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Hello and welcome to this last lecture in the PDE s module. In the previous lecture, we 

had we use microsoft excel to look at hyperbolic and parabolic PDE s and how to solve 

them using the forward in time central in space method. So, we were on hyperbolic PDE 

s and the example for hyperbolic PDE that we used was partial c by partial t plus u 

multiplied by partial c by partial x, equal to minus k c to the power 1.25. At the initial 

conditions c at t equal to zero equal to one and the initial condition c at x equal to zero 

also going to be equal to one.  

So, this is the problem that we intended to solve and what we did was we use forward in 

time central in space differencing. We saw that for a small enough delta t of 0.1, still this 

particular method diverge, we got concentrations as negative values. So, next what we 



are going to do is we will use an upwind scheme because u is a positive value. What that 

means it is that it is going to be backward in sorry it is going to be forward in time and 

backward in space. 

So, upwind differencing of the of this particular PDE is going to lead us to c i comma k 

plus one minus c i comma k, divided by delta t, is going to be equal to plus u multiplied 

by backward difference that is going to be equal to c i comma k minus c i minus one 

comma k, divided by delta x, is going to be equal to minus k c i comma k to the power 

1.25. Then what we will do is we will multiply by delta t throughout, take these guys all 

on to the left hand side.  

As a result of this, what we are going to get is c i comma k plus one is going to be equal 

to we have minus k delta t multiplied by c i comma k to the power 1.25. These guys 

taken to the left hand side will yield us minus u delta t by delta x multiplied by c i 

comma k minus c i minus one, comma k. This guy when we take that to the right hand 

side we will get this as c i comma k, which we can write this as c i comma k multiplied 

by one minus u delta t by delta x, minus k delta t c i comma k to the power 1.25 plus u 

delta t divided by delta x multiplied by c i minus one comma k. This is going to be our 

upwind differencing scheme.  

Now, the stability of the upwind difference scheme actually depends on the value of u 

delta t by delta x and before as we had seen in the parabolic PDE s, with respect to alpha 

delta t by delta x squared. What we see in this particular expression also is that we need 

to satisfy the condition u delta t by delta x; the absolute value of that should be less than 

or equal to one. 

So, that is the overall condition, u delta t by delta x should be less than or equal to one is 

the overall condition that needs to be satisfied. So, as we have done before, we will take 

the velocity u equal to one, delta x equal to one and delta t equal to 0.1. With this it 

satisfies that this particular value is less than or equal to one. Keep in mind, that the 

presence of this non-linear terms does complicate the stability results quite a bit, so the 

stability results are essentially derive as a without consideration of this non-linearity this 

non-linear term that comes in over here. So, if it was a homogeneous PDE we were 

guaranteed to have stability, if u delta t by delta x is less than or equal to one, else we 

will have the overall system to be unstable. So, let us try this particular example now 



with the upwind difference scheme, we will start off with what we had previously using 

the forward in time central in space method and then modified appropriately for the 

upwind difference method.  
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So, let us start where we had left off in the third lecture of this module. We will start off 

with the hyperbolic PDE s solving using the FTCS method. So, if we go to excel now. 

This was the excel sheet that we had obtain in the previous lecture using hyperbolic PDE 

solving using the FTCS method. What I will do is I will right click on this click on move 

and copy I will create a copy and what I want hyperbolic equation using upwind 

difference. 
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Nothing else actually is going to change over here in all these blocks. What is going to 

change is really everything from this point down. So, what I have done is I have deleted 

all these values, this point down, and these are the initial conditions. Our concentration 

was equal to one and these are our inlet conditions. Again at the inlet the concentration 

was also equal to one. Now, with the upwind difference scheme what we have is c i 

comma k plus one is going to be equal to, so what we will do in this case, now we 

require u delta t by delta x not by two delta x, so that is what we are going to compute. I 

will press F 2 and I will remove this part over here now what we have is u delta t by delta 

x.  
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So, what we will do now is c i comma k plus one is going to be equal to c i comma k, 

which is this guy multiplied by one minus u delta t by delta x. I will put dollar signs. This 

guy minus k, multiplied by delta t, multiplied by c i comma k to the power 1.25. This is 

again c i comma k to the power 1.25. Now, because when i drag and drop, this k value 

and is delta t value is not going to change. I need to go back and put dollar signs at 

