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Welcome back after a brief break. Statistics and mathematics is indeed a heady combination

for those who are mathematically inclined and to top it or an icing in the cake is there is lot of

application in whatever we are doing. It has a lot of implications in decision making. In order

to show to the outside world that our decisions are made in a scientific manner in an impartial

manner, we resort to statistics.

The decisions are made in a manner, which is not arbitrary but that can be defended by sound

scientific  principles  that  is  why numerous  journal  publications  are  insisting  on statistical

analysis of the experimental data that are being reported. They do not really care about the

scatter or the lack of coincidence of the experimental data but they just want to assure that a

proper statistical analysis has been carried out.

Now coming back to our lecture, we were talking about joint probability density functions

without  too  much  of  a  preamble  let  us  straight  away  go  to  the  expected  value  of  a

combination of random variables X and Y.

(Refer Slide Time: 02:04)



So let us look at the expected value of X times Y, which is given by x*y f of X, Y x, y dxdy.

The small x is the representative of capital X and small y is the representative of the random

variable Y. So the value of X is not specified to be a point value but it is within a certain

interval so that the probabilities can be calculated. Here we are putting the limits as –infinity

to +infinity.

If you did not have x and y here, the probability would be such that the multiple integral f of

x, y dxdy would have been=1 but since you are multiplying it with x and y, the integral need

not be 1, it can take any other value. Even if you multiply it with only x into f of X, Y x,y

dxdy as in the case of expected value of X, the integral would not be=1 because you are

multiplying it with the x.

Similarly with y, y*f of X, Y x, y dxdy will not be=1 so what I am trying to say is expected

value of X and expected value of Y need not be 1 all the time. Now we are talking about

covariance represented by Cov between the variables X and Y. Now to understand covariance

let us think in terms of something we already know. Instead of covariance if we have only

variance right and we also have X and X instead of X and Y we have X, X.

So the covariance of X, X there is no sense in talking about the covariance between the same

random variable. So X, X would be rather variance okay since we are talking about a single

random variable X, it becomes variance and here it would be x-E of X*x-E of X f of X, Y x,

y dxdy so that would be x-E of X whole squared, which reminds us of the original definition

of the variance for continuous probability distribution functions.

Similarly, covariance of X, Y may be defined as x-expected value of X*y-expected value of Y

f of x,  y dxdy. This is very interesting okay. We are drawing back on our knowledge of

variance  to  understand  covariance  but  since  here  we are  having  2  independent  different

random variables X and Y, we do not call it as variance of X and Y, we call it as covariance of

X and Y and so we have x-E of X*y-E of Y f of x, y dxdy.

This can be simplified. You will have x, y x E of Y y E of X E of X E of Y so x, y f of x,y

dxdy is what you have here and then you have E of X*E of Y and nothing else. This is

interesting, what really happened expected value of X is a value okay since you are defining



expected of X between the lower limit to the upper limit after the integration has been carried

out and the dust has settled, you will have a number.

So the expected value of X is a number, expected value of Y is also a number. So with that

background when you multiply E of X*E of Y and then f of x, y dxdy E of X and E of Y are

nothing but constants and then you have *1 because the area under the curve or the multiple

integral -infinity to +infinity f of x, y dxdy=1. I would like or request you to expand this

particular expression and carry out the necessary steps to arrive at the final answer.

I am deliberately missing out on these steps hoping that you would do them and understand it

better. So E of X*E of Y times f of x, y dxdy after the integration is done since integration of

f of x, y dxdy=1 you simply have E of X and E of Y. So you should have 4 terms, we have

accounted for 2 terms. What happened to the remaining 2 terms? It is very interesting. If you

look at it, x*E of Y f of x, y dxdy will become expected value of Y*x of f of x,y dxdy.

So that would have become E of X*E of Y and this combination multiplied by this function

would lead to again E of X*E of Y. So you have x*-E of Y that is a negative, y*-E of X which

is again a negative so you have -2 E of X E of Y and then you have 1+E of X*E of Y and so

you have –E of X*E of Y. So the covariance between X and Y finally is E of XY-E of X*E of

Y.

(Refer Slide Time: 09:13)

So rather than leaving the derivation to yourself, I thought I will use the board for a change

and do the steps myself. Hopefully, I have not made any mistakes here. So what we do here is



x-E of X*y-E of Y f of x,y dxdy so I am multiplying first these 2 terms or these 2 expressions

in the 2 brackets, xy-x E of Y-y E of X+E of X*E of Y f of XY x,y dxdy. Even though in the

slide I have put –infinity to +infinity.

