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Hello, welcome back in today’s lecture, we will be solving the few problems. The reference I

used  for  solving  one  of  problems  is  the  book  written  by  Ramachandran  and  Tsokos,

mathematical statistics with applications, academic press, published in 2009. It has an interesting

set of both examples and problems. So, the topics covered in this example set are properties of

random samples, applications of the central limit theorem and maximum likelihood estimation of

the parameters and also the method of moments.

(Refer Slide Time: 00:21)

The first example is 2 random samples come from 2 different populations P1 and P2. The 2

samples are also of different sizes 9 and 25. If the 2 samples distributions however are to have

the same standard deviation,  what should be the ratio of their  respective population standard

deviations? So, we are asked to find the ratio of the population standard deviations such that the

2 unequal size to samples have the same standard deviation.

(Refer Slide Time: 00:41)



So, depending upon the size of the sample you can have different sampling distributions. You

also  know  that  the  sampling  distributions  of  the  mean  are  centered  around  the  population

parameter mu itself, but have a lesser spread given by sigma square/n, there sigma square is the

variance of the population from which the random sample was taken n is the size of the sample

taken. So, using this information we can do the following.

(Refer Slide Time: 00:55)

I have given a table here. In this table, you can see the population parameters listed, P1, P2, mu1,

mu2, the 2 population means sigma1, sigma2, the 2 population standard deviations and of course

the population would hypothetically comprise of infinite size or very, very large size and when

you go to the sample, again the sample probable distribution of the means will have a mean value



of mu1 and mu2 for sample1 and sample2 corresponding to the 2 populations from which they

were taken.

(Refer Slide Time: 01:10)

Standard  deviations  sigma1/root  n1,  sigma2/root  n2  and  what  should  be  the  ratio  of  the

sigma1/sigma2 such that these 2 are equal. So, the question is very simple. So, sigma1/root n1 =

sigma2/root n2 and then, we have sigma1/root n1, root n1 would be root of 9, so that is not

difficult to get sigma1/3, sigma2/n2. What is n2? 25. Again that is easy to get, root of 25 was 5.

So, you have sigma2/sigma1 is 1.67.

(Refer Slide Time: 02:41)



And sigma2 square/sigma1 square, the ratio of the 2 population variances would be 25/9, which

is 2.78 rather than doing the mental mathematics, let us do with the calculator 25/9 that is 2.777

so on. So, you can truncate it to 2.78. So, the second population variance was 2.78 times more

than the first population variance. But the second sample distribution was identical to that of the

first as the second sample size was also higher by 2.78 times the first.

(Refer Slide Time: 03:50)

So, when you normalize the variances of the 2 different populations by the sample sizes taken. In

this case, we were equal because we sample size taken from the second population was higher

than the first. So this sort of balanced out the higher variance of the second population, okay. Let

us go to the next example again the simple example you have 2 random samples, X1 bar and X2

bar, they come from 2 independent normal populations N1, mu1, sigma1 square and N2 mu2

sigma2 square.

(Refer Slide Time: 04:18)



The 2 samples are also of different sizes namely n1 and n2. So find the mean and variance of the

following linear combinations X1 bar - X2 bar, then X1 bar + X2 bar. Very nicely, the problem

statement gives us all we require. It says that the 2 parent populations are normal and they are

also independent of one another. So, when you take a random sample out of these 2 populations,

we have to get the random sample means that is easy.

(Refer Slide Time: 05:36)

So, you will have X1 + X2 + so on to Xn divided by n and again X2 would be from the second

population. Again, you add up all the attributes or values of the random sample elements and

then divided by that particular sample size. So, you will get sample mean 1 and then you will



also get sample mean 2. The important result is, suppose you take random variables X1, X2, they

come from independent normally distributed populations.

(Refer Slide Time: 06:02)

Then, a linear combination of X1 and X2 would also be a normal distribution that is an important

result. Now, we are having X1 bar and X2 bar. X1 bar in turn is formed by taking the elements of

the first sample adding all the attributes of those sample elements divide it by the sample size.