appropriate places, so we have k multiplied by delta t with the dollar signs there 

multiplied by concentration that is c i comma k to the power 1.25. The final term is going 



to be plus u delta t divided by delta x multiplied by c i minus one comma k; c i minus 

one comma k is this guy over here, c i minus one comma k, and i do need to put dollar 

signs for our u delta t by delta x term and that should do it.  
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I will just quickly go on to the board and show what the expression once again. We just 

want to confirm that the overall scheme that we have obtain is indeed in the excel that we 

have written down is indeed what we had before. So, c i comma k plus one is c i comma 

k multiplied by one minus that u delta t by delta x term. This is what we have computed 



separately, minus k delta t multiplied by c i comma k to the power 1.25. So, if we are 

computing for one particular, so if this is a part of our excel sheet where we are 

computing for the various location and various times. If this is our c i comma k plus one, 

this guy is our c i comma k and this is c i minus one comma k, so we have c i comma k 

multiplied by one minus that particular coefficient minus k delta t multiplied by c i 

comma k to the power 1.25 plus that coefficient multiplied by c i minus one comma. So, 

let us go back to excel and check that this is indeed what we have obtained.  
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So, let us press F2 again and check that that is indeed what we have obtained. So, we are 

you trying to compute the value for this particular cell using values at these two cells. I 

will press F2 now, and we have the concentration in the upper cell multiplied by one 

minus that constant, which is over here, minus k delta t that is the k value that is the delta 

t value, multiplied by the concentration in the upper cell to the power 1.25, plus we had 

that particular coefficient. That coefficient again comes with dollar b, dollar b dollar four 

signs, that is over here multiplied by concentration in the upper cell but, one cell to the 

left and that is what we have over here. 

So, this is essentially what we are going to get and I will just press enter and I will drag it 

along this particular row. Now, what I will do is I will highlight this entire thing, and 

then double click, and I will see that our solution indeed is stable. This particular solution 

is indeed not unstable and our concentration is decreasing both with length as well as 



with time. So, I think, we will need to go a little bit beyond time five. Maybe, we will go 

up to say time ten, so this is the overall concentration along the length of the reactor at 

time ten. We have started along the length of the reactor, the initial conditions, at all the 

concentrations equal to one, as before. Let us go and make a plot, insert for plotting this 

particular guys, we will highlight these two rows and this one scatter.  

So, as the length changes, our initial condition is that the concentration is all going to be 

equal to one. I will delete this and I will as before increase the fonts, so that everything is 

readable. I will delete this grid lines and I will just make this particular guy little bit 

shorter. Now, select data and we will add data at time one, two, five and ten, let say or 

one, two, three and ten, maybe, and I will select the concentrations along the length of 

the reactor.  

I will select the concentrations along the length of the reactors as the y axis. This is the x 

axis, the concentration along the length of the reactor are going to be the y axis, and that 

is at time one. I will add one more series and that is going to be at time two, the x axis 

data remains the same the location along the reactor. The y axis data will be the data at 

time two this and this is going to be how the concentration changes in the reactor with 

time and space.  

So, this is the concentration at the initial time, t equal to zero. This is the concentrations 

profile that we get at t equal to two; this is the concentration profile- sorry t equal to one. 

This is the concentration profile we get at t equal to two, this is the profile at t equal to 

three and this is what we get at t equal to 10. It has converged and this is essentially 

going to be our steady state concentration profiles in our PFR, transient PFR.  

Now, let us go and change our delta t from say 0.1. We will change this 0.2 and when we 

change this to 0.2, again, we find that the solution has still converged that is because u 

delta t by delta x is still going to be less than one. Now, let us change our delta t equal to 

two, and when we change our delta t equal to two, what we see is really what we are 

getting over here, if you see over here is that it is the concentration at time six has 

become negative and in indeed the concentration at location four at time 10 has minus 50 

this is minus 150 and minus 400. 



So, what we can see over here is that when the delta t is fairly high, at that time our 

overall solution is going to diverge. Likewise, the solution will diverge, for another value 

of delta t; say if we take delta t as 1.5. If we take delta t as 1.2, again we are having our 

solution diverge; solution is diverging a little more slowly, when our delta t values are 

closer to one. But, when our delta t values are further away from one, our overall scheme 

diverges very quickly. Now, when our delta t values, we take less than one again say 0.5, 

finally, will get our system to converge. 

