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Hello again.  We will  be going to the  next  lecture  today. We will  be discussing on Discrete

Probability Distributions.

(Refer Slide Time: 00:26)

The reference books for this topic are presented here; Montgomery and Runger’s book, Applied

Statistics and Probability for Engineers, 5th Edition, Wiley-India, 2011. Then, you have the book

by Ogunnaike, Random Phenomena by CRC Press.
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In the  previous  lecture,  we saw about  random variables,  okay. When we conduct  a  random

experiment,  we are unsure about  its  outcome.  So, the different  possible  values  are called as

random variables and they make take some specific real values, okay. The possible values of

random numbers may be discrete entities or they may be continuous range of numbers.

What I mean by continuous range of numbers is, it may be falling between lower value and

upper value, okay or a lower limit and an upper limit if you want it like that but in between these

2  limits,  okay, it  can  take  any possible  value.  As  an  example,  if  the  random variable  mole

fraction is considered from an experiment, okay a distillation experiment for example. The mole

fraction can take values only between 0 and 1, okay, both included.

But in between 0 and 1, it can take any value 0.12, 0.123, 0.1234 whatever. It depends upon the

accuracy of your measurement device, okay. Of course, the calculator can give any value of the

mole fraction running up to 7 or eight digits, okay. So, the mole fraction is a continuous random

variable here. But when you throw a die, okay, you will find that the die a can take only discrete

values. 

For example, one or 2 or 3 up to 6, okay. In this case, the random values or the random number

values are discrete, okay.

(Refer Slide Time: 03:16)



So, we are going to talk about a very interesting function, the probability mass function f of x

assigns a probability  value to each of the discrete  values of X. If  you recollect,  the random

variable function has converted the original sample space into real numbers and these numbers

are assigned probability values. This we covered in one of the previous lectures, okay.

(Refer Slide Time: 04:14)

So, the random variable may take discrete values x1, x2, … so on to xn, okay. So, we now define

a probability mass function and denote it as f of xi, okay and the role of the probability mass

function is to assign a probability value to each of possible values xi, okay.

(Refer Slide Time: 04:51)



So, please note the definition again, probability of X=Xi, that means what is the probability that

the random variable X takes the value small xi and that is given by the probability mass function

f of xi, okay. When you write down the statements pertaining to statistical calculations, you have

to make sure that the terminology use is correct,  okay. The notation you use is correct.  You

cannot write f of xi, okay. You do not have Xi. You have only small xi.

You have X and small  xi  but you do not have XI, okay because once a random variable  is

assigned a value, it becomes small x of i and as we stated earlier f of xi should be >=0 for all the

possible values of xi. It means that the probability values are all positive.
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Now, the other important thing to observe about the probability mass function f of xi is the sigma

I=1 to n, f of xi should be = 1. It means that the sum of all the probabilities is = 1. You have

different your entities, each entity is having a probability value and the probability values of

assigned by the probability mass function in such a way that when you add the total probabilities,

they should be = 1, okay.

The probability value assigned to each of the xi may be same or they may be different, okay. For

example, the probability of number coming up, let us say, 1. When you throw a fair die is 1/6.

Similarly, the probability of number 2 coming is also 1/6. So, you have 6 numbers and all of

them share the same probability of 1/6, okay. On the other hand, there may be other examples

where you may have a discrete number of possible outcomes but all of them need not have the

same probability value, okay. 

They may be having different  fractional  probability  values,  but when you add them up they

should become = 1, that is very important.

(Refer Slide Time: 08:07)

Mu=E of X, okay, that is the mathematical notation. Here, mu means the mean of the probability

distribution,  okay. E  of  X  means  the  expected  value  of  the  random variable  X,  okay. The

expected value of the random variable X is defined as mu=sigma i equals 1 to n xi f of xi, okay.

The mean is also referred as the average okay.



When you take any cricketer okay and he has gone and performed in a test match series or even

when he is coming out to bat after the previous wicket had fallen okay, the first thing which is

shown on TV is the number of matches he has played, the number of runs he has scored and then

the average, okay. The average is a measure of his overall performance, okay. If a batsman has

scored an average of 50, then he is supposed to be very good but it does not mean that he will

score 50 in the current innings. He may score 100 or he may score a duck, okay.