Similarly, do for the second random sample. So, now you are going to combine these 2. So,

rather than thinking of them as X, all the elements divided by n1.

Then, all the elements of the second random sample divided by n2. You think of X1 bar and X2

bar as random variables themselves and they are coming from 2 independent populations. So, the

distributions of X1 and X2 are independent of each other and if you think on these lines, it is

easier  to  proceed  further.  So,  now  you  have  to  find  mean  and  variance  of  the  2  linear

combinations.

Why I gave this example as we encounter such crises very frequently even when different kinds

of problems, okay. So, the following linear combinations of random variables will also be normal

distributions  as  the  2  random variables  are  independent  and  normally  distributed.  So,  these

would also be normal distributions. So, this would be one normal distribution. This would be

another normal distribution.



(Refer Slide Time: 08:54)

What are the mean and variances of such normal distributions for the 2 cases? So, the expected

value for X1 bar - X2 bar would be expected value of X1 bar – expected value of X2 bar that

would be mu1 - mu2 and that is represented as mu of X1 bar – X2 bar, mu of the probability

distribution formed by X1 bar – X2 bar. Again, you have expected value of X1 bar + X2 bar that

would be expected value of X1 bar + expected value of X2 bar that = mu1 + mu2, which is

represented by mu of X1 bar + X2 bar.

(Refer Slide Time: 09:28)

So, the linear combinations of the probability distribution of X1 and X2 bar would also result in

a normal distribution which is centered at mu1 – mu2. Well, you can ask what will happen if



mu1 > mu2, no problem, it is a positive value. If mu1 < mu2, it is a negative value. So what, let

the resulting probability distribution be centered on a negative value, there is no harm in that. So,

again if you look at expected value of X1 bar + X2 bar that would be E of X1 + E of X2, which

is mu1 + mu2.

So,  when  I  am  taking  the  linear  combination  of  independent  random  variables  which  are

normally distributed, I am going to get a resulting probability distribution which is also normally

distributed and having the mean at the some of the means of the 2 probability distributions, I am

adding. So, this is again quite straight forward. Let us look at the variance, the variance is quite

interesting.

(Refer Slide Time: 11:30)

The expected value was sign dependent depending upon what was a sign used here, but when

you look at the variance, variance of X1 bar – X2 bar is variance of X1 bar + variance of X2 bar.

Variance of X1 bar + X2 bar is variance of X1 bar + variance of X2 bar. So, the negative sign or

positive sign does not matter. The negative sign or positive sign would really matter when you

look at the covariance and here in the first case, it will be – covariance of X1 bar and X2 bar.

Here, it will be + of covariance of X1 bar, X2 bar, but the covariance will vanish because X1 bar

and X2 bar are independent. So, we simply have variance of X1 bar + variance of X2 bar in both

the cases.  So, summarizing the results  from this  example,  we have the random variable  X1,



having a mu1 as mean and sigma1 square/n1 as variance, so the standard deviation would be

sigma1/root n1.

(Refer Slide Time: 12:24)

X2 bar for the second case, again I think it is better if I sort of go back a little bit. What is X2

bar?  This  is  the  random sample  taken  from a  second population.  The  second population  is

normally distributed. So, you take the elements of size n2, then add the attributes or values of

these elements divided by n2, you will get X2 bar and similarly, you can take many such random

samples from the second population and each one would have a different average value.

So, they will form a distribution of the sample means. This distribution of the sample means

would be normal with mean at mu2 and variance at sigma2 square/n2. What is mu2? It is not

only the mean of the sampling distribution, but it is also the mean of the parent population from

where the random sample was taken and sigma2 square again is the variance of the second parent

population.

And the variance of the probability  distribution of the sample means taken from the second

population will be smaller and it will be given by sigma2 square/n2. So, the standard deviations

of course would be sigma1/root n1 for the first case, sigma2/root n2 for the second case and the

X1 bar – X2 bar, a linear combination of the 2 random variables would have a mean of mu1 –

mu2, we saw that it is sign dependent.