So, the overall take home message over here is that upwind scheme indeed is able to 

solve the hyperbolic PDE s. The upwind scheme is not globally stable scheme. We have 

a range of delta x values and delta t values for which the overall upwind scheme is going 

to be stable. So, let us now go and recap what we have done so for and the overall 

methods of solving hyperbolic parabolic and as well as elliptic PDE s. We will just recap 

all these methods and finish off this particular module. 
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So, what we have done in today's lecture is taken a look at hyperbolic PDE s, but instead 

of using a central difference scheme for d c by d x, we have use a backward difference 

scheme for d c by d x. We use the backward difference scheme, because u value was 

positive. If u is negative we will use a forward difference scheme for d c by d x. when we 

did that and when we substituted all these guy in this overall equation. This is the final 

expression that we obtained. This is the expression using the upwind difference scheme 



for hyperbolic PDE s. Exactly, in the same way for parabolic PDE s, we can indeed use 

central difference scheme for d square c by d x squared and the reason for that is that 

indeed hyperbolic PDE s are going to be unstable for FTCS method, whereas, parabolic 

PDE s are going to be stable for FTCS method under certain conditions. 
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Conditions that we had obtained FTCS method is stable if 2 alpha delta t by delta x 

squared is going to be less than one. For parabolic, FTCS is globally unstable, which 

means that you cannot use the FTCS method. Whereas, the upwind scheme is stable if u 

delta t by delta x value is going to be less than or equal to one. 

So, these were the conditions that we obtained for the I am sorry I have exchange 

hyperbolic and parabolic over here. (No volume between: 19:20-19:29) Parabolic, 

hyperbolic, and for both the schemes, sorry, both the parabolic and hyperbolic systems, 

we can use either implicit method or Crank-Nicholson method, the implicit and the 

Crank-Nicholson methods are going to be globally stable methods. What I will just show 

you is what expression we will get if we were to use implicit method, for the same 

hyperbolic PDE that we have over here. In case of an implicit method, instead of c i 

comma k plus one minus c i comma k, we are going to use c i comma k minus c i comma 

k minus one divided by delta t. 
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So, that is the only change that is going to happen. So, c i comma k minus c i comma k 

minus one divided by delta t plus, we can we will retain central difference in space, so 

we will have u c i plus one comma k minus c i minus one comma k divided by two delta 

x, equal to minus k c i comma k to the power 1.25. What we then need to do we will 

multiply by delta t throughout by n and bring this guy on to the left hand side. That will 

actually yield us c i comma k plus k delta t, we will move to the left hand side. So, we 

will have plus k delta t multiplied by c i comma k to the power 1.25, plus u delta t 



divided by two delta x, multiplied by c i plus one, comma k minus c i comma, sorry c i 

minus one comma k is going to be equal to zero.  

Now, this is an implicit expression. It is an implicit non-linear expression or non-linear 

equation, in c i comma k, where i goes from one to n plus one. So, we will have n plus 

one equation in n plus one unknown, which we need to solve simultaneously. So, this 

particular equation becomes the ith equation f i in X bar where and I will use a capital x 

bar over here rather than small x bar, where X bar is going to be equal to c one comma k 

c two comma k and so on up to c n plus one comma k.  

So, what happens is that at each time, we will have, if we were going to use either an 

implicit or a Crank-Nicolson method. At each time, we have to solve f bar of X bar k 

going to be equal to zero bar. We can solve this using say the Newton Raphson’s method 

and we can keep repeating this, at every iteration, at every time step, in order to finally, 

get the overall solution for the various concentration c, as a function of time and space. 

At each time, when we solve this equation, we will get concentration c along the length 

of the reactor at that particular time. Then we go on to the next time we get 

concentrations along the length of the reactor at the next time so on and so forth.  
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So, that is essentially what we are going to get by solving this particular equation using 

implicit method. So, this is the term c i comma k over here, c i comma k multiplied by k 

delta t, we have moved on to the left hand side. This is a term that I have missed out 

actually. So, this particular thing is little bit incorrect. I do have to in cooperate that term 

also, minus c i comma k minus one equal to zero. So, this is how the overall expression 

is going to look like.  