(Refer Slide Time: 09:45)

So, the mean refers to the centre of the probability distribution, okay. Imagine you have a long

scale and on the scale you have markings corresponding to the possible values of the random

variables, okay and each of these values will have a probability assigned to it, okay. Let us say

that you have numbers 1, 2 and 3 and each of these numbers 1, 2 and 3 will have a probability

value  assigned to  it,  okay. Number 1 may have a  probability  of 0.2,  number 2 may have a

probability of 0.3 and number 3 may have a probability of 0.5, okay.

So, you put coins on the scale or you put weights on these numbers and you put the weights in

such a way that it is proportional to the probability value, okay. So, if you put coins for number

2, you put more coins for number 3 and you put even more coins for number 5. The number of

coins or weights you put for these values will be in proportion, okay. Then you put the scale on a

knife edge and see where are the knife edge will balance, okay and the knife edge will balance at



the mean value.

(Refer Slide Time: 11:28)

Now, let us come to the variance. We know from our earlier discussion because of the variability

in the data you had to find the average. The batsman was not scoring 50 in all the innings, okay.

He was scoring 0 in one, 100 in the next, 30 in the third, 70 in the 4th. So, when you take an

average  over  a  long period  of  time,  you get  the average  of  50.  So,  the performance  of  the

batsmen is variable, okay and that is why you had to find the mean or average value.

Now, the variability is quantified in terms of another parameter called as variance. We refer to it

as variance of the random variable X and that is defined as the expected value of the deviation of

the random variable from the mean square, okay. So, what you do is you first find the deviation

of the random variables from the mean mu and then square it. This is called as deviation square

and  the  expected  value  of  this  deviation  square  or  the  expected  value  of  the  square  of  the

deviation = sigma square, okay.

So, now by using the definition for expectation, we write V of X=sigma i=1 to n xi-mu whole

square f of xi, okay. Please do not forget to put f of xi, okay. You may recollect that the sum of all

the deviations from the mean will be = 0. When you square the deviations from the mean you

take the sum, they will not be = 0, okay and each of such square deviations, okay, should be

multiplied by the corresponding f of xi. 



When you expand this sigma=1, you get xi square f of xi-mu square. This derivation is quite

simple and you may want to try it out yourself.

(Refer Slide Time: 13:50)

The variance is a useful measure as it indicates the spread of the probability distribution, okay.

Even if there are 2 distributions having the same mean or average, it does not imply that they

should have the same variances. You may have the same average but you may have different

variances. For example, in one class the average may be 15 and in another class the average may

be 50, okay. But in the first class the lowest mark may have been 20 and the highest mark may

have been 100, okay.

So, average is still 50 when you add up all the marks and divide by the total number. The second-

class, the lowest mark may have been 40 and the highest mark may have been 60 and the average

would have been 50, okay. There is a lot more variation in the first class in the marks when

compared to the marks in the second class, even though both of them had the same average. By

definition, the square root of the variance is the standard deviation. Variance is denoted by sigma

square and so standard deviation is denoted by sigma.

(Refer Slide Time: 15:21)



As I  said  earlier,  we  should  look  at  the  notation  or  terminology  use  whenever  we use  the

language of  statistics,  okay. The grammar  has  to  be correct.  So,  let  us  look at  some of  the

notation issues in the usage of the probability mass function f of xi, okay. So, can we denote the

probability mass function as f of X instead of f of xi, okay. You cannot put X in the argument of

the probability distribution function or the probability mass function, okay. It should be f of xi.

So, writing the probability mass distribution as f of X=X+3/25 makes no sense, okay. 

(Refer Slide Time: 16:23)

 If the possible random samples space values are 0, 1, 2, 3 and 4, then to find the probability of

the occurrence of one of these values xi, we use the notation f of xi and not f of Xi, okay. The

following form which I have shown here is correct. F of random variable x taking a value xi is



given by f of xi and that is = xi+3/25, okay. This is correct notation.