We just saw it a couple of slides back and the variance would be variance of X1 bar which is

sigma1 square/n1 + variance of X2 bar which is sigma2 square/n2 and so, they are added up and

we take the standard deviation, it would be square root of sigma1 square/n1 + sigma2 square/n2.

When you take X1 bar + X2 bar as the linear combination of the 2 random variables.

The 2 random sample means they will be distributed around mu1 + mu2 at the center and having

a variance or spread given by sigma1 square/n1 + sigma2 square/n2. The square root of that

would  be  sigma1  square/n1  +  sigma2  square/n2.  This  applies  for  independent  distributions.

When X1 bar and X2 bar are independent of each other, then this results I have shown here

would apply, okay.

(Refer Slide Time: 15:45)

So  importantly,  I  would  like  to  re-emphasize,  the  2  random  samples  are  independent  and

normally  distributed  as  they were taken from 2 independent  normal  destructions.  Hence the

linear combination of these random variables also obeys the normal distribution. Since it obeys

the  normal  distribution,  we  can  express  this  in  the  standard  form so  that  we  may  use  the

probability tables.

So, when you expressed them in a standard normal form, it becomes quite straight forward, X1

bar may be in turn normalized by subtracting mu1, X1 bar – mu1 divided by sigma1/root n. Let



me just correct that typo and so we have Z1 = X1 bar – mu1 divided by sigma1/root n1. Z2 is X2

bar – mu2 divided by sigma2/root n2 and if you look at the X1 bar – X2 bar, you can create it as

another random variable with mean mu1 – mu2 and standard deviations square root of sigma1

square/n1 + sigma2 square/n2.

(Refer Slide Time: 16:17)

So, the random variable combination X1 bar + X2 bar may be expressed as shown here. So, this

is a very nice way of putting it in a compact form and then we may use the standard normal

probability  tables  to do the necessary calculations,  right.  Now let  us look at  example  3,  the

problem statement goes on like this. From historical data, the yields of power from a nuclear

reactor supplied by XYZ Company are normally distributed.

(Refer Slide Time: 17:28)



This  reactor  supplied  by  this  company  is  operated  in  several  plants  around the  world.  The

population standard deviation based on process design specification is 0.7 gigawatt. The average

power output of power from 6 random measurements taken at a plant using this reactor is 2

gigawatt. However, the XYZ Company had guaranteed an average power output of 2.3 gigawatt

from its reactors.

(Refer Slide Time: 17:49)

Obviously, the client  organization using this  reactor  is getting an average power output of 2

gigawatt and it is concerned because it is supposed to produce 2.3 gigawatt, but it is producing

only 2 gigawatt and that may lead to loss, okay and then the company is contacted, the company



says do not worry the thing is normal, it is only a random fluctuation or a random variation even

if you are taken the means, the differences because of random fluctuation.

(Refer Slide Time: 18:07)

But the company said if it is random fluctuation on the positive side, if we had got 2.6 gigawatt

that would have been nice, but we are getting only 2 gigawatt whereas you are promising 2.3

gigawatt. So there is an issue here and we have to see what is the probability of the average

power output from the plant being 2 gigawatt even though the actual mean value is 2.3 gigawatt.

Coming again, what we have to do is there is a distribution of the sample means and the mean

value is 2.3 gigawatt.

So from this sampling distribution of the means probable distribution, what is the probability of

picking up a sample with a mean power output of 2 gigawatt? If the probability is quite high,

then the probability of occurrence of such kind of event is quite high. So, we can only attributed

to random effects. We cannot say anything more.

However, if the probability of picking up a sample of mean power output of 2 gigawatt is pretty

low from sampling  distribution  of  the  mean  of  2.3  gigawatt,  then  we have  to  question  the

supplier. So, we have to look at the sampling distribution of the mean. Since we are talking about

the mean power output we are referring to the sampling distributions of the means and we also

have a probability distribution.