Now, if we go over to look at our map in microsoft excel that this is the kind of map we 

had obtained where this starts species or sorry the start value, we were getting it from the 

two values above. But, instead if we are going to make the same kind of a block for this 

system over here and this is the star is the value that we are interested in finding that is c 

i comma k. 
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Now, c i comma k depends on c i comma k itself, so I will put a dot in this particular 

block, as well as it depends on c i plus one comma k, so it depends on this guy. It 

depends on c i minus one comma k, which basically means that it depends on this guy. 

As well as it depends on c i comma k minus one, which means it depends on this guy. 

So, when we are using central difference scheme in a space and we are using and fully 

implicit method, the value of star depends essentially on the values, at the same time, and 

the values at the previous time as well.  



So, this is the overall linkage of any cell in the microsoft excel is what we are going to 

get, whereas, in an explicit method the values at this cell are only link to the values at 

previous cell, which values we already know. As a result, the explicit methods are much 

easier into solve using any of this standard techniques. The implicit methods are that 

much more difficult to solve. The advantage we get within a implicit method that is that 

that implicit methods are going to be globally stable.  
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Now, we will go on to one finally, aspect of solving PDE s using what is known as the 

method of lines. I will mention that just for the sake of completeness, method of lines, is 

applicable for hyperbolic as well as parabolic PDE s. it is not applicable for elliptic PDEs 

and the idea behind method of lines is that you have for example, dou c by dou t, plus u 

dou c by dou x equal to minus k c to the power 1.25. The idea behind method of lines is 

discretize in space only. When you discretize in space our PDE gets converted to ODE in 

time. What I mean by that as before we just discretize c in terms of c one, c two, c three 

up to c n plus one, we do not discretize this in time. 

So, when we discretize this in space for at any location i; at any location i, what we are 

going to get is d c i by d t is plus u multiplied by c i minus c i minus one divided by delta 

x, is going to be equal to minus k c i to the power 1.25. We will be able to write this for 

all of the locations. In case of location two, we will have c i minus c one, sorry we have c 



i minus c two minus c one and c one is going to be give in to us as c one was equal to 

one. 

So, we would not actually use n plus one equation in n plus one unknown; we will 

actually use n ODE's and n unknowns. We can then solve the n ODE's in n unknowns. 

So, what we will define our x as; x we will define as c two c three and so on up to c n 

plus one. Keep in mind, c one is going to be equal to one, so c one equal to one is not an 

ODE. It is an algebraic equation, so we would not involve c one in this particular 

equation, in this particular scheme. When we define this we are going to get d x by d t is 

going to be equal to some g of x bar. 

 This d x d c by d t depends on c i and c i minus one only as a result this g of x bar. In 

each of those g of x bars c, c i is going to depend only on those two components. So, this 

is the overall ODE that we are getting. So, from the PDE we have finally, gone to ODE 

and this ODE, (no audio between: 29:45-30:01) we can solve it using any of the ODE-

IVP methods for example. We can use fourth order a Rungakutta method, so that we get 

a lot of accuracy with respect to time. Then all we need to worry about is essentially the 

accuracy in the x direction, the small x direction, the accuracy in the spatial direction. 

So, this is the final method again we are not going to solve a problem using the method 

of lines; however, I want to state this because important method for solving over PDE s. 

All that we have done is using the same ideas as before the concepts from numerical 

differentiation, we have implemented that over here. Using that we have converted our 

overall PDE into ODE and then we can use any of our ODE solving techniques. 
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So, what I just wanted to spend the next fifteen minutes or so on is just to give an over 

view of everything that we have covered in this particular lecture series module one. We 

had just looked at introduction and basically what we did was the definition of the 

computational techniques that we use was the computational techniques or the numerical 

methods. We are going to solve the problems using stepwise repeated or iterative 

methods. As you have seen, for example, when we talked about PDE s in today's lecture 

what we saw over there is be found out how to get values from initial time zero to time 

delta t. The solution at time delta t, the same expressions we used to go from delta t to 

two delta t, same expressions we used to go from two delta t to three delta t, so on and so 

forth. 

That method was a step wise method. It was a repetitive or an iterative method that 

means we use the same set of equations, in this particular case, it was a repetitive method 

that means we use the same expressions, in order to get the values of temperature or the 

values of concentration at the new time, along the length of the reactor or along the 

length of the rod. Now, these particular problems, for example, the linear example that 

was the heat loss from the rod is very much solvable by hand, because analytical solution 

exits. 

