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Okay continuing with our example involving 3 factors in that 2 power 3 factorial design.

(Refer Slide Time: 00:20)

First we will calculate the error sum of squares. We have to calculate the total sum of squares

first and then we subtract from the total sum of squares the sum of squares of all the effects.

So the total sum of squares is 30.018 with the grand mean equals 3.5. i= 1 to a the index I

running from the levels of a. Here we are having only 2 levels and j= 1 to b is representing

the 2 levels for b and k equals 1 to c will represent the levels of c obviously a= b= c= 2.

And n represents the number of repeats. So that is given by the index l, l running from 1 to n.

So  you have  Yijkl  i  for  factor  a  index  j  for  factor  b  index  k  for  factor  c  index  and  n

corresponding to the repeat index. This is the overall  mean and when we carry out these

computations we get 30.018 and this represents the total sum of squares.

(Refer Slide Time: 01:40)



And the  sum of  squares  due to the  effects  would be 29.890 from a b ab interaction,  ac

interaction bc interaction how did we calculate  the effects  sum of squares we have these

formulae  which I  have shown you earlier. So using these formulae we can calculate  the

respective sum of squares for the different effects and with this we get the error sum of square

which is rather small when you subtract 29.89 from 30.018 we get 0.128.

(Refer Slide Time: 02:26)

And for carrying out the analysis of variance we first of all calculate the critical  F value

which is f 0.05 where 0.05 represents alpha which is the level of significance 1 numerator

degree of freedom because each effect has 1 degree of freedom and 16 represents the degrees

of freedom in the denominator. It also represents the degrees of freedom for the error and the

degrees of freedom for the error would be abc *n-1. ABC would be 2*2*2 which is 8. N-1

would be 3-1 which is 2 so 8*2 would be 16.



So that is why you have 16 degrees of freedom in the denominator.

(Refer Slide Time: 03:18)

And hence we can divide the ANOVA table into source of variation degrees of freedom sum

of squares, mean squares f 0 as before and you can see that the degree of freedom are the

same for all the effects and the interactions. Error I just told you as 16 degrees of freedom.

The sum of squares due to A would be 14.727 B is 1.233 C is 10.881 error is 0.128 and the

mean square is obtained by dividing the sum of squares by the degrees of freedom.

Here it is quite simple 14.727/1 is the same value 1.233 divided by 1 is 1.233 10.881/1 is

10.881 again, but here it is 0.128/16 which comes to value of 0.008. And this total is 26.969

and once you have the mean square you can divide by the mean square error to get the f

values the f values are pretty large at 1841 154 and 1360. The f values I repeat are obtained

by dividing the mean square of that particular effect or the interaction with the mean square

error.

So we have the numerator degrees of freedom corresponding to degrees of freedom for the

source  of  variation  which  we  are  considering  and  the  denominator  degrees  of  freedom

corresponding to the degrees of freedom for the error. And similarly you can do for the binary

interactions and the ternary interaction and we get these values. And interestingly the critical

f value if you recollect was 4.49 these values considerably exceed this 4.49 and hence they lie

in the rejection region.



The critical f value was 4.49 the actual f value is much higher than the critical f value. So

these lie in the rejection region and hence these indicate that ABC are important factors and

hence the null hypothesis which says that those factors are insignificant should be rejected. 

(Refer Slide Time: 05:54)

Similarly,  you  have  AB  interaction  to  be  quite  significant  it  is  much  higher  than  4.49.

However interesting BC interaction is negligible because it is lying in the acceptance region.

The f value is lying in the acceptance region the critical value was 4.49, but this f value is

only 3.34 and hence you can reject the other null hypothesis, but for this case BC you accept

the null hypothesis but the fact that BC or the interaction between factor b and c is negligible.

Now when you look at the ABC interaction again the f 0 value is 0.12 which is considerably

is lower than 4.49 and hence we also accept the null hypothesis that the ABC interaction is

not having any affect on the process. So this completes an ANOVA table, but we can also find

the P values. P values are very useful. It tells us that by what margin the effect was considered

to be significant or it was constructed to be insignificant.