(Refer Slide Time: 21:00)

So, the population mean has given as 2.3 gigawatt, sample mean x bar, I am using small x bar

because sample has been taken and it is value known that that is 2 gigawatt only. Population

standard deviation based on design specification is 0.7 gigawatt, having the same units as the

mean power output and sample size is only 6. So, it is given that the population is normal and the

value of sigma is also known which makes life easier for us.

(Refer Slide Time: 21:23)

So, we have to find out the probability of the power output being < or = 2 megawatts from the

given data and X bar, I am normalizing it again X bar – mu1/sigma/root n, 2-2.3 divided by

0.7/root 6, let me sort of check it out. So, I should be doing -0.3 * root 6 divided by, so I am



getting -1.04978, -1.05 is okay and so, what is the probability that X bar would be < or = 2,

which is equivalent to asking what is the probability of the standard normal variable Z < = -1.05.

(Refer Slide Time: 21:34)

And the probability is 0.147, so the probability of the sampled mean being lower than or = 2

gigawatt is rather high at 0.15, okay. So, the company is saying the mean power output is 2.3

gigawatt.  It  is not stopping there;  it  is also saying that the standard deviation of the normal

distribution is 0.7 gigawatt. Now, we are taking about the sampling distribution of the means, the

probability distribution of the sample means.

(Refer Slide Time: 21:43)



And the probability distribution of the sample means is centered again at 2.3 gigawatt and having

the spread given by 0.7/root 6. So, what is 0.7/root 6? 0.286. So, there is a spread of 0.286

gigawatt around this particular sampling distribution of the mean. So, the standard deviation is

0.286 gigawatt.

The company is getting only 2 gigawatt, so when we do the calculations for the probability of

this occurrence, namely the occurrence of 2 gigawatt or lower when the sample is taken from a

sampling distribution  of the means centered at  2.3 gigawatt  and standard deviation  of 0.286

gigawatt. The probability comes to 0.147 which is rather high. So, you really cannot question the

supplier because 0.15 is a good reasonable chance of occurrence of this kind of event.

So, if you do the plotting with the Minitab, this is the normal distribution centered at 2.3 gigawatt

and having the standard deviation of 0.7/root 6 which is 0.286 gigawatt. So, this is the spread and

I  am looking  at  the  probability  of  occurrence  of  2  gigawatt  or  lower  from this  probability

distribution and I am finding the probability, the area under the curve in the shaded region which

comes to 0.147.

(Refer Slide Time: 24:20)

So, moving onto the next example,  the plant contests  the claim of the manufacturer that his

claimed  population  standard  deviation  of  0.7  gigawatt  is  rather  large.  Hence,  by  mutual

agreement, this standard deviation is not used but more measurements names 41 are carried out,



okay. So that 0.7 gigawatt is thrown out of the window and you are no longer even thinking of

the population being normally distributed that is not mentioned in the problem statement.

(Refer Slide Time: 24:51)

Whereas  in  the  previous  problem statement,  it  was  given  that  the  population  was  normally

distributed. But you are also taking a large sample size of 41. The sample mean now comes to a

slightly higher 2.1 gigawatt,  but the sample standard deviation is  0.85 gigawatt.  The sample

standard deviation is even higher than the design specification value of 0.7 gigawatt. What would

be the probability that the observed mean output or lower is possible?

(Refer Slide Time: 25:38)



What is the probability of this occurrence? That you can get a sample mean of 2.1 gigawatt or

lower that is what we have to find now. So, conditions are slightly changed. Population mean

value mu is 2.3 gigawatt, sample mean X bar is 2.1 gigawatt, sample standard deviation s is 0.85

gigawatt,  sample size is 41. We are no longer using the population standard deviation of 0.7

gigawatt.

