beta 1, beta 2 so on to beta k are

associated with the k regressor variables and these parameters are called as partial regression

coefficients. What is a significance of beta 0? Beta 0 refers to the intercept okay. So let us

imagine that you have a model Y=beta 0+beta 1 X1+epsilon and the model predicted would

be Y hat=beta 0 hat+beta 1 hat X1 and beta 0 in that case would represent the intercept.

What is the response predicted when X1 goes to 0? Similarly, in a multi-regressor variable

sense, when X1, X2 so on to Xk go to 0, beta 0 would then be the predicted value of Y.

(Refer Slide Time: 19:50)

Please note that this is not a law, this is only an empirical model trying to or attempting to

explain the dependence of Y on the different variables X1, X2 so on to Xk. For real life

experiments, we may not know the actual functional relationship between the response and

the influential factors.

Sometimes the process maybe very complicated and the equations describing the process may

not be solved to give an analytical solution. In such cases rather than having a very difficult

mathematical model, we try to understand the process behavior through a simple empirical



model.  So  the  regression  equation  represents  an  approximate  relationship  between  the

response and the experimental factors over a narrow range.

When we do experiments,  we do the runs only over a certain range.  That  range may be

defined based on the limitations or okay that range may be based on certain constraints. You

may not be able to achieve a relative humidity greater than 100 and you may not have a

relative humidity less than 20% when you are doing the experiments. The temperature ranges

in  which  you carry  out  the  experiments  may also  be  between 20 degrees  to  70  degrees

centigrade.

So  these  are  defined  ranges  for  your  experimental  variables  and  when  you  use  the

experimental  observations,  to  develop  an  empirical  correlation  then  please  note  that  you

cannot extrapolate the correlation to higher values or lower values than what you considered.

This  is  very  important  because  when  you  change  the  range  of  your  experimental

observations, the model parameters may also change.

You are assuming a certain relationship and that relationship may change. In fact, when you

are trying to do calibration of instruments, you may find that the same calibration line may

not apply over the entire concentration range. When the concentration crosses a certain value

you may have to come up with the different calibration line. So the important thing to note is

what is the range of the variables being considered in the present phase of experimental work

and develop the correlation to account for the variations within this range.
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The  multiple  regression  model  involving  interaction  between  variables  may  also  be

represented  by Y=beta 0+beta 1 X1+beta  2 X2+beta  12 X1X2+epsilon.  In  the design of

experiments,  we saw that  the  interaction  effects  play  a  very  major  role  sometimes  even

dominating  over the main factors and here even interactions  can be accounted for in  the

regression model.

We simply put a regression coefficient beta 12 and then take the X1, X 2 variations into

consideration and if you choose to put beta 112*X1 squared X2. So the choice of the model is

yours okay. You can keep extending the model up to a certain point. You cannot extend the

model indefinitely. The simple reason for that is you have certain number of finite set of

observations.

And for solving any set of equations, you have to make sure that the number of variables is

<the  number  of  experimental  observations.  When  the  number  of  experimental  variables

is=number of experimental observations then you can get a perfect fit but usually when we

have n experimental observations, the number of parameters we estimate from the regression

model will be less.

So I will just explain this portion once again. As I was telling you, you can keep on adding

more  and  more  terms  to  this  model  but  you  cannot  do  so  beyond  a  certain  point.  The

important reason for that is you have to look at the number of experimental observations. If

the  number  of  model  parameters  is>the  number  of  experimental  observations,  then  you

cannot find them.

If the number of model parameters is=to the number of experimental observations, then you

will find an exact fit. Usually, the number of experimental data points is quite high, let us say

40 or 50 and the number of parameters you are estimating in the model may be 5 or 6. So the

number  of  model  parameters  you  are  estimating  should  be  smaller  than  the  number  of

experimental observations.

It can also not exceed the number of experimental observations. So within these constraints,

we can try the effect of adding more terms to the regression model.
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Just  because  you added X1 X2 or  X1 squared or  X1 squared X2,  it  does  not  make the

regression model nonlinear. As I said before, the regression coefficients are still  linear in

nature. Here please note that X1, X2 are not unknowns. The unknowns in this equation are

beta 0, beta 1, beta 2, beta 12. So these are the unknown terms and they are all linear in nature

okay.

So this one X1, X2 X1 X2 can go even up to higher orders but as long as we have simple beta

0, beta 1, beta 2, beta 12, the estimation is still termed as linear regression procedure.