What  I  really  mean  here  is  did  effect  A for  example  or  factor  A for  example  became

significant narrowly it just quick through or it was a very dominating factor. If the P value is

very small, then that particular factor or that particular interaction is strongly significant. It is

lying well  in the rejection region if  the p value is let  say 10 power -3 10 power -4 that

indicates that the f statistics was lying firmly in the rejection region and you can reject the

null hypothesis comfortably.



But if the p values is 0.049 and or 0.0501 it is a marginal case it is hovering between rejection

and acceptance. So it tells us the P values are a better indicator of how much we are able to

reject the null hypothesis or accept the null hypothesis. Usually p values of 0.049 or 0.0501

are unusual. The P values are usually the order of 10 power -3 10 power -4 for cases where

you reject the null hypothesis or you get rather high p values like 0.46 or 0.35 or even 0.10

when you accept the null hypothesis.

But  the p values  here are  very useful.  It  tells  us  whether  the effects  were rejected  by a

comfortable margin or they narrowly got rejected.

(Refer Slide Time: 09:00)

So instead of finding out F alpha effect degree of freedom and error degree freedom you find

fp effect degree of freedom and error degree of freedom with the associated mean square

error ratio you find the probability associated with that ratio. So mean square effect by mean

square error gives you the value and you find the probability associated with that particular

value.

So this is inverse of what we did earlier we just had the f value computed the critical value

and compared the actual f value with the critical value and then said whether we accepted or

rejected, but here we are given the f value and then you are also given the degrees of freedom

you have to find the probability associated with that f value and this probability we compare

it with 0.05.

If it is much lower than 0.05 we reject the null hypothesis if the computed p value is>0.05 we



accept the null hypothesis.

(Refer Slide Time: 10:21)

So when you look at these p values corresponding to ABC you find these values are pretty

small  and so you can comfortably reject  the null  hypothesis  saying that these effects  are

useless. So you have to say with lot of confidence that ABC effects are significant.

(Refer Slide Time: 10:48)

But when you look at BC the P value is 0.086 which is>0.5 and hence BC is a insignificant

interaction in the process whereas ABC is having a p value of 0.734 which is quite huge and

hence  you  can  accept  the  null  hypothesis  that  ABC  effect  is  insignificant.  The  same

conclusion we saw earlier also. We did not consider BC and ABC to be significant.

(Refer Slide Time: 11:28)



Let us go back to that particular table. BC 3.34 was smaller than 4.49 ABC is 0.12 was again

smaller  than  4.49  and hence  we consider  BC and  ABC to  be  insignificant.  Insignificant

factors will have high P values and significant factors or significant interactions will have

very low P values please remember this.

(Refer Slide Time: 11:58)

From the analysis it may be concluded that temperature stirrer speed and RPM influence the

extraction. All the binary interaction except those between stirrer speed and particle diameter

are significant. A ternary interaction between temperature stirrer speed and particle diameter

is  not significant.  So we have the data most important  analysis  after  the experiments are

carried out and the model has been developed is to analyze the residuals.

We have seen the analysis of variance table from which we can detect the important effects.



Another way to detect the important effects which I have not indicated so far is the use of the

normal probability plots. The different factors and their interactions are plotted in the normal

probability plot and we can find out which of the effects are significant.

(Refer Slide Time: 13:07)

So in this plot we can see that ABC and BC are lying close to the solid line whereas cac bab

and a are lying quite further apart. This means that the effects corresponding to factor cac bab

and a are significant whereas BC and ABC are insignificant.

(Refer Slide Time: 13:47)

The next important concept in design of experiments is to analyze the residuals. The residuals

are defined as the difference between the actual experimental value and the prediction from

the model. So you can see that eijkl this is the residual corresponding to a single point. It is a

different between 2 values. The first value is the response corresponding to the ith setting of



factor a jth setting of factor b and kth setting for factor c because now we are looking at 3

factors and l corresponds to one of the repeats corresponding to the setting of ij and k.