(Refer Slide Time: 26:18)

So we are not supposed to use sigma, but we can use s, the sample standard deviation. When s is

used that is permitted because the sample size is quite large,  we can even continue with the

normal distribution according to the central limit theorem. The central limit theorem says that

irrespective of the population probability distribution characteristics. If a large sample is taken

typically > 30, then the resulting sampling distribution of the means is also normal.

(Refer Slide Time: 26:39)



In the present case, the parent population we do not have to worry about because the sample size

is quite large and so the central limit theorem will apply and so the sampling distribution of the

means is going to be normal and since we are going to use s, because sigma is not available for

use. The s value may be substituted for sigma in the calculations and we are also having a large

sample size of 41 to account for it.

So, the problem calculations are quite straight forward instead of using sigma, here we use s, we

have X bar – mu/s/root n and that is 2.1 – 2.3 that is -0.2 * root 41 divided by 0.85 that comes to

-1.5066, -1.51. So, the probability of X bar < 2 is equivalent to probability of Z < -1.51 and the

probability has now considerably reduced to 0.066. So the results show that the probability of the

sample  having power  output  <  or  =  2.1  gigawatt  may  occur  only  6.6% of  the  time  or  the

probability value is 0.066,

(Refer Slide Time: 28:02)



So, we stop here and left to the 2 parties to take it from here, okay. So showing this on the

normal probability distribution, here we have a standard deviation of 0.13275, how did that come

about that was s used is 0.85 divided by root 41. So, 0.85/root 41 is 0.13275. The mean value

hypothesized  or taken as 2.3 gigawatt,  so that  is  what  we have here.  So,  the probability  of

occurrence of 2.1 gigawatt are lower is given by the area of the shaded portion and that is 0.066.

(Refer Slide Time: 28:45)

So, the probability is 0.066. So, the 2 probability distributions are plotted as shown in this figure

generated from Minitab, so you are having 2 probability distributions. The first one is centered at

2.3 gigawatt and has a standard deviation of 0.2858. How did this 0.2858 come about, it was 0.7



gigawatt divided by root 6. The design specification of sigma was 0.7 gigawatt and the sample

size was 6 in the first case.

(Refer Slide Time: 29:03)

So, we are having 0.7 divided by root 6 which is 0.2858. The second distribution shown is

having a lesser spread and it is also centered at 2.3 gigawatt. It is based on a sample standard

deviation of 0.85 gigawatt which is higher than 0.7 gigawatt  and still  the spread this smaller

because of the larger sample size. So, instead of using sigma/root n, we are using s/root n2,

where s is 0.85 gigawatt and n2 is 41.

(Refer Slide Time: 29:50)



So, 0.85 divided by root 41 is 0.1327 which is more than half of the earlier spread value of

0.2858. So you can see as lesser spread here and also the probability value declined. The next

problem  is  you  are  given  a  random  sample  from  a  parent  population  described  by  the

complicated probability distribution function where f of x is beta * gamma x e power x cube –

1/sin x.

(Refer Slide Time: 31:36)

So, beta is an adjustable constant such that the probability distribution is a valid one, you know

what it means. The area under the curve for any probability distribution function should be one

continuous probability density functions described by a smooth curve and the area under such

curves should be = 1.  So,  we adjust the parameter  beta  such that  this  is  a  valid  probability

distribution function.

(Refer Slide Time: 32:14)



Let the mean and standard deviation of this distribution be phi and psi that means the variance of

this distribution psi squared. If the sample size was chosen as 64, find the mean and standard

deviation  of  the  sampling  distribution  of  the  means.  What  is  the  form of  the  sample  mean

distribution?  And what is  the probability  that  the sample mean will  be within 0.15 standard

deviations of the population mean?

(Refer Slide Time: 32:30)

So, since the sample size is quite large at 64 which is > 30, the sampling distribution of the

means will be normally distributed according to the central limit theorem regardless of the shape

of the parent population distribution. So, now the problem is quite straight forward. The mean of



this distribution of sample means will be phi and the standard deviation will be psi/root 64 which

is 0.125 psi.