(Refer Slide Time: 28:00)

If you are confused by the notation beta 12, you can simply define X3 as X1 X2 and call beta

12 as beta 3 so that is what I have done here. Y=beta 0+beta 1 X1+beta 2 X2+beta 3 X3+the



error term. The error term as I said earlier may only be random error or it may also be the

unaccounted part of the responses.
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When  you  give  the  model  to  the  software,  we  can  get  a  3-dimensional  graph  for  this

particular case once the regression model has estimated, we can get a response surface and

that response surface need not be planar especially if this X1, X2 term is significant,  the

response surface may be a curve. It may even have peak if you have terms like X1 squared or

X2 squared, there may be a maxima but it does not mean that the linear regression concepts

are being violated.

The model parameters  are still  linear and the estimation procedure is  called as the linear

regression technique.
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So this is a more complicated model. Here the quadratic terms are being added in addition to

the interaction term. You simply call them as X3, X4, X5 and use the same procedure to find

the parameters or estimate the parameters.  What is that procedure? I will come to it in a

moment.

(Refer Slide Time: 30:21)

Now we are going into the matrix approach. A matrix is a 2-dimensional representation of

numbers. Rather data are presented in an array form and this array comprises of both rows

and columns. So what you need to do is in this array you have to define 2 indices i, j, i refers

to the row index and j refers to the column index. So if I say Xij I am talking about a number

which is present in the ith row and the jth column of the matrix.



Also you can have Xijk then it becomes a 3-dimensional matrix but we are not going to look

at such matrices in our analysis. We will be only looking at 2 indices. If you have X23 for

example, it refers to the number which is present in the second row and third column of the

matrix. Please note that X23 need not always be equal to X32 only in certain special matrices

X23 may be equal to X32 otherwise the numbers may be unique.

Anyway  that  is  the  brief  background  on  matrices.  I  am  sure  you  will  find  lot  more

information in standard text books as I said earlier please do not go too deep into the subject,

you  just  learn  what  is  required  for  our  present  analysis.  So  we  are  having  k  regressor

variables.  What  are  the  k  regressor  variables?  X1,  X2,  so  on  to  Xk  and  you  have  n

observations.

So you can represent this as Xi1, Xi2, Xi3 so on to Xik and Yi. This may look a bit confusing.

Let us look at only Yi first. Yi with i running from 1 to n represents the n observations of the

experiment  and Xi1,  Xi2,  Xi3  so  on  to  Xik  are  required  because  for  each  experimental

setting, you need one equation. So Xi1 represents factor 1 or variable 1 for the ith run.

If you have X31 then it means the value taken by the first independent variable for the third

experimental  run,  X31  is  the  value  taken  by the  first  independent  variable  for  the  third

experimental run.. Xi2 or X32 in our example is the value taken second independent variable

for the third run. So we have Xij written with i running from 1 to n and j representing the k

regressor variables.

So the model for the ith run or the ith experiment may be written as beta 0. This is only an

intercept.  So  we  do  not  have  any  additional  subscript  here.  This  is  universal  to  all  the

experimental  runs.  Beta  1,  beta  2,  beta  k  are  also  universal  to  all  the  runs.  We are  not

estimating  beta  1,  beta  2  so  on  to  beta  k  the  regression  parameters  for  each  and  every

experimental run.

We are having a group of experimental  data for the entire  group, we are finding out the

parameters beta 1, beta 2 so on to beta k but the experimental conditions will vary for n

experiments, you may have n different combinations of experimental conditions and that is

given  by  Xi1,  Xi2,  so  on  to  Xik.  You  have  only  independent  variables  or  the  factors

influencing the experiment running from 1, 2 so on to k.



But these independent variables may take different values for different experimental settings

and that experimental settings is given by the index i and that will run from 1, 2 so on to n

and also please note that the number of experimental observations is usually>k the number of

regressor variables. So now we can represent it in a matrix notation as Y=X beta+the error

term.
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So you have Y which is Y1, Y2, so on to Yn. This is a column vector, it is called a vector

because it has only one column and it is having n entities so you can call it as a n-dimensional

vector and so you have 1, 2, so on to n. These represent the different observations from your

experiment. You have done n such experiments. Then you also have X which is the main

matrix here.

This is not a square matrix, the first column in the matrix is always 1. Why do you need 1? In

order to account for multiplication with beta 0. Beta 0 you please remember is not associated

with  any  regressor  variable.  It  is  the  constant  term  in  the  model  equation  without  any

regressor variable attached to it. It is the intercept for you to interpret it physically and so we

have 1 here.

And then you have X11, X12, X13 so on to X1k. What is X11? X11 is the value taken by the

first regressor variable or the first independent variable for the first experiment. X12 is the

value taken by the second independent variable for the first experiment. X13 is the value

taken by the third independent variable or the third regressor variable for the first experiment,



so on to X1 k is the value taken by the kth independent variable or the kth regressor variable

for the first experimental condition.