And this is the predicted value and the difference between the 2 would be defined as the

residual. Now ideally we would like the residual to be 0, but in a real world there will always

be  random error  component.  We want  to  see  whether  the  difference  between  the  actual

experimental  data  and  the  model  predicted  values  corresponds  to  random behavior.  The

difference is the residual and we want to see how random the behavior of the residual is. 

Similarly, we calculate the residuals for all other experimental data points.

(Refer Slide Time: 15:47)

So we may say residual has the left over effect after all the modeled main effects and their

interaction have been accounted for. So the experimentalist wants to see whether the model

he has developed is adequate or additional terms are necessary. So we will be looking at lack

of its concept in regression where more would be said about the adequacy of the proposed

model.

(Refer Slide Time: 16:18)



So what do we do with the residuals? We want to see whether the residual are normally

distributed  whether  the  residuals  are  independent  and  whether  the  residuals  are  having

constant variance. We know that the basic assumption in the model development in the linear

model development was the error terms where independent and identically distributed in a

normal distribution with 0 mean and constant variance sigma square.

By looking at the residuals trend or they plan out we can check these assumptions whether

the residuals are normally distributed whether they have constant variance whether they are

independent from one another.

(Refer Slide Time: 17:17)

So the residuals may be plotted in a normal plot that is one option. The residuals may also be

plotted  in  the  time  order  the  sequence  in  which  the  experiments  were  carried  out.  The



residuals may be plotted against predicted values and residuals may be plotted against each of

the factor levels to see the spread of the residuals at each factor level.

(Refer Slide Time: 17:45)

So if the residuals are normally distributed they will fall on the straight line on the normal

probability plot. So as far as this experiment is concerned where we considered the 3 factorial

design involving the yield of the medicinal compound. We see that the residuals are behaving

reasonably  well  they are falling n a  straight  line  more or less.  We do not  see any gross

deviation of the residuals from the straight line.

(Refer Slide Time: 18:28)

The next check would be to inspect the pattern formation of the residuals. The residuals are

ideally speaking impartial quantities. They do not really depend upon the sequence of the

experimentation; they do not depend upon the fitted value depending on the experimental



setting. So when you look at the spread or pattern of the residuals you should really see no

distinct trend if the residuals are plotted against the fitted value.

And they show up a definite trend then something is amiss or something is not correct. If the

residuals when plotted against the fitted value show a funnel kind of pattern. So they are

spread over a smaller distance at low value of the fitted value and if the residual spread out

when the fitted value increases. Then something is not correct.

(Refer Slide Time: 19:53)

So this indicates that the residuals increase with the fitted value and the error variance is not

constant that means it is not homogenous and residuals are more broadly scattered when the

fitted value increases. For example, when the instrument error is proportional to the reading

measured then the residuals are going to increase with the increasing value of the fitted value.

(Refer Slide Time: 20:26)



Sometimes  the  residuals  may  not  be  normally  distributed  and  they  come  from  skewed

distributions. In such cases you may have to go in for a stabilizing transformation for the

variance and you may instead of using y directly may want to consider log Y or root Y. So the

residual analysis is subject (()) (20:50) and a fascinating one at that and because of lack of

time we cannot go or dwell deeper into this subject.

On the other hand, there are some excellent books on residual analysis one is the book by

draper and smith and the next one is the one by Montgomery they have been cited in the

references.

(Refer Slide Time: 21:20)

So when you look at the residuals as against the fitted value you can see that they are pretty

much scattered uniformly. You do not see any kind of funneling arrangement. For example,



you do not get a kind of diverging residuals.

(Refer Slide Time: 21:40)

The  next  check  is  to  see  whether  the  residuals  are  independent  of  one  another.  So  the

residuals are plotted against run order and we have to see whether there is a systematic trend

of positive residuals and negative residuals.  What I am trying to say here is whether  the

residuals are over a certain time period increasing continuously and over the another time

period  they  are  decreasing  continuously.  This  also  means  that  the  randomization  is  not

properly done.

