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Hi and welcome to this lecture seven of module seven. In the previous lectures, what we 

have been discussing is ordinary differential equation, initial value problem and we have 

considered several methods error analysis and stability analysis for these methods. So, I 

will just go over and do a very quick recap on power point slide and tell you what we are 

going to cover in the next two lectures. 
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What we have covered so far is ,we started off with Euler's method, then we talked about 

in general, about Runge-Kutta methods; made derivation for Runge-Kutta second order 

method as well as solve with the results for, fourth order Runge-Kutta method we 

performed error analysis, and saw that the truncation error for Euler's method was the 

accuracy is of the order x square  for the r k two method. The accuracy is of order of h 

cubed for r k four method. The order accuracy is of the order of  h to the power five. All 

these accuracies that are errors that we talked about or in context of what is known as 

local truncation error and I will come back to that in the next slide, so we did a error 

analysis for the Runge-Kutta family of methods followed by the stability analysis. Then 

we took up Heun’s method and put in a predictor-corrector form as well as. we 

considered a explicit versus implicit methods specifically we took the explicit Euler's 

method and implicit Euler's method and saw the stability results for a linear system. 

We compared the second order r k method with the Heun’s method, which is a predictor-

corrector method and compared with the Crank-Nicholson, method which is a semi-

implicit method. So, and the final thing we covered in the previous lecture was extension 

to multivariate case. A specifically we saw the Euler's methods extension to the 

multivariate case and then we discussed, how you can extend in in the similar manner r k 

two and r k four methods, as well those extensions are actually not just limited to r k type 

of methods the same extension will work in any other type of method for o d e solving 

that we are going to consider so far ok. 
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So, that was what we have done so far in the first six lectures, in the second, in the next 

two lectures of this series, this is what we are going to consider. In this particular lecture, 

we are going to compare global versus local truncation error and then we are going to 

cover three advanced topics in this lectures, I will go over I Chardson's extrapolation 

recall that Richardson extrapolation, something that we had done, when we were 

discussing integration techniques. So, what we do is we will get h to the power nth 

accuracy solution and use Richardson extrapolation to get h to the power n plus one 

accurate solution that is what we had seen in module six of this particular course and 

how it would be extended to o d e initial value problem we will talk about that today, 

more importantly  I am going to talk about what it means by adaptive step sizing the 

similar kind of idea that is used in Richardson’s extrapolation a slight modification of 

that would be actually used in deciding the step size in the adaptive step sizing method 

and finally, we are going to consider what is known as stiff o d e’s I will essential define 

what is stiff o d e is means and why the stiff o d e’s cause numerical problems and this is 

what we are going to cover. And finally, in the next lecture we are going to cover Adam-

Moulton family of methods and that will essentially finish what I intent to do in o d e 

initial value problem, module seven ok 
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So, now, let us go to this lecture, what i will do is i will again go to Microsoft excel and 

pick up a sheet that we were using in the previous lecture. So, let me just bring up 

Microsoft excel over here. 

So, this is the sheet that we were using in the previous lecture, what we wanted to solve 

is d c by b v equal to minus c to the power 1.25 divided by 2 this expression, we obtained 

by were deriving the design equation for a plug flow reactor, we start with initial 

concentration of the desired of the reactant as equal to one and starting with this initial 

concentration of one and the actual concentration keeps decreasing as the time, as the 

volume keeps increasing.  

So, we had what we had done is - we had derive or we had used this particular method 

for various different values of h for h equal to 0.125  we had use this method and what 

we had done is at volume equal to 5, we saw that the error was ten to the power minus 

seven. 
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What we did next was, we change h to h equal to 1 and for h equal to 1, the error in case 

of volume v equal to 5 was equal to10 to the power was of the order of 10 to the power 

minus 4 and with all these results, we had made error comparison between Euler's 

midpoint and r k 4 method and this error comparison is shown on this particular graph, 

all this we had done in two lectures earlier. 
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So, now, what I am going to do is I am going to talk about, what is known as local and 

global truncation errors. So, we do not need any of this information. So, I will just delete 

that and I will just keep the values of v from zero to 5. So, what we are did over here is 

we started with the initial condition at v equal to zero and reached v equal to 5 over here. 

Now, what I am going to do is I am going to take these two rows and then just paste 

them over here and I will restart them I will just color them with a different color. So, we 

are able to see how these are actually going to be different. 

So, I will just fill them with a yellow color over here and I will redo this, calculations for 

four equal to 4 and 5 and instead of using the approximate value over here. What I am 

going to do is - am going to use the real value of the true value of c i plus one that we get 

am going to use that over here. And if i were to use the actual true value so, I will just 

copy this particular true value and paste that true value over here by putting paste values. 

Now, what we see over here is let us say, we started off from v equal to zero and we 

reached v equal to 5 when we did that the error was 6 into 10 to the power minus 4. 

However, were we to start with the exact value of at v equal to 4 and then take one step 

to go on to v equal to 5, we will find that the error is significantly lower in this particular 

case. This error that we get is essentially, the local truncation error and this error, that we 

have got in is the global truncation error. 