(Refer Slide Time: 32:46)

So, 1/root 64 is 1/8 which is 0.125. So the standard deviation of the sampling distribution of the

means would be 0.125 psi. This distribution may be represented by a normal distribution of mean

phi and variance which will  be square of this 0.01562 psi square, okay. 0.125 square, let  us

confirm 0.125 square is 0.015625, so that is fine. What is the probability that the sample mean

will be within 0.15 standard deviations from the population mean.

(Refer Slide Time: 33:03)



So, the problem can be expressed in the following way. Probability of the value of the random

sample being 0.15 sigma distant from the population mean. So, probability of mu which is the

population mean and also the random sample probability distribution mean mu –0.125 sigma <

or = X bar < or = mu +0.15 sigma. So, the random sample which we take may have a value

either lower than mu or higher than mu.

(Refer Slide Time: 34:01)

And it may lie either on the right hand side of mu or on the left hand side of mu. So, now it is

easy to normalize and how do we normalize, we just subtract mu from x bar and divided by

sigma/root  n,  we  do  it  in  all  the  other  2  sides  of  the  inequality  and  then  we  get  -0.15

sigma/sigma/root n, +0.15 sigma/sigma/root n and this works out probability of -1.2 < or = Z

which is the standard normal random variable < or = 1.2 and this comes to 0.77, okay that can be

read of from the standard normal probability charts.

(Refer Slide Time: 35:04)



I hope now you are comfortable using these charts and you should be able to figure out how we

get this 0.77. I just illustrate this on the board, so you have the standard normal distribution

which is having a mean value of 0 and variance sigma square = 1 and we have to find the area

under the curve 1.2, -1.2. So, what we can do is probability of Z < 1.2 – probability of Z < -1.2.

(Refer Slide Time: 36:06)

So, first what we do is we find the area under the entire curve and then, from this total area, we

subtract out this  area and we get the required probability. If I remember right this comes to

around 0.88 and then this would be 0.12. If the entire area is around 0.88, then this area would be

0.12 and by symmetry, this area would also be = this area would be 0.12. So, 0.88-0.12 is 0.76, I

am just doing it from memory and you can also see the answer is to 0.77.



(Refer Slide Time: 37:50)

Let us move onto the next problem. Here, we have the Pareto distribution, quite an interesting

function. This was the problem I had taken from the Ramachandran and Tsokos book and f of x =

a/x power a+1, x > or = 1 =0 for x < 1. So, the parameter “a” is referred to as the shape factor.

What is the maximum likelihood estimator of the parameter “a” based on the random sample X1,

X2, so onto Xn.

(Refer Slide Time: 38:10)

Some of you may ask we do not know the value of a and we do not know whether this is a valid

probability density function, so finding the area under the curve from 1 to infinity a/x power a+1

dx should tell us the value of a. So, what is the additional need for finding the value of a. I leave



it to you, okay. The hint is you cannot find out a using this method for the simple reason that no

matter what value of a, you plug in there, the integral 1 to infinity will be = 1.

I mean do the integration, you can find out this will be X power -a-1, so it will be -1/x power a

and a would cancel out and so, when you go from 1 to infinity, it would be 1-0, 1 power a is

always going to be 1. I requested to do the integrations yourself and confirm that no matter what

the value of a is, the a will cancel out and so, this area under the curve will always be = 1. So, let

us move onto the actual problem.

(Refer Slide Time: 39:49)

We have to define the maximum likelihood function. We are using the method of maximum

likelihood parameter estimation method to find out what a is? The Pareto probability density

function is expressed only in terms of a single parameter theta. It is represented as f of x, theta.

Let us take a random sample and once their values are known, will denote them by X1, X2, so

onto Xn.