(Refer Slide Time: 22:25)

And the experimental response was affected by other unaccounted factors. For example, if the

temperature was not controlled properly or there was a sudden shoot up in the temperature

then the sequence of residuals may show a continuously increasing trend or there may be



some other unaccounted factor. So over a sequence of experimental runs the residual values

may be continuously declining/

So this shows that the randomization was not proper and there were unaccounted factors

which affected the experiment in a certain systematic manner.

(Refer Slide Time: 23:14)

When you look at this particular plot you can see that you do not find any sort of residual

showing a continuously declining a trend over a significantly long time interval or along the

order of observations you can see that it is declining here, but then it is increasing. And here

also it is increasing decreasing. So you do not really get 4 or 5 consecutive positive values or

4 or 5 consecutive negative values.

So you do not see a systematic trend of sequences of positive or negative values as given

here.

(Refer Slide Time: 24:07)



And another important thing is the errors are having constant variance sigma square. So are

the residual  showing more or less the same variances  about  the mean in this  case 0 the

residuals are plotted for different setting of the given factor.

(Refer Slide Time: 24:24)

And if the spreads are not unusually different even though some inequalities may exist then

we may say that the assumptions of constant variance is not bad.

(Refer Slide Time: 24:39)



So here we have plotted the residuals as function of the 2 different settings of the temperature

in the coded format and you can see that the spread is reasonably uniform around the origin.

So the variance does not really change drastically from one setting to another setting.

(Refer Slide Time: 25:04)

You have another case. Well you can say that this variance is smaller than this variance, but in

real data we cannot exactly get a uniform spread and so on.

(Refer Slide Time: 25:20)



So unless there is a gross deviation we can assume the residuals are behaving in a reasonable

fashion. For example, if the residuals was clumped over a very narrow region here and the

residuals are occurring over a broad region here then the assumption of constant variance

may not be true, but here the spread is comparable. I would not say exactly identical, but it is

comparable and hence we can live with the assumption of constant variance.

(Refer Slide Time: 25:56)

Another important thing is the presence of outliers. Outliers are unusual data points they may

be taught of by the experiment  as a rogue data point or rebellious data points something

which is not following the general trend. It is lying way out of the general trend. The reasons

for outliers may be pretty simple measurement error or a calibration error of the instrument.

Some careless mistake okay or these settings were not noted properly.



Usually the experimenter gets into a routine and he does not make these kind of elementary

mistakes even though they are possible and if you find any outliers it is very important that

you do not brushed them under the carpet, but pay closer attention to the reasons for the

occurrence of such outlier or outlying data. They may tell you something different something

unusual is going on which is not accounted for in your approach to the experimentation.

For example, if there is a condition at which the data point shows an unusually high yield

obviously that is going to be profitable to the company if it is true and the experimenter may

like to inspect the data point more closely.

(Refer Slide Time: 27:36)

Okay now coming to example 3 the problem statements goes like this. Green house gas is

removed in a  packed absorber. The variable  studied are gas flow rate,  solvent  flow rate,

solvent type and packing type. The experiments are repeated and the results are shown in the

table below. Looking at the background for this example we know that carbon dioxide is a

green house gas and its  emissions are very harmful  to the environment  leading to global

warming and so on.

So one way to reduce the emission is to observe the carbon dioxide in using a certain solvent.

The solvent may be monoethanolamin or diethanolamine and the equipment in which the

gases are removed by absorbing or putting it (()) (28:29) dissolving them in the liquid solvent

is called as the absorber and if you put packing in them it become a packed bed absorber and

we want to make the process quite effective.



And we want to see what variables are significant. So the variable studied are the gas flow

rate, the solvent flow rate, solvent type and packing type. The experiments are repeated in the

results are given below.

(Refer Slide Time: 29:14)

Thus company apparently running these test  wants to keep the details  confidential  so the

levels are expressed in the coded format.