(Refer Slide Time: 17:05)

The function f of xi becomes alive and takes a value only when the random experiment has been

performed and X random variable can take a particular value xi, okay. Before throwing the dice

or before throwing a die, the random variable was x. Once you have thrown the die, perhaps

when playing a game of Ludo or Snake and Ladders, you know what is the value shown by the

die and then that value is xi, okay. Then, you can find what is the probability of this number xi

equals one or 2 occurring and you can estimate that value. 

Sometimes, you may not even know the probability beforehand, okay. In the case of a die, you

know that all numbers are equally probable and so you can beforehand itself say that probably of

number 1 occurring is = 1/6. But there are many random experiments whose outcome is not

known for sure and you also cannot predict what that top probability of that outcome is going to

be, okay. So, you have to conduct the random experiment, obtain the value of xi and then find

out the value of f of xi, the probability value, okay.

Generally, we can represent the probability density function. Sorry it is not probably density

function. Probability density function is used for continuous distributions. Now, we are dealing

one with discrete distribution. So, the probability function or the probability mass function f of x

is given by x+3/25, small x is used throughout. This function is evaluated at each possible value



of xi, okay.

(Refer Slide Time: 19:13) 

So, we saw about the mean. When we write the definition for mean mu, we write it as expected

value of X, okay. Expected value of the discrete random variable X. Mu=E of X but it is != Xi f

of Xi where the Xi are capital Xi, this is wrong. When we actually go about calculating the

expected value, then we use xi and f of xi and the argument in f of xi is also xi. So, do not use Xi

in  f  of  xi.  Use  xi*f  of  xi  in  finding  the  value  of  mean.  So,  this  is  important  notation  or

terminology.

(Refer Slide Time: 20:12)

Similarly, when you are defining the variance of the random variable X, it has expected value of



E of X-mu whole square=sigma square but this should not be written as sigma=1 X-mu whole

square f of x, okay. You should not use X here but you should rather use xi.

(Refer Slide Time: 20:36)

We will take a simple example, okay. So, let there be a lot of N balls of which b are blue in

colour and the remaining are red, okay. I am sure that this kind of problems or variance of this

problem you would have seen several times in the past. So, let us define the random variable as

the number of blue balls that have been picked. Random experiment is performed by taking 2

picks from the lot, okay. 

You take one ball, note the colour, put it back, take the next ball, note the colour and then put it

back, okay. So, this is called as picking and replacing.

(Refer Slide Time: 21:28)



Let p denote the probability of picking up a blue ball and q the probability of picking up the red

ball, okay. The questioner is you have to define the original sample space, the random variable

space, the probability mass function and verify whether its properties are satisfied.

(Refer Slide Time: 21:53)

To summarize, p is the probability of picking up blue ball and q is the probability of picking the

red ball.

(Refer Slide Time: 22:08)



So, we have to find the original sample space, random variable space, probability mass function

and see whether the properties are satisfied.

(Refer Slide Time: 22:16)

The original sample space is given by bb, br, rb, rr, okay. So, the first event is both of them are

blue balls. The next event may be blue ball and red ball  or red ball  and blue ball.  It is also

possible that you pick up 2 red balls, okay. Since, the random variable X was defined as picking

up the number of blue balls, okay. So, the random variable X is denoting the number of blue

balls which have been picked from the random experiment, you have the possibility of 0 blue

ball or one blue ball, okay, either of these 2 or 2 blue balls, okay.



So, these are the possible outcomes expressed in the form of random variables which take the

values of 0, 1 and 2, okay. The possible outcomes are no blue ball, one blue ball or 2 blue balls.

So, the original sample space which was having 4 entities was reduced to only 3 entities in the

random variable space.

(Refer Slide Time: 23:45)

So, the probability of the random variable taking 0, okay, that means no blue balls have been

picked. Then both the balls which have been picked are red in colour, okay and the probability of

that happening is q square. Similarly, f of X=1, the probability is the first ball picked was blue,

the second ball picked was red. So, the probability would be pq or the first ball picked was red

and the second ball picked was blue, so the probability would be qp, pq+qp will be 2pq.