X  can  vary  from  –infinity  to  +infinity  –  infinity  to  +infinity  for  Y also.  As  a  general

representation,  it  has been put as –infinity  to +infinity in the slide okay. So now we can

multiply each and every term in the bracket with f of x,y dxdy. We get this term and then we

know that E of Y is a constant, it can be taken outside the integral. So we have x*f of x,y

dxdy.

Similarly, E of X is a constant so it can be taken outside the integral –infinity to +infinity –

infinity to +infinity, here you will have y*f of x,y dxdy and this is interesting, these 2 are

constants. So you get E of X*E of Y* f of x,y dxdy. So this is=1. By definition this becomes

E of XY, this becomes E of Y and this becomes E of X. This is E of XY and this is E of Y*E

of X E of X*E of Y so this becomes -2 EX EY.

And this is E of X*E of Y so once you subtract E of X*E of Y from -2 E of X*E of Y, you get

–E of X*E of Y so you have E of XY-E of X*E of Y. So this completes the derivation. Even

though it looks very cluttered and highly mathematical, it is basically very simple. This is a

very important result, which we will be using pretty frequently.

Those of you who are curious may wonder what will happen to the covariance between X and

Y if X and Y are independent. If X and Y are independent, they may not have a combined

action, a similar action, one variable determining the other variable or influencing the other

variable. So intuitively you will have to question what will be the covariance if X and Y are

independent.

What will be the value? Will it be –infinity 0, 1 or +infinity and can that be proved from E of

XY-E of X*E of Y. If X and Y are independent what will happen to E of XY? Will E of XY

be E of X*E of Y. So please look at these, look at the covariance between X and Y. If X and Y

are independent what will happen to the covariance and what would happen to E of XY and

what will be the relation between E of XY to E of X*E of Y?
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So to save  you the  long wait,  I  am giving you the  answers  right  away if  X and Y are

independent, it can be shown that E of XY=E of X*E of Y and the covariance becomes 0

between X and Y random variables. Since X and Y are independent they behave independent

of each other, one does not depend on the other. The covariance within X and Y is also

denoted by sigma XY.

(Refer Slide Time: 14:44)

Now let us assume that we have the distributions being normal or Gaussian. Let us say that

we have 2 independent normal distributions. It can be shown that the linear combination of

the  random  variables  based  on  these  2  populations  will  also  be  normal.  If  there  are  2

independent  normal  distributions,  important  thing  to  note  here  are  independency  and

normalcy okay.



So if there are 2 independent normal distributions, the linear combinations of the random

variables based on these 2 populations will also be normal.

(Refer Slide Time: 15:33)

When 2 random variables are independent, their covariance is 0.

(Refer Slide Time: 15:38)

So  what  is  the  significance  of  covariance?  Covariance  of  2  random variables  X  and  Y

indicates  how  X  and  Y vary  with  respect  to  each  other.  It  is  a  measure  of  the  linear

relationship between the variables.
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So the correlation between variables X and Y denoted by a rho XY is defined as covariance

between X and Y/square root of the variance of X*variance of Y, which is sigma XY/sigma

X*sigma Y right.

(Refer Slide Time: 16:24)

So what we have understood is if the 2 random variables are independent, the covariance

vanishes or becomes 0. Now we are going to talk about 2 independent normal distributions.

So if you combine 2 normal distributions that the resulting distribution is also normal. If the

parameters of the 2 normal distributions are mu1, sigma 1 squared and mu2, sigma 2 squared,

what  are  the  parameters  of  the  resulting  normal  distribution  arising  out  of  the  linear

combination of the 2?



So when you are having 2 normal distributions and you are combining them, it also becomes

a  normal  distribution,  what  are  their  properties?  The  properties  of  the  original  normal

distributions where mu1, sigma 1 squared mu2, sigma 2 squared. So the resulting normal

distribution what mean and what variance would it have? That is the question we have to

answer now.

(Refer Slide Time: 17:36)

So we look at a general case involving n independent random variables. We will assume that

all of them have come from populations that have the same mean mu and variance sigma

squared. So we are talking about n independent random variables and all of them have come

from identical populations of the same mean mu and same variance sigma squared.
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So let us say that the variance of the random variable X is V of X and is=sigma squared. So X

is taken out of a probability distribution function and normal probability distribution function

and the variance of this random variable X is sigma squared. So what would be the variance

of X bar? X bar we know is defined as X1+X2+so on to Xn whole/n. Sigma X bar squared

will be for independent random variables X1, X2, so on to Xn.