(Refer Slide Time: 29:25)

Since there are 4 variables you have 2 power 4 that is 16 runs and if you want to do at least 2

repeats per setting that would mean 16*2 32 runs. Pilot scale studies are quite expensive and

hence the management may feel those 32 runs are quite a lot in terms of investments time

manpower and so on. So it may even consider telling to you what would happen if you do a

fraction of those runs and see what results we get and then we decide to move on from there. 



Factorial  designs of experiments are so structured that it  is indeed possible to construct a

fraction design and implemented.

(Refer Slide Time: 30:17)

So the main thing is how will it go about carrying out these test and how major results be

interpreted and reported.

(Refer Slide Time: 30:28)

So a full set comprises of 16 experiments so we can start with one-half fraction of the full 2

power 4 design and we have 2 half fraction since there are totally 16 experiments one half

fraction would involve 8 runs which would corresponds to a 2 power 3 design, but you may

ask wait a minute you are having 4 variables you are having a 2 power 3 design by making a

2 power 3 design I will be able to handle only 3 variables.



What about the fourth variable it does not seem to be there. So the answer to the question is

even the 2 power 3 design we are considering all the 4 variables. The only thing is we are not

doing the full set of possible experiments as envisaged in the 2 power 4 design. We are only

having a 2 power 3 design and we are investigating all the 4 variables with the truncated

design.

So this means that while we are gaining on the effort in experimentation we are losing out on

some information whether the losing out of the information is serious or not the results will

tell us. So we are losing on information in trying to save on experimental effort.

(Refer Slide Time: 31:56)

So how do you go about doing the design. You are having 4 factors we are considering all the

4 factors so now let us look at the highest possible interaction among the 4 factors. It is very

simple it is ABCD. Now when you look at the design matrix of an experimental design you

will find that it has a set of columns each column containing some pluses and some minuses

the number of pluses would equal to the number of minuses and so in a 2 power 4 full design

you will have 8 pluses and 8 minuses in every column.

The column may be ABCD ABAC BCBD and so on. So it will have 8 pluses and 8 minuses.

So look at the column corresponding to ABCD all the pluses will constitute one set all the

minuses will constitute another set. Please consider the experimental settings corresponding

to the plusses that will be the first fraction.

(Refer Slide Time: 33:10)



So the table of contrast  comprises of 8+1s and 8-1s.  We use the set  of 8+1s and ABCD

column to define the first fraction and the remaining set of 8-1s in the ABCD column into the

second fraction. So all the pluses will be corresponding to one fraction all the minuses will be

corresponding to the next fraction.

(Refer Slide Time: 33:32)

So we defined a design generator I=ABCD and use this to set up the two fractions. First we

define a design generator I=ABCD and use this for setting up the 2 fractions.

(Refer Slide Time: 33:56)



So you can see that the design matrix is set up you see some of them are blue and some of

them are red what is the reasons for this it is quite simple.

(Refer Slide Time: 34:10)

We take the ABCD column whatever is 1 we label it as color coded as blue and whatever is -1

we color  code  as  -1.  The  experimental  data  were  coded into  +1 and -1  for  the  sake  of

convenience. Now I am color coding the +1 with blue and the – 1 with red. So we collect all

the +1s and you can see that the experimental  settings are also color coded according to

whether ABCD is 1 or -1.

So this one represents a case where all the factors are at their low level ABCD are at their

lower level. A is the setting corresponding to A at a higher level b is setting corresponding to

B at a higher level. In such cases all other factors would be at their low levels. If you have AB



then a and b are their high levels and all other remaining factors c and b would be at the low

levels.

Anyone this we have already seen I am just bringing it to your attention.

(Refer Slide Time: 35:27)

In case you have a doubt you just go back and then see these table things will become clear. It

is +1 here and b a is -1 but b is +1. So that is quite simple, but we do not look at these. We

look at abcd and we look at the color codes and we collect all the 1s together then we collect

all the –1s for the second fraction and once we do that we will get the 2 fractions.