The probability of picking up 2 blue both balls = p square, f of x=p square, okay. Now, you can

verify whether the sum of the probability is = 1. So, you add up q square+2pq+p square which is

nothing but p+q whole square, okay.

(Refer Slide Time: 25:00)



So,  sigma  f  of  xi  should  be  =  1.  So,  you  get  when  you  add  up  all  the  probabilities  q

square+2pq+p square which is nothing but q+p whole square. Since, the probability of picking

up a blue ball is 1-probability of picking up the red ball, okay or the probability of picking up a

red ball is 1-probability of picking up a blue ball. We have q=1-p. You put q=1-p here, you get

1. So, you are having the sum of the probabilities totalling or adding up to 1, okay.

Obviously, the probability values are fractional. You have eight balls in a box, 3 of them are blue

and 5 of them are red,  then the probability  of picking up a blue ball  would be 3/8 and the

probability of picking up a red ball would be 5/8, okay. So, you can see that q=1-p. 
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Next,  we  come  to  another  interesting  and  important  function,  the  cumulative  distribution

function F of x and that is given by F of x=probability of x<=x, okay. What is the probability that

the random variable takes any value which is <= x, okay? So, that is the cumulative distribution

function and that is written as sigma x1<=x up to n f of xi, okay. So, you are summing over all

the values of xi until you either go below x or reach x.

(Refer Slide Time: 27:13)

There is  an interesting  distinction between the probability  mass function and the cumulative

distribution function, okay. In the probability mass function, you can only apply the function to

the possible values of the random variable x, okay. So you can only apply the probability mass

function to the xi values. If for example you have another value yi which is not equal to any of

the possible xi, f of yi=0, okay. But when you do the cumulative distribution function, this x

value need not be xi all the time.

It may even be a value between 2 permitted xi values. For example, if the permitted xi values are

values of 0, 1, 2, 3, 4 and 5. You can even find the cumulative distribution function probability of

random variable x<=3.5, so that is permitted and that value need not be = 0, okay. So, you are

adding up the probabilities  as  we saw in the  mathematical  equation.  This  is  the  cumulative

distribution function. Cumulative means adding or totaling, okay.

So, that is why you add up the probabilities up to the value of x, okay. That x may be equal to



allowed value of xi or it may be != xi, okay.

(Refer Slide Time: 29:26)

The cumulative distribution function ranges between 0 to 1, okay. Even though you are adding,

you are adding the probabilities and the maximum value would be = 1 because some of the

probabilities is = 1 and if x<=y, F of x<=F of y. So, you can either write it as F of x or F of xi,

okay but you cannot right F of X. Whenever you are doing the cumulative distribution function

calculations, there is a possibility of committing mistake, okay.

(Refer Slide Time: 30:10)

So, let us see. The probability mass function is given to you and you have to find the cumulative

distribution function, okay. The statement may be similar but slightly different, small differences



can be noticed. In one case, you have to find probability of b<=x<=e. In the second case, it is

probability of b<x<e. In third case, probability of b<=x<e. In the 4th case, it is probability of b<x

<= e, okay.

So, you may think that all of these would result in the same value, okay but that is not going to

be the case as I will demonstrate with an example.

(Refer Slide Time: 31:11)

Can we write probability of b<=x<=e as F of e-F of b. No, it cannot be written in this fashion.

(Refer Slide Time: 31:30)

Let us take an example, okay. So, you are having a cumulative distribution function F of x and



these are the possible outcomes a, b, c, d, e, f. These are the possible values taken by the random

variable and these denote xi values. The probability of a occurring is 0.1, b occurring is 0.2, c

occurring is 0.3, d is 0.2, e is 0.1 and f is 0.1, okay. These are the probability values, okay and the

length of this line corresponds to the probability.

This line is twice as long as this line because the probability is 2 times higher, okay. Now, let us

see the probability of the random variable x taking a value <=e and >=b. So, this is what you

want to find out, okay. You want to find the probability that the random variable will take any

value between b and e both b and e included. So, the probability of the random variable taking

the value b is 0.2, c is 0.3, d is 0.2, e is 0.1, you add up 0.1+0.2=0.3, 0.3+0.3=0.6 and then

0.6+0.2=0.8, so that is the value you get, okay.