So, the likelihood function of the sample for the single parameter case is L of theta = f of X1,

theta  *  f  of  X2,  theta  so  on  to  f  of  Xn,  theta.  So,  we have  to  estimate  this  parameter  by

maximizing this relationship. So, first let us get the relationship, L of theta = f of X1, theta * f of

X2, theta so on to f of Xn, theta and that would be a/X1 to the power of a+1 * a/X2 to the power

of a+1 so on to a/Xn to the power a+1.



(Refer Slide Time: 40:19)

So, L of theta = a power n, because I am doing it in n times and this is the product of all the X

values to the power of a+1 and when we take natural logarithm on both sides, we get ln of L = ln

of f of X1, theta * f of X2, theta, so onto f of Xn, theta. So, ln L = ln of a power n/the product of

the entities Xi to the power of a+1, i running from 1 to n. So we take ln L, we have this we can

split into 2 parts, ln of a power n becomes n ln a.

(Refer Slide Time: 40:43)

And then this becomes ln of product of Xi’s to the power of a+1. So again this is quite simple,

you will get ln of L = n ln a, we saw this earlier. How did this get simplified? You know that the

log of product of entities, the sum of ln of those entities, so the a+1 is common here and you can



put a+1 here and then you get sigma i equals 1 to n, ln of Xi. The next step is to differentiate this

function with respect to a and then equate it to 0.

(Refer Slide Time: 41:14)

And when you differentiate with respect to a, this becomes n/a and here, we had a+1, there was

no a inside, so that became quite simple, -1 * sigma ln Xi. So, the estimated parameter a is given

by n divided by sigma i equals 1 to n ln of Xi, so quite simple.  Let us move onto the next

problem.  Use  the  method  of  moments  to  find  the  parameter  estimators  of  the  following

probability distribution function.

(Refer Slide Time: 41:35)



F of x = 1/B-A = 0 otherwise. So, we have to estimate both A and B. We are going to use the

method of  moments,  so f  of  x  = 1/B-A and the  first  moment  E of  X is  obtained from the

distribution  in  the  following  manner,  expected  value  of  X  =  A to  B,  x  dx/B-A which  is  x

square/2, so B square – A square/2, B+A * B-A/B-A, so B-A will cancel out. So, we have B+A/2

and expected value of X square, the second moment is given by x square dx/B-A x cube/3.
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X cube/3 will become B cube – A cube and so, you are having B cube – A cube divided by B – A

which is B – A/B – A * B square BA + A square and that is what we have here. So, these

distribution moments may be equated with the first and second sample moments and when we do

that we get m1 as 1/n sigma, i equals 1 to n, X1 + X2 + so onto Xn. We will just correct the typo.

So m1 = 1/n sigma i equals 1 to n, X1 + X2 + so on to Xn = A + B/2.
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M2 = 1/n sigma i equals 1 to n, X1 square + X2 square + so on to Xn square that is A square +

AB + B square/3 which is same as what we had and so we have 2 equations and 2 unknowns.

The unknowns are A and B, the moments are m1 and m2, those are not unknowns, okay. So, we

can write m1 = A + B/2 and m2 = A + B whole square – AB, where this can be written as A

square + 2 AB + B square – AB that would be A square + AB + B square.
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And when you have these and you solve for A and B, you get these 2 relations.  I leave the

quadratic equations solving to you, I hope you get the same answers as I did. So, thanks for your

attention and we were doing some illustrative problems. There are lots of books on statistics and



probability  which  have  many  interesting  problems.  I  requested  you  to  not  only  solve  these

problems independently, but also look up the problems in various books.
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And try to solve them without any assistance either from these lectures or from the worked out

examples in those book. Try to solve them on your own and if you are getting the correct answer

well and good, nothing more has to be said, but if you are finding some difficulties and you are

not able to get the correct answer, go through the lecture material again. See where exactly you

have not understood correct your concepts.
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And then hopefully you will be able to work out these kinds of problems in the correct manner.

The important thing is not the actual numerical solving, but the interpretation, the assumptions

made and the concepts being applied with these kinds of problems. So thanks for your attention,

will see you in the next class.