(Refer Slide Time: 36:02)

And we can now look at the design generator I=ABCD to find the aliases. You can see that

A=BCD here B= ACD C= ABD and D=ABC. So main factors are aliased with only 3 factor



interactions.  So  even  though  the  A and BCD are  coming  together  BCD interactions  are

usually negligible. So the full effect of A is felt in even in the partial factorial design that is

because the higher order interactions like third order interactions are usually not important

that is very good.

But sometimes in addition to the main factors the interactions are also quite significant or

quite important, but unfortunately in this design the 2 factor interactions are aliased with one

another as you can see here AB is aliased with CD AC is aliased with BD and AD is aliased

with BC. That means when the information is presented we are unable to uniquely determine

the interaction due to AB and interaction due to CD both of them are felt together.

Similarly, AC and BD are felt together and AD and BC are also felt together, but whether that

cause  a  serious  issues  depends  upon  the  responses  and  depends  upon  the  particular

experiment we are considering and let us look at the results and see what really happened.

(Refer Slide Time: 38:04)

So the first fraction you have 1 ad, ab, ac, ad okay you can go in the sequence ab, ac, ad bc bd

and then cd abcd so that is what you have as the first fraction and if you look at it is 1 ab, ac,

ad, bc, bd cd and abcd so we are having the first fraction. Since we have done 2 repeats you

have the same settings repeated twice and you have the experimental observations presented

up to 2 decimals under the column percentage extraction.

(Refer Slide Time: 39:00)



So I have given you the design table once again for the purpose of calculating the effects. The

effect of factor A is decided by just go to A so it is -1+ab+ac –bc+ad –bd-cd+abcd. So we are

using the contrast in exactly the same way we did for the full factorial design.

(Refer Slide Time: 39:51)

However, even though you are doing under A it is also having the aliasing with the BCD. So

will BCD have the same entries in its column when compared to the (()) (40:06) A. The

answer is yes because A is aliased with BCD you cannot really distinguish between A and

BCD because their column entries are identical. So let us verify this.

(Refer Slide Time: 40:29)



If you look at this bcd it also has -1+ab+ac-bc. So let me write it down so that there is no

ambiguity.

(Refer Slide Time: 40:45)

So we are looking at BCD-1 +ab+ ac- bc+ ad-bd- cd+ abcd. And earlier for A also it was

-1+ab let  me write it down so -1 +ab +ac-bc +ad-bd-cd+ abcd. So when you look at the

entries for A and also BCD they are identical and when you are calculating the effect of A you

are also finding the effect of BCD in addition. So the same idea will also apply for factor B

which is aliased with ACD and for factor C which is aliased with ABD and factor d which is

aliased with ABC.

If you want, you may take any main factor and its ternary alias and see whether the column

entries are matching. It is a good idea to do this to verify so that we have set up the design



matrix correctly. Similarly, the 2 factor interactions are also aliased with the one another so

you can easily find that for example AB would have the same column entries like with the

CD and BC would have the same column entries as AD.

(Refer Slide Time: 43:27)

So when you are finding the effect of A even though you write the linear contrast for A as lA

it is actually having both effects of A and BCD in it and you have +4 entries and -4 entries so

you divide it by ¼ for averaging purposes.

(Refer Slide Time: 43:56)

So as I showed on the board the effect of factor BCD is identical to the (()) (44:01) factor A.

Since there are 4 positive and 4 negative entries we take the average with respect to 4. That

means we divide by 4 and you are also having 2 repeats so we effectively divide the contrast

by 8 4 for the averaging and n for the number of repeats.  So using this  formula we can



calculate numerically the effect of A and we find that A value is 5.25. So the entries are given

here

(Refer Slide Time: 44:44)

So this is -1 and that value is 19.22+17.52 it is – of 1. So 1 value is 19.92 and 17.52 so -1

would  correspond  to  –of  19.22  and  -of  17.52.  Similarly,  you  can  find  the  values

corresponding to the other settings. Please note that we are doing repeats and so for each

setting there will be 2 values or 2 responses. So effect of B is effectively given by 6.56 that

includes both B as well as ACD.