Simply, variance of X1/n+variance of X2/n+so on to variance of Xn/n. So we have already

seen one of the example sets if I remember the first example set if you take a variance of a

quantity X1/n, you cannot put n directly outside, it will be 1/n squared okay and then variance

of X1 will be sigma squared and variance of X2/n will be again 1/n squared*sigma squared

because X1 and X2 have come from identical distributions of the same mean mu and same

variance sigma squared.

So we have so on to Xn will also be represented by sigma squared/n squared. Variance of

Xn/n will be represented by sigma squared/n squared. So when you add up all these things,

you have n entities n sigma squared/n squared, which is nothing but sigma squared/n. This is

a very important result. What is the implication or meaning of this result? Do not look at the

mathematics.

What is the inference you get out of this particular result? You are having a sample and that

sample is having a mean X bar. If I take many such samples not all of them would have the

same sample  mean okay. They will  not  have  the  same sample  mean.  So there  is  also  a

distribution of the sample means. Different samples will have different means and so there

will be a distribution of the sample means.

It is hardly surprising because X bar is also a random variable and it is also associated with

the probability distribution. We are talking about a distribution of the sample means. What is

the  variance  of  that  distribution?  If  the  random  variable  X  came  from  a  population  of

variance sigma squared, what is variance of X bar okay? From now on, we will be shifting to

a slightly higher level.

Instead of talking about X, we will be talking more about X bar. We know that X is a random

variable which came from a population of mean mu and variance sigma squared. It might

have been a normal distribution or a not normal distribution but properties are mean and



variance  mu and sigma squared  respectively. Now we are  shifting  gears  or  moving to  a

slightly higher level.

We are now talking instead of X, we are talking about X bar. X bar is also a random variable.

It will also have its own mean. It will also have its own variance because it has a probability

distribution. There is a distribution of the sample means. Hence, that distribution will have a

variance. It will also have a mean. What is the variance of the distribution of sample means

okay?

The variance of distribution of sample means is not sigma squared but sigma squared/n okay.

Variance  means  spread  if  I  am  taking  a  large  number  of  samples  then  there  will  be  a

distribution of the sample means okay and that spread if I want to curtail that spread I do not

want that much uncertainty, I want the values to be precise, what should I do? I will increase

a sample size n.

If I increase a sample size n, you can see that the variance of X bar will reduce okay. So the

spread of the different possible sample means will reduce if I increase the sample size. So lot

of  physical  basis  is  there  in  this  seemingly  simple  derivation.  We have  taken  a  linear

combination of random variables, which is what we stated at the outset and we try to find its

variance and we wrote X bar as X1+X2+so on to Xn and then divided by n.

It looks very simple. It looks too easy to be true okay. Variance is an operator if you consider

it as an operator and we are operating it on a combination or a function of random variables.

It appears to be linear operator because it is=X1/n+X2/n+so on to Xn/n okay. It looks very

simple but this is only applicable when the random variables were independent of each other.

If they had not been independent of each other, what would have happened?

That  would lead to again a cluttering the slide or the board with more of these multiple

integrals but all of you may not have the time or patience to do these integrations. I am sure

there will be many of you who would like to carry out the integrations on paper using pencil

and paper but it is not necessary to do all those to understand the simple basic concepts.

If the random variables are independent, this variance of X bar can be represented by V of

X1/n+V of X2/n+so on to V of Xn/n and that becomes sigma squared/n eventually okay.



(Refer Slide Time: 25:51)

The  variance  of  the  distribution  of  sample  means  about  mu  is  sigma  squared/n.  So  the

question is where did this mu come from okay? We are talking about variance of X bar. You

know that X is coming from a probability  distribution,  expected value of X=mu, what is

expected value of X bar? We will be looking at that derivation also in one of the slides but I

request you to write down expected value of X bar.

And try to see what would be the resulting value okay. Expected value of X bar would be

expected value of X1+X2+so on to Xn/n and what is that value going to be okay. I will just

use the board again.
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So we have been looking at variance of X bar, variance of X bar was X1+X2+ so on to Xn/n,

expected value of X bar would be expected value of X1+X2+so on to Xn/n. So this will be

expected value of X1/n+expected value of X2/n+so on to expected value of Xn/n. So unlike

the variance where when you take it outside the bracket, it became 1/n squared it will become

1/n similarly for all other expected values.