That  may  be  written  as  probability  of  x<=e-probability  of  x<b,  probability  of  x<=e  is  0.9,

0.1+0.2=0.3, 0.3+0.3=0.6, 0.6+0.2=0.8, 0.8+0.1=0.9 that is why you get 0.9 here and then you

get probability of x <b. Less than b is only a and the probability is only 0.1, it is point 0.9-0.1.

The second case is probability of b<=x<e, okay and that is = 0.7. 

Here  b  is  included  but  e  is  not  included,  okay.  So,  it  should  be  <  e.  So,  we  count  0.2

corresponding to probability of occurrence for b. So, 0.2+0.3=0.5, 0.5+0.2=0.7, okay. We are

excluding e because it is probability of x< e-probability of x<b, okay. Probability of x<e is 0.8,

0.1+0.2=0.3, 0.3+0.3=0.6, 0.6+0.2=0.8 - probability of x<b, okay.

Probability  of x<b as we saw in the previous case is  0.1.  So,  you get  0.8-0.1 which is  0.7.

Similarly, you can easily show that probability of b<x<=e is 0.6 and probability of b<x<e=0.5,

okay. So, coming back to our original problem statement, what is the probability of b<=x<=e that

was != F of e - F of b, but it is probability of x<=e-probably of x<b, okay and that was 0.9-0.1

which was = 0.8, okay.

So, do not try out some formulae based on intuition,  okay in these kind of situations,  okay.

Rather  than using these formulae,  I  would rather  advise you to construct  the distribution  of

probabilities and then do the calculations. Anyway the mathematical formulae are here but from



my point of view, these formulae need not be memorised but they can be easily implemented,

okay, by just using the diagram.

(Refer Slide Time: 36:34)

Now, we are going to look at something known as moment, okay. In physics, you might have

seen the term moment come into use rather frequently, okay, force*distance, okay.  So, here also

we have ordinary moments and central moments. So, I will just give the definitions here. So, the

expected value of E of X is given by i=1 to n xi f of xi.

This is called as the first ordinary moment. In general, expected value of G of X=sigma i=1 to n

G of xi*f of xi, okay. Here, you have random variable x, so you put xi here. Here you have G of

X and so you put G of xi here. The function defined by the random variable is implemented on xi

inside the submission, okay.

(Refer Slide Time: 37:53)



So, if we define G of X as X to the power of k, then the expectation of G of X is called as the kth

ordinary moment of the random variable X. So, the kth ordinary moment is represented by m of

k is equal to expected value of X of k. The first ordinary moment is represented by m1 which is

equal to mean and that is equal to expected value of X because k is 1, so you have expected

value of X and that is = mu. 

(Refer Slide Time: 38:30)

So far, we have been defining the function G of X as X power k, but we can also define the

random variable X as a deviation from a where a is constant value, okay. Earlier, we had by

default used a as 0 but it need not be the case always. So, we want to put a as constant value and

we are going to find the kth moment, okay. Remember k should be an integer value. So, G of



X=X-a to the power of k. The expectation of G of X in such a case is called as the kth moment of

the random variable X about a, okay.

The kth moment of the random variable X about a. The moments about the mean are defined as

mu of K = expected value of X - mu to the power of k. So, k can be 0, k can be 1, 2, and so on.

Remember k should be an integer, okay. So, here we are finding the moment about the mean,

okay. The mean is the centre point of the distribution. So, it is X-mu, expected value of X-mu to

the power of k is called as mu k and these are referred to as the moments about the mean for

different values of k.

(Refer Slide Time: 40:23)

It is also termed as the kth central moment of the random variable X. Since, we are taking the

moment about the mean, we refer to it as the kth central moment of the random variable X. So,

when you put k=0, mu 0 is E of X-mu to the power of 0, expected value of 1 is 1. Mu 1 where

we put k=1. So, expected value of E of X-mu to the power of 1 is expected value of X-mu=mu-

mu=0, okay. So, this is the expected value of X-mu, okay that we call as mu1 which happens to

be 0. So, mu0 is 1 and mu1 is 0, okay.