So let me make that correction. So again you have -1 so again you have –of 19.22+17.52 and

then +ab 38.28 and 39.59 let us just check it just once. AB 38.28 and 39.59. So we are on the

correct track so that others can also be written down in the similar fashion and we calculate

the effect of B as 52.48/8 is 6.56.

(Refer Slide Time: 46:50)



Similarly, you can find the other effects. So take care to divide the linear contrast by 8 to

account for both the averaging and also for the repeating.

(Refer Slide Time: 47:05)

The next  important  step is  to  calculate  the  sum of  squares.  Once you have  the  contrast

calculating the sum of squares is also a piece of cake. And the sum of squares is given by 1/n

* 2 power k * contrasts squared and let us see how to calculate the sum of squares.

(Refer Slide Time: 47:37)



The effect was given by contrast/n * 2 power k-1. Here k=3 because we are only looking at a

2 power 3 design. One half fraction of a 2 power 4 design so we put k=3. So 3-1 is 2 2 power

2 is 4 2 repeats 4*2 8 and that is what we did when we divided the effects. We divided the

contrast by 8. So that is an order and hence we can calculate the contrast as effect* n power 2

power k-1 or effect*8 will give you the contrast.

Once you get the contrast you can square the contrast and divide by a suitable number to get

the sum of squares.

(Refer Slide Time: 48:35)

So contrast is 8 times the effect for contrast A you first find the effect of factor A and effect of

A and then multiply  by 8 and then you get  back 42.  This  42 corresponded 42 you had

calculated earlier when finding the effect of A..



(Refer Slide Time: 49:01)

And once you have the contrast then you divide it by n*2 power k. So contrast square is 8

times the effect and that becomes 64 times the effect square/n*2 power k or 2*2 power 3. So

you get 64 effect squares by 16 or 4 effect squares. Sum of squares of A is 1/16*42 square ns

=2 2*8 is 16. Contrast we just now saw for A as 42 so you get 42 squared/16 which is 110.25.

Likewise, we can find the contrast for B based on the effect of b and then square the contrast

divided by 16 n*2 power k and get the value for B.

Similarly, you can get  for  C, D, AB, AC and AD. So using all  this  information  we can

construct the ANOVA table.
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The error sum of squares for doing so first we have to calculate the total sum of squares and



the total sum of squares is given by this huge relationship yijkl-y bar triple dot. So we are

finding the total sum of squares now we are subtracting each experimental data observation

with the grand total not the grand total  the grand average adds up all the numbers in the

matrix  divided by the  total  number of  entries  will  get  the  grand average  and that  grand

average is subtracted from each and every individual observation and that will give you the

difference which is squared.

And when combined or added completely gives you the total sum of squares. To make sure

that  you  have  understood  this  correctly  please  do  the  calculation  on  your  own  and  see

whether  you  get  the  correct  number  because  more  than  the  correct  calculation  it  is  the

understanding  of  the  procedure  which  is  more  important.  You  have  to  implement  the

procedure in the correct manner.

We have found that the sum of squares due to the various effects by using the contrast square

and dividing it by the n*2 power k I seem to forget it all the times. So that is 16 in our case.

So we calculated the sum of squares for all these effects and once that is done.
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You also have the total sum of squares with you the sum of squares from all the effects are

calculated and so you can find out the error sum of squares. So total sum of squares= sum of

squares of effects+ error sum of squares which comes to 583.2067= 580.2674 which is sum

of squares of all the effects + sum of square of error. The sum of square of error comes to

only 2.9397.



The next step would be to construct the mean squares and find the f values and see whether

the f values are lying in the rejection region or not based on the critical f value. So we will

continue with this example in the next lecture. Please revise the portions discussed in this

slide, discussed in this lecture rather and make sure that you have understood the important

concepts.

Make  sure  that  you  have  understood  how  to  form  the  different  fractions  because  the

understanding here will help you when you are actually carrying out the experiments please

pay particular attention to the calculations of the errors how to account for errors in your

experimental data and analysis. The residual analysis is also very important. We will continue

with this example in the coming lecture. Thank you.