And you will have expected value of X1+expected value of X2+so on to expected value of

Xn okay. This is expected value of X bar. What this means is all these random variables are

coming from identical distributions of mean mu and variance sigma squared. So we have

1/n*mu+mu+so on to mu to expected value of X bar is also=mu, a very interesting result and

much  more  simpler  than  the  multiple  integrals  we did  earlier  and  also  simpler  than  the

variance of X bar.

So it indicates that the variance of the distribution of the sample means about mu okay is

sigma squared/n. The mean of the random variable X probability distribution function is mu.

The mean of the distribution of the sampling means is also mu okay. The variance of the

random  variable  X  is  probability  distribution  function  is  sigma  squared;  however,  the

variance of the sampling distribution of means is not sigma squared but sigma squared/n.

So these are very important results and will be applying them in many problems from now

on.
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I told you that it is not a simple linear operator, there is something more involved here. So

variance of X bar=expected value of X bar-expected value of X bar squared okay. There are 2

expectations but one expectation is within the bracket and another expectation is outside the

bracket. I hope I am not expecting too much out of your mathematical knowledge. These are

pretty straight forward and terminology.

Variance of X bar=expected value of any variable about the mean. So now putting it in terms

of  the  original  probability  distribution  function,  multiple  distribution  or  joint  probability

distribution, we have X bar-expected value of X bar whole squared*into this form.

(Refer Slide Time: 31:05)

So when  you  look  at  this,  it  is  a  matter  of  expanding  the  terms  inside  the  brackets  or

parenthesis. X bar becomes X1+X2+so on to Xn/n and since we are having a squared term

that would become 1/n squared. So we write X1+X2+so on to Xn-E of X1+X2+so on to Xn.

This E of X bar also had a 1/n term, X bar also had a 1/n term and when you are squaring it, it

became 1/n squared and that was removed outside the integral.

So you have this form just more convenient to handle and then you have this probability

distribution function for X1 to Xn. I am as of now not assuming independence between the

random variables.
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This can be written as 1/n squared*X1+so on to Xn-E of X1+so on to Xn whole squared f of

X1 to Xn the random variables x1 to xn dx1 to dxn.

(Refer Slide Time: 32:57)

What we do here is we will collect individual group terms squared+the binary product of the

individual group terms okay. So I am having this X1-E of X1 I am just simplifying this term,

I am collecting terms of the deviations. So X1-E of X1, X2-E of X2, Xn-E of Xn within the

bracketed term that is eventually squared.

So you have X1-E of X1 deviation of the first random variable about its mean, the second

deviation, the nth deviation and so on into the joint probability distribution function.

(Refer Slide Time: 34:00)



So when you do that, after taking the square you will have the squared of the deviations and

also the cross product of the deviations this is very important.  You are having the squared of

the deviations and the cross product of the deviations. The squared of the deviation times the

probability density function will represent the variance and the cross product term times the

probability density function would represent the covariance.

(Refer Slide Time: 34:41)

So we get  V of  X bar=V of  X1+V of  X2+so on to  V of  Xn+twice  the  sum of  all  the

covariance terms between Xi and Xj okay. This may be a bit difficult for some people to

follow. You may carry out the same derivation with 2 random variables X1 and X2 and you

can see that it will reduce to variance of X1+variance of X2+2 times the covariance between

X1 and X2.



When you have more random variables, it is a simple extension and you will get the sum of

the variances+the sum of the cross product terms or the sum of the covariances/n squared. If

the  covariance  between  Xi  and  Xj  was  0  because  Xi  and Xj  were  independent  random

variables  and  if  all  the  random  variables  were  independent  of  each  other,  so  that  any

combination between them will lead to a 0 covariance.

Then the entire sum of cross product terms or the covariance terms will vanish and you will

have V of X1+V of X2+V of Xn/n squared. So, so much of mathematical background is

behind the simple expression for variance of X bar okay. Suppose you had difference of

random  variables  V  of  X1-X2,  then  the  covariance  term  here  would  have  a  negative

coefficient okay.

But the actual variance terms would all be having positive coefficients or positive unity in

this case so if you had V of X1-X2, it will be variance of X1+variance of X2 not –variance of

X2 but +variance of X2 okay. The negative sign corresponding to that X1-X2 would have

come in the  coefficient  of the covariance  okay. This  is  very important  and follows from

regress mathematical background.

(Refer Slide Time: 37:15)

So if the population distribution is normal with mean mu and variance sigma squared then the

sampling distribution is also normal with mean mu and variance sigma squared/n. We assume

that the random sample entities or the random variables constituting the random sample are

independent of one another.