It is a linear equation, but the problem of the nature that we saw in today's lecture, they 

are quite difficult to solve by hand, because of the nonlinearity associated with c to the 



power 1.25. You can indeed solve this problem still by hand, but for example, if you had 

to solve this coupled with the energy balance equation, we get the Arrhenius term e to 

the power minus e by r t that becomes extremely difficult to solve by hand. 

If you were to use a calculator and do all this punching in the calculators is going to be 

very tedious, in order to use the calculator, and it is going to be unsolvable by using 

some of the analytical techniques. So, what these computational techniques allow us to 

do is use the step wise and repetitive procedures, in order to get the final solution that we 

desire.  
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We went to the historical prescriptive using the Babylonian methods for solving the 

problem of getting square root of 2 and that is what we did. Finally, we talked about 

errors and in case of errors; we talked about precision, accuracy and the number of 

significant digits. The most important thing, basically, we talked about the difference 

between the truncation errors, round off errors and where exactly this truncation and 

round off errors appear, because of and we talked about the finite precision algebra and 

the binary number systems and that is essentially what we covered in the second module 

of this particular lecture series.  

Taylor series expansions is essentially is, if we have gone through all the lectures you 

will realize the Taylor’s series expansion is something the that appeared again and again 

in most of our derivations, either in the derivations or in finding out the error analysis for 

that particular system. 
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That is what we did in modules one and two and in module three; basically, we talked 

about the linear equations. Linear equations, we before going to that we did a quick recap 

of linear algebra and linear equations, we get a geometric interpretations saying that the 

linear equations involve nothing, but intersection of two lines. We put the linear 

equations in the matrix form, as we have shown over here and then we use various 

numerical schemes to solve the equations a x equal to b. And the reason to put it in this 

general form a x equal to b is so that we can come up with a numerical scheme, which is 

going to be independent of the number of equations, the number of unknowns so on and 

so forth. 
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The methods that we saw in this particular module are basically the Gauss elimination 

method and we analyze this Gauss elimination method and said that the computation 

effort is of the order of n cubed. We talked about the Gauss-Jordan method and Gauss 

Jordan method; we said was a very useful method if we want we were interested in 

finding out the matrix inverse. 
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So, Gauss-Jordan method is very useful for the matrix inversion. LU decomposition 

method is another method that we talked about and then we went to the iterative methods 



for solving linear equations, the Gauss-Siedel iteration, the Jacobi iteration then we 

talked about under relaxation and over relaxation methods. Eigen values and 

eigenvectors, we did not cover numerical methods to get eigen values and eigenvectors, 

but we went to over to the physical meaning of the eigen values and eigenvectors was. 
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And after that we went to solving non-linear algebraic equations and the idea of non-

linear algebraic equations is given a function f x equal to zero. We want to find out the 

values of x that is satisfies the equation f x equal to zero. The procedure that we used are 



for example, in this particular example, these are the two points at which this curve 

intersects the x axis. These two points are the solutions of f x equal to zero. We saw 

various methods to solve the problem f x equal to zero. All these methods would obtain 

one solution at a time; we will not get both these solutions simultaneously using any of 

the methods that we spoke about.  
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The general strategy we used for solving the non-linear equations is we started with 

some kind of an initial guess. We either started with one or two, initial guesses, based on 

the method we used for solving. Based on this method for solving, we use a chosen 

strategy in order to move hopefully in the direction of the solution. So, we will move 

from this initial spot to this new spot, using our chosen strategy. If this spot, this new 

solution is close enough to the true solution, we can find that out by couple of methods 

seeing how much the new solution has deviated from the previous solution. If the 

stopping criterion is satisfied we say that this is going to be our solution. If the stopping 

criteria is not satisfied, we repeat this particular procedure iteratively till the stopping 

side criterion satisfied and that is when we have obtain the solution. 
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The methods that we have used were categorized into two types of methods. One was the 

Bracketing method and we saw two methods for Bracketing method, one was the 

Bisection and the other was Regula Falsi method. The bisection method, we saw was a 

linearly convergent method that means error in i eth iteration depends linearly on the 

error in i minus one th iteration. 

The Regula Falsi method was super linear, which means the error in ith iteration 

dependent on error in i minus oneth iteration to the power 1.5 or 1.6. Then we looked at 

various open method; the Secant method is also a super linear method, the Fixed-point 

iteration is a linearly convergent method and the Newton-Raphson’s; Newton-

Raphson’s, we saw was the reasons for Newton-Raphson’s to be the most popular 

method and specifically the reasons are its a second order convergent method is the first 

reason, and the second reason for popularity is that it is very easily extendable to 

multiple equations in multiple unknowns. 