Now it is not necessary that all the values here should be different. In some cases, it may so

happen that 2 independent variables are kept constant and the other 2 variables are varied or

changed. So that is fine but there are some precautions you have to take that I will tell a bit

later but what I am trying to say here is for a given experimental condition it is not absolutely

essential that all these values taken by the different regressor variables or the independent

variables should be different.

So how many such rows you will have? The number of rows you will have will correspond to

the number of experiments run. So the last row will be Xn, j where j runs from 1 to k. Now

beta is again a column vector and it is running from beta 0, beta 1 so on to beta k. You may

think  look  the  earlier  defined  Y  the  response  vector,  which  was  having  n  entities  n

dimensional vector but here is it not expected that k it should be n here not k.

We know that k is the number of regressor variables in addition to beta 0 but in order to make

the matrix representation consistent, you should not k be=n. The simple answer is it is not

strictly necessary you can have k<n. How the matrices align themselves such that there is no

inconsistency. We will see very shortly and then you also have the error terms epsilon 1,

epsilon 2 so on to epsilon n.

So far the error terms is doggedly or persistently accompanying the regression equation.
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Now  Y is  a  n/1  vector  of  the  observations,  n  is  the  n  rows,  normally  when  you  are

representing matrix  dimensions,  you give the row number first and then 1 is the column

index. So you have Y1, Y2, so on to Yn and X I explained all the terms in the previous slide.

What is the dimension of X matrix? You have n rows and then you have k+1 columns. So you

have k regressor variables.

So you have k columns here and then +1, so we call p=k+1. So k+1 is p, so X is a matrix with

n rows and p columns where p is k+1. X is a n/p matrix of the levels of the independent

variables. Beta is a p cross 1 vector of the regression coefficients and epsilon is a n/1 vector

of the random errors.
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Now you have Y=X beta+epsilon. We want to estimate the parameters beta 0, beta 1, beta 2

so on to beta k. So when you are talking about estimated parameters or predicted parameters

to distinguish it from the true parameters given by the beta column vector, we put a hat to it

to show that this is the predicted value. This beta corresponds to a column vector of beta’s,

which are the true values.

But we do not know the true value from experiments. We can only estimate the values of the

parameters from experiments and to show that these are parameters estimated we put the hat

symbol. So beta 0 hat, beta 1 hat so on to beta k hat.
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Once you have these parameters estimated then you put forth a prediction equation and that is

given by Y hat. Y hat=beta 0 hat+beta 1 hat X1+beta 2 hat X2+so on to beta k hat Xk. So

now the error term has vanished okay. We are unable to account for the error term by this

equation. This equation only gives the systematic variation of Y hat due to change in the

controlled factors X1, X2, so on to Xk.

It does not explain the unaccounted or random phenomena. So that is why you have also in

the predictive equation you are putting it as a Y hat and then you do not have the error term.
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Now you have to  find  the  least  squares  estimator  but  before we go to  the least  squares

estimator  for  the system of  equations,  I  just  want  to  take  another  look at  the  system of

equations. So please look at these equations here.
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Y=X beta+epsilon this is n/1 and X was n/p, beta was p/1 and epsilon was n/1. When you do

matrix manipulations, you get n/1 and p and p cancels, you get n/1 and you also have n/1.

What  I  am  trying  to  say  here  is,  the  dimensions  of  this  column  vector  should  be=the

dimensions of the resulting matrix or vector here. This is not a column vector, it is an array

comprising of n rows and p columns.

Beta is also a column vector of p rows and one column. So when I multiply n/p with p/1, the

p cancels out and I get n/1. So the given equation is consistent and even though beta which



was having terms like beta 0, beta 1 so on to beta k, k need not be=n. Can k be<n? Yes. Can k

be=n? Yes. This is a bit dizzy, we can say k=n-1 yes because you are also having beta 0 and

k>n definitely no.
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So this is what you have to keep in mind because you have n observations or n experimental

runs,  you have k+1=p parameters  and you have n equations.  The equations  are  Y1=beta

0+beta 11 X1+beta 12 X2+so on to beta 1k Xk+epsilon 1. You have the second equation beta

0+beta 21 X1+beta 22 X2+so on to+beta 2k Xk+epsilon 2 so on to you have the nth data beta

0+beta n1 X1+beta n2 X2+beta nk so this represents the n equations.

So you know that when you have n equations you can solve the n equations with n unknowns

maximum okay. So that is what you have here, n unknowns maximum you can solve okay.

Okay we will continue.
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Let us now come to the least squares estimators of beta. We will discuss this in the next class.