(Refer Slide Time: 37:44)



Now we have been talking about a lot of variances okay. So we need to be sure that we have

understood them properly. What is the difference between sample variance S squared and

variance of X bar? The sample variance is the variance of the sample you have taken okay

and that sample is averaged to give the sample mean X bar okay. S squared is the variance of

the sample okay.

And variance of X bar is the variance of the sample mean okay. S squared refers to a specific

sample. Variance of X bar refers to the many different samples that have been taken okay. So

each sample would have its own sample mean. Each sample mean may be different from one

another and hence V of X bar denotes the variability of the sample mean okay.
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S squared is a random variable and is an estimator of the population variance sigma squared.

We do not know about the population variance sigma squared, so we take the sample find its

variance because a sample will  have X1, X2, so on to Xn. So we take the values of the

random variables and find the S squared and the sample variance is based on a single random

sample of size n drawn from the population.

This is defined as for that particular sample i=1 to n Xi-X bar whole squared/n-1 okay.

(Refer Slide Time: 39:57)

Now when you are talking about sample mean,  we add up all  the random variables  and

divided by the sample size to get X bar.

(Refer Slide Time: 40:08)



Now if you draw many samples from the population, you calculate the sample mean for each

of those samples using the entities of those samples using the same formula X1+X2 so on to

Xn/n okay. So each sample will be calculated for its sample mean using the same formula but

each sample will involve its own entities okay. You are calculating sample mean for the first

sample as that first sample’s entities X1+X2+ so on to Xn/n.

The second sample will have again n entities and using those n entities, you will use the same

formula to find the second sample mean. The first sample mean and the second sample mean

need not be the same. Similarly, if you draw many such samples, those sample means will not

be the same. So there will be a distribution, so the variance of that distribution of sample

means is denoted by V of X bar or sigma X bar squared okay.

So we have now distinguished between the sample variance S squared and the variance of the

distribution of sample means variance of X bar or sigma X bar squared.

(Refer Slide Time: 41:45)

How did that come about? We have already seen, we assume that the sample means are

comprising  of  entities  that  were  independent  of  each  other  and  they  were  identically

distributed. So taking a particular sample mean, we saw that variance of X bar was defined as

1/n  squared*variance  of  X1+variance  of  X2+so  on  to  variance  of  Xn+the  sum  of  the

covariances between Xi and Xj taken in turn okay.

So  since  all  the  random  variables  were  independent  of  each  other,  all  the  covariances

disappeared and you had variance of X bar as sigma V of Xi/n squared.
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And we also made the further assumption that all these entities have the same variance, so

sigma 1 squared+sigma 2 squared+ so on to sigma n squared will become n sigma squared/n

squared or sigma squared/n okay.
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So finally to interpret variance of X bar, many random samples may have been drawn from a

population, each of them may have a different sample mean. So there will be a distribution of

sample means and the variance of this distribution is V of X bar.

(Refer Slide Time: 43:08)

V of X bar is given by sigma squared/n, larger the sample size smaller would be the variance

of X bar.

(Refer Slide Time: 43:18)



So it means that if you take large enough samples, there will be less difference between the

different samples that you have taken. So the distribution of sample means will become more

narrow if you increase the sample size.
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We also  are  now defining  another  term called  as  statistics,  any  function  of  the  random

variables X1 to Xn is termed as a statistic. Since X bar and S squared are taken from the

sample random variables by using a mathematical definition for each case, they are referred

to as statistics.
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Since they are also random variables, they have their probability distribution associated with

them. For the time being, our focus is on the sampling distribution of the sample mean X bar

okay. Later on, we will be looking at the distribution of the sample variance S squared. Each

is  described  in  terms  of  unique  probability  distribution  functions,  which  constitutes  the

fascinating variety in the field of statistical analysis.
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So this sort of concludes our discussion on the distribution of sample means. We have seen

what is meant by a sample, what is to be done in order to make the sample random and what

are the properties of the random sample and if there are many random variables in the random

sample, they have to be considered mathematically together in terms of a joint probability

distribution function.



Fortunately, in our case the random variables were independent so some simplification was

possible to the joint probability distribution, multiple integration and we were able to find

that  the  expected  value  of  the  sample  is  mu  and  the  variance  of  the  sample  is  sigma

squared/n. Here the sample size n also plays a very important role in determining the shape of

the distribution.

So we will conclude at this point and we will proceed to the next phase in a very short period

of time. Thank you.