Then we discussed modifications and extensions to the Newton-Raphson’s methods 

particularly, but also to the other methods and finally, we talked about the Bairstow’s 

method for finding out the roots of a polynomial. So, if you have an nth order 

polynomial the nth order polynomial has n roots, which we can find using method 

various method and a popular method is Bairstow’s method. 
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After that we talked about regression and interpolation; the idea behind regression is that 

given x and y data, so this is one sample data. The idea behind regression is to fit a line 

or second order curve in order, which best fits the data. So, we decide the kind of 

functional form that this curve is going to have, and then we are going to use various 

techniques in order to find the best fit curve. That is the idea behind regression.  
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The idea behind interpolation is to find a smooth curve that can pass through all the 

points, all the data points that we have. The difference between regression and 

interpolation is that the regression is trying to fit a function to the various data and it is 

ok if there is an error between the function and the data. The objective is to minimize this 

particular error. The objective in interpolation is that the curve should pass exactly 

through all the points that we have been given, so that we can find out the values at any 

of the intermediate points. For example, if we were to find the value at x equal to two 

point five, we can get this particular functional curve and then just read the value of y at 

this particular point, so that is the idea behind interpolation. 
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Then after that we took a couple of examples for regression. We said that for example, if 

we were to find the kinetic rate constants, our k zero and the activation energy and 

concentration to the power, if it is concentration to power alpha, then that alpha value 

also. In that case, we can take algorithm and converted into a linear regression problem 

and this becomes our y this becomes our, a naught, and this becomes our x and this 

becomes our, a one. And then we can solve this particular linear regression problem in 

order to get an approximate straight line fit as we have shown over here. So, this we 

could, we termed this as a functional regression we get a functional form and convert 

that particular function in such a way that we can use a linear regression technique. 
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After regression we went on to differentiation and integration; numerical differentiation 

and integration, we interpreted the numerical differentiation as nothing but finding slope 

of a tangent and then we said that the differentiation d y by d x, can be approximately 

written as y i plus one minus y i minus one divided by x i plus one minus x i minus one. 

This is exactly what we have used in the forward difference scheme in today's lecture. 

we did not use the forward difference indeed we use the backward difference scheme in 

case of a spatial derivatives. So, we had y i minus y i minus one, divided by delta x. In 

case of time derivatives, we use y i plus y k plus one minus y k divided by delta x and 

the idea behind this is that we need to choose our delta x or our delta t values, small 

enough such that delta a delta y by delta x, represents as closely as possible the true 

numerical derivative. So, these were the concepts from numerical differentiation that we 

actually imported into the PDE solution techniques using the finite difference method. 
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In the integration, the idea is that given a curve f of x d x, we want to find the area under 

the curve, which basically is integral from a to b, f of x d x. So, the shaded area is really 

the area under the curve and the solution to that integration problem.  
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Then talking about the numerical differentiation, we looked at the forward difference the 

backward difference, the central difference scheme. We saw that the forward and the 

backward difference schemes for finding d f by d x were order h accurate, whereas, the 

central difference scheme was order h squared accurate. We saw what that means when 



we were talking about the partial differential equations, solution to the partial differential 

equations. And then we talked about a three point forward difference, three point 

backward difference formulae, as well, where instead of using x i plus one x i and x i 

minus one instead we use x i plus two, x i plus one, and x i. Likewise, in backward 

difference we will use x I, x i minus one and x i minus two, and those methods were h 

squared accurate. 
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We then also looked at the various ways of getting the higher derivatives, the second 

derivatives using the central difference scheme and indeed central difference scheme for 

second derivatives, was something that we used in the previous lecture, for solving 

parabolic PDE s in a single variable. 
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And what we also covered was how the round off and truncation errors change with the 

step size and here is was the plot of the actual total error using forward central and three 

point forward difference scheme. Then we say sort of saw that epsilon to the power one 

by two was the best values of delta x that you can take for a forward difference scheme. 