(Refer Slide Time: 41:24)



The second central moment is termed as the variance. The central moment is taken with respect

to the mean, so k=2. The expected value of X-mu whole square=sigma square. This definition we

had seen previously but now this is called as the second central moment or the second moment

about the mean. The square root of thee variance is called as the standard deviation.

(Refer Slide Time: 42:00)

So, E of X-mu whole square or mu2 may be written as m2-mu square, second ordinary moment -

mu square, okay. 

(Refer Slide Time: 42:22)



So,  you have  found the mean,  variance  and the standard deviation,  so you have  to  scale  it

properly, okay. So, you want to see what percentage of the mean or what fraction of the mean is

the standard deviation and so you write the coefficient of variation Cv as sigma/mu. It provides a

dimensionless measure of the relative amount of variability exhibited by the random variable,

okay.

If sigma is very high, sigma is 100, okay, you may think that there is a lot of variation,  the

standard deviation is pretty high but you have to find it with respect to the mean value. If the

mean is in the order of 200 and the standard deviation is 100, 100/200 is pretty high, okay. But if

the mean value mu is in the order of 100/10,000 okay which is 1/100 and that would be 0.01

which is pretty low, okay. So, you have to compare the standard deviation with respect to the

mean value.
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The third central moment or the moment about the mean mu is defined as skewness, okay and

that  is  given  by  mu3=expected  value  of  X-mu  whole  cube,  okay.  The  significance  of  the

skewness is it illustrates or indicates the asymmetry of the distribution, okay. You can understand

that when there are several values of X, they may be distributed about a mean value, okay and

they may not be distributed uniformly with respect to the mean value, so you may have negative

deviations and the positive deviations. 

The relative difference between the negative and positive deviations with respect to the mean is

given by the third central moment. 
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So, the third central moment skewness is a measure of the deviation from the symmetry, okay.

The dimensionless quantity mu3/sigma cube is known as the coefficient of skewness. 

(Refer Slide Time: 45:18)

If the distribution is perfectly symmetric, both the skewness and coefficient of skewness both

vanish. When the distributions are such that the negative deviations are more than the positive

deviations  from the  mean,  the  distribution  is  said  to  be  skewed  to  the  left,  okay. There  is

dominance of negative deviations when compared to the positive deviations, so the distribution is

said to be skewed to the left and both mu3 and gamma 3 take negative values.

(Refer Slide Time: 45:57)

The 4th central moment is called as the Kurtosis and that is defined as mu4=expected value of X-



mu to the power of 4, okay. It is the measure of the flatness or the sharpness of the probability

distribution, okay. The ratio of the Kurtosis to the 4th power of standard deviation is termed as

the coefficient of Kurtosis, okay. A distribution with high value of Kurtosis has a sharp peak. On

the other hand, a distribution with low value of Kurtosis is flat or rounded.

When the gamma 4 value is < 3, the distribution is said to be mildly peaked or platykurtic, okay.

When gamma 4>3, the distribution is said to be sharply peaked or leptokurtic. These terms you

may encounter in standard texts or even in research papers showing distributions and explaining

their characteristic features. You may often come across these terms platykurtic and leptokurtic.

So, depending upon whether  the peaks  are  sharp or the distribution is  flat  and rounded, the

appropriate terminology is used.

(Refer Slide Time: 47:25)

The next topic in our discussion is median for discrete probability distributions. The median xm

for a discrete probability distribution is the point within the range of the allowed values of the

random  variable  X  such  that  the  cumulative  distribution  value  at  xm  is  exactly  0.5.  In

mathematical form, sigma i=1 to m f of xi=the cumulative distribution value at xm=0.5. F of xi is

the probability mass function.

The xm value here is such that the probability of X < xm = probability of random variable X>xm

are  both  =  0.5.  This  concludes  our  brief  discussion  on  the  discrete  probability  distribution



functions.  We will  be now moving on to  continuous probability  distributions.  They are also

called as the probability density functions.


