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Chi-square distribution

Welcome back we were looking at the T distribution now we will be looking at the Chi-square

distribution. Why should we learn this interesting probability distribution function? We were so

far  talking  about  the  population  mean  parameter  mu  equally  important  was  the  population

parameter  sigma namely  the  standard  deviation.  Since  sigma is  also not  known we have  to

estimate it.

And we use the  sample  variance  to  provide  the  estimate  for  the  population  variance  sigma

squared.  So,  just  as  the  population  parameter  mu  we  can  talk  about  the  estimation  of  the

parameter sigma squared. We can also construct the 95% confidence interval for sigma squared

based on the sample variance s squared or using the information contained in the random sample.

We can construct 95% confidence interval.

How we can do it? well need the distribution of the sample variances be normal will it follow the

T distribution these are the 2 distributions we have seen so far. The answer is a simple no the

distribution of the sample variances does not follow the T distribution does not usually follow the

normal distribution it follows the Chi-square distribution. So, we will be looking at the properties

of the Chi-square distribution.

Some of the properties are very interesting we will see them shortly.
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So, the Chi-square distribution finds application in hypothesis testing and confidence interval

construction for the standard deviation.

(Refer Slide Time: 02:30)

We may require to report confidence intervals on the population variance sigma squared. The

fundamental assumption the make is the population is normally distributed. This is not a very

serious assumption as many populations  do in fact tend towards the normal distribution and

hence small deviations from this normality is not serious.
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So, we are doing all this analysis based on a single sample of size n drawn from the population.

So,  we have x1 x2 so on to  xn be  the members  of  a  random sample  taken from a normal

distribution of mean mu and variance sigma squared. We can calculate the sample variance S

squared  once  the  sample  is  drawn.  So,  until  the  sample  is  actually  drawn the  sample  is  an

abstract entity we have a statistic S squared defined based on x1 x2 so on to xn.

These  things  we have  covered  in  the  previous  classes.  Now we have to  define  a  particular

random variable called the Chi-squared random variable. We have seen several random variables

before then we also saw a standard normal variable for the random sample mean x bar. It was

defined us x bar-mu/sigma/root n when the population standard deviation was not known, and

the sample size was small then we resorted to the T random variable.

T was defined as x bar-mu/s bar/root n. Now we are talking about another population parameter

namely sigma or sigma squared okay. We know that the sample variance s squared is an unbiased

estimator  of  the  population  variance  sigma squared.  Now we are  using  the  random sample

variance to describe the population variance sigma squared. So, far we have been talking about

the population parameter mu which was the represented by the sample mean x bar.

The sample mean x bar was also an unbiased estimator of the population mean mu s squared the

sample variance is also an unbiased estimator of the population variance sigma squared. Now



when you take many samples all these samples may have different sample variances the first

sample may have a sample variance of 100 the second one may may have a value of 120 the

third one may have 90 and so on.

So, which of these is a true representation of the actual unknown population variance sigma

squared. Since all of them may be thought of as true representations because the sample variance

is an unbiased estimator of the population variance sigma squared. However, we can ask which

of  these  is  lying  closer  to  the  actual  population  variance  for  which  we  have  to  follow the

confidence interval concepts.

But before we go into all of them we now understand that there may be several sample variances,

and these will follow a certain probability distribution. Okay the sample variance s squared is

itself  a  random  variable  so  it  will  follow  a  probability  distribution.  Now  what  probability

distribution does the sample variance follow? it follows the Chi-square distribution for that we

have to define the Chi-square variable.
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As n-1 s squared/sigma square okay s squared is the sample variance and sigma squared is the

population variance sigma squared we do not know s squared we know once we have drawn the

sample. And n-1 is the sample size-1 it represents the degrees of freedom and it was used in the

computation  of  s  squared  recall  that  the  sample  variance  s  squared=sigma  xi-x  bar  whole



square/ /n-1.

So, we may think of n-1 s squared as the sum of the square of the deviations from the mean.