The best value of delta x to take for a central difference scheme is epsilon to the power 

one third and that is what this particular curve shows over here; the trade of between 

round off and truncation errors.  
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And then when we went on to integration we looked at the various integration formulae 

and the integration formulae was the trapezoidal, Simpson’s one-third and Simpson’s 

three-eighth rule. A trapezoidal is very popular, because it is a very simple way of 

applying the numerical integration scheme. It is order h cube accurate, so the accuracy is 

not bad at all for the trapezoidal rule. After trapezoidal rule, the next very popular 

method is Simpson’s one-third rule, because it is h to the power five accurate, but it uses 

only two intervals. Simpson’s three-eighth rule uses three intervals but, it is still h to the 

power five accurate. As a result of this, we did not use the Simpson’s one-third rule or 

Simpson’s one-third rule uses not as popular as the trapezoidal and Simpson’s one-third r 

the three eighth rule sorry is not as popular. 
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And then we talked about the Richardson’s extrapolation and the Richardson’s 

extrapolation is that you use two techniques using two different values of h. Based on 

this particular equation, you can get a slightly higher accuracy method using the 

Richardson’s extrapolation. 

(No audio between: 46:34-46:45) 
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Finally, we covered Gauss-Quadrature method, which is an open type of method. And 

the idea behind the gauss quadrature method is that given this particular curve and you 

want to find the area, the shaded area and the integral from minus one to one, which is 

going to be a weighted sum of the function values at specifically chosen location. 
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Module seven and eight were ODE's solving techniques and the idea behind ODE's was 

that given f of x, f of y comma t as the slope of the curve y versus t, we want to find the 

values of y, how the values of y change as the time t increases. This was all that we 

covered in ODE initial value problems. We covered the Runge-kutta family of methods, 

we talked about explicit versus implicit method, we use higher order Rungekutta method. 

We spend of fair amount of time on R-K two methods, specifically the midpoint method 

and the Heun’s method, looked at error analysis and stability of these methods, we said 

essentially that the implicit methods are going to be globally stable, whereas, explicit 

methods are not going to be globally stable. They have a range of delta t values for 

which the explicit methods are going to be stable.  

After that we went to the predictor corrector family of methods. We took the Heun’s 

method which was a second order accurate method and modified this in a predictor 

corrector form. Finally, talked about the Adam Moulton's family of methods, these were 

the three different classes of methods for solving ODE-IVP. And then we took, we 

specifically in the last two lectures of this module, I think lecture eighth and ninth of this 

particular module, we covered adaptive step sizing and solving multiple ODE's using 

stiff ODE solvers. The whole idea behind this was to give you an introduction to some of 

the various advanced techniques that are covered in ODE-IVP methods. 
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So, what we did in the ODE boundary value problem was to cover what is the difference 

between the initial value problem, which is hinged only at one initial condition, whereas 

a boundary value problem which as hinged at both the boundaries. That is how we 

motivated our boundary value problem and then we solve the boundary value problem 

using two different methods; one was the shouting method and the other was the finite 

difference method.  
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And in the shouting method what we did was we covered the boundary value problem 

into an initial value problem and solve the initial value problem along with a Newton 

Raphson’s type of a technique in order to get the final solution. 
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And in finite difference method we converted the boundary value problem into linear or 

non-linear equations. Finally, in this particular current module, we have covered how to 

solve partial differential equations specifically classified PDE s into hyperbolic, 

parabolic and elliptic equations and saw the various methods of solving this PDE s. 



So, that is really the overview of what we have done in the last 40 lectures and this 

particular lecture in our computational techniques lecture series. What I invite you to do 

essentially is go over and solve the various problems that we have solved using the 

microsoft excel, solve them yourselves, so that you can get acquainted with the various 

numerical techniques. The really the only way to get acquainted and get comfortable 

with numerical techniques is through solving the problems.  

We will have several problem sheets and problems are there, good problems are there, in 

the various textbooks and the various sources that I have recommended specifically the 

text book by Chapra and Canal, on Numerical Methods for Engineers and book by 

Professor S.K Gupta again on numerical methods for engineers. Specifically, professor 

Gupta's book is written by a chemical engineer for chemical engineers, although it has 

various other problems also.  

So, hopefully you have gained a fair amount of initial knowledge about computational 

techniques in this particular lecture series and that will hopefully give you the confidence 

to look at the more advanced techniques that you will be using either in your research or 

in your job, wherever your job takes you.  

Thank you and thank you for listening to these lectures. 