Deviations of what? deviations of the sample element attributes from the mean attribute value

and that deviation is squared So, we have the Chi-square variable as n-1 s squared/sigma squared

and  this  also  depends  upon  the  degrees  of  freedom.  Let  us  see  the  probability  distribution

function for the Chi-square random variable.

We will not be using this probability distribution function extensively in our analysis. We will be

using the probability  table  for the Chi-square distribution rather than actually  computing the

probabilities using this function. We know by now that minus infinity to infinity f of x dx=1

generally but in the present case the x value are always positive. So, this function is defined for

x>0.

And so, we have 0 to infinity f of x dx should be equal to 1 that may be shown it is not required

right now. It is beyond the scope of our current discussion. Here we have 1/2 power k/2 gamma

k/2 x power k/2-1 e power-x/2. Here k is a parameter in the Chi-square distribution it matches

with  the  degrees  of  freedom.  We were  talking  about  with  respect  to  the  sample  variance

calculation what is this gamma function? we have seen this gamma function pretty frequently.

We saw the gamma function also in the description for the T distribution. So, I thought maybe I

will just give a brief introduction to the gamma function as well. 
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Before we do that, we will see what the mean and variance of the Chi-square distribution are the

mean of the Chi-square distribution is k where k is the parameter referred to as the degrees of

freedom. The variance of the Chi-square distribution is 2k.
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The gamma function is given by 0 to infinity x power p-1 e power-x dx where p is >0. So, this is

the integral where p as the parameter.
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So, it can be shown that gamma p=p-1 gamma p-1 kind of a recursive relationship and if this is

carried out fully for a positive integer p we get gamma p=p-1 factorial gamma 1 is 0 factorial

which is 1 and gamma 1/2 is root pi these are some important properties of the gamma function.
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Coming back to the Chi-square distribution the distribution is skewed to the left in other words it

is not symmetric the skewness is pronounced for small values of k and the distribution is defined

only  for  positive  values  of  x  and  we  can  see  that  as  the  degrees  of  freedom  increase  the

distribution  tends  to  more  symmetric  shape  as  k  tends  to  infinity  as  a  degrees  of  freedom

becomes quite large.



The distribution tends towards the normal distribution again taken to this extreme this skewed

distribution tends to normal distribution. 
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These are some typical representations of the Chi-square distribution generated with spreadsheet

and this is the x value and f of x value is on the y axis. It can be seen that the distribution is quite

skewed for a small  k here it  is  5 if  k becomes very small  k=2 then it  becomes more of an

exponential kind of distribution. And when you go for k=10 it sorts of becomes less skewed and

for k=15 the spread the more but it is symmetric.

And as k tends to infinity it goes towards the normal distribution.

(Refer Slide Time: 13:20)



By  now  we  should  be  familiar  with  these  terminologies  suppose  we  have  a  Chi-square

distribution with k degrees of freedom we may define the probability according to probability of

Chi-Square> a specified Chi-square alpha k. K is the degrees of freedom and alpha is chosen

such that  it  is=  the  probability  value.  We have  seen  this  alpha  before  in  our  discussion  on

confidence intervals and the T distribution.

Alpha may take values typically like.01.025.05.1 etc. So, we are again talking about the upper

tail probability. What is the probability of the Chi-square distribution beyond for values beyond

the Chi-squared alpha k point? Suppose you have a distribution curve the Chi-squared alpha k

are all values along the x axis. What is the probability that the squared random variable will take

a value > Chi-squared alpha k.?

And that value will be nothing but alpha so this alpha and this alpha match the Chi-squared I

repeat represents a point on the x axis of the Chi-square distribution curve. 
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So, the area of the probability density function below the curve beyond Chi-squared alpha k is

alpha. So, formally we may talk in statistical language that Chi-squared alpha k is an upper 100

alpha % point of the Chi-squared distribution with k degrees of freedom. So, you have alpha k, k

refers to the degrees of freedom and alpha refers to the upper tail probability. So, Chi-squared

alpha k is an upper 100 times alpha %.