So, the difference is like this, in the local truncation error, what we do is - we assume the 

previous value, that we had was the actual true value. So, the value at v equal to 4 was 

true value, if the value at v equal to 4 had been the true value, what would be the error at 

v equal to 4 plus h that is v equal to 5. So, if we started off with the true value, we will 

reach this particular value at v equal to 5 and in that particular case, the difference 

between the true value at v equal to 5 and the numerically computed value at v equal to 5 

is 6 e minus 5. However, if we were start at v equal to zero and reach v equal to 5 

through 5 steps in that case, the global truncation error is going to be 8 into 10 to the 

power minus 4 which is an order of magnitude higher than the local truncation error that 

we get over here. 

So, that is the difference, really between the global truncation error and the local 

truncation error. So, I will just go back to the board and discuss a little bit more about 

global and local truncation errors I would not do the derivation, but essentially give you 

the results for the Runge-Kutta family of methods. 
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So, what we saw in the excel sheet right now, just now is this, we wanted to compute the 

value of concentration, how the value of concentration changes with the volume and we 

were interested in calculating, the value of concentration at volume v equal to 5 and am 

going to blow up the differences the between the numerical value and the actual value, 

just so that we are able to see the what we really mean by the local and global truncation 



errors. So, what we started off? We started off at v equal to 1, and the white line that I 

am showing over here; let that represent the true solution. 

So, we started off at v equal to 1 and reach, sorry, v equal to zero and reached v equal to 

5 in 5 steps 1,2,3,4 and 5. So, this is how the true value goes. Now, let us say that we use 

a numerical method r k four type of a numerical method. In order to, compute the same 

values at 0, 1,2,3,4 and 5. Now, we are starting off again at the same concentration c 

equal to 1 at volume v equal to zero. We use the chosen method, say the r k four method 

once and form this particular point let us say, that we reach this point over here, we apply 

the same r k four method. Once again and from this point we will reach this point to that 

i am showing over here from this point onwards, if i apply this method again I will reach 

here, I will from this point onwards,  I will reach here and finally, I reach this particular 

point. 

So, if we take a magnifying glass and just blow  this thing up, what we will see is we will 

the curve coming like this and this purple cross over here. So, this is the magnified view 

of this particular region and this is the true solution. So, what we do next is let say, some 

how this particular solution is available to us, if this solution is available to us we restart 

our r k four method at v equal to four we restart out r k four method at the true value. So, 

if we restart this, r k four method at the true value and run this r k four method once, then 

from this point the next point that we get the next numerical solution ends up being over 

here this particular dot that I have shown. And when we blow up this particular picture 

what we get is really that this dot ends up over here if we had started with the true value. 

So, now, if we were to calculate the errors in getting this purple dot what this represents, 

this particular gap, represents the local error in r k four, what that means is that the y i 

plus1. The true value of y i plus 1 is equal to y i plus 1 from the r k four method plus an 

error term, which we can write it as some concern c 1 h to the power 5. 
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So, this error is proportional to the fifth power of the step size that I have chosen. Now, 

this error is the local truncation error. This error is the error, going from the ith value to i 

plus 1th value assuming the ith value was the true value. So, this represents the local 

error. Now, when we started with c e c at v equal to zero, we went from c c zero to c 1, 

when we went from c zero to c 1, there was a local truncation error associated with this 

value of c 1. So, when we then go from this value, this numerical value to the next 

numerical value, there will be some error associated with the fact that the numerical 

method is not accurate. This has certain error itself, there will be some other error 

associated because of propagation of this particular error. 

So, this error results in some of the error in the future step and there will be some error 

that will be cause because the numerical method itself is inaccurate. So, the effect of both 

these errors is comes in the global truncation error and this difference is going to be the 

global truncation error. And this particular difference between the global truncation error 

and the local truncation error, this arises due to accumulation of past error. So, the global 

truncation error, we can say is going to be some kind of a combination of the local 

truncation error plus accumulation of past error, I am, I do not mean this as an equation, I 

just mean this as a literal statement of fact is that the global truncation error has a 

component of the local truncation error. As well as component, because of the 

propagation of the errors go starting at starting point and going to the desired point as for 

this numerical method. 



In general, what we had seen is for r k 2 method the local truncation error was of the 

order h to the power 3, the global truncation error will be of the order h to the power 2 

for r k four method. The local truncation error was h to the power 5 the global truncation 

error would be of h to the power 4. So, for any r k method, what we actually get is for an 

r k r k n method, if the accuracy is h to the power m in the local truncation error, then the 

accuracy is going to be h to the power m minus one in terms of global truncation error. 

So, the forth order r k method is going to be h to the power four accurate in the global 

sense and not h to the power 5 accurate, as we had derive in the previous lectures, what 

we had derived in the previous lectures is local truncation error, which does not consider 

the fact that as we propagate into the future or into the larger volumes, this the effect of 

truncation error, the effect of truncation error that have been accumulated in the past also 

effects the overall error in the system. So, that is the difference mainly between the 

global truncation error and the local truncation error. 
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So, that is one part that I wanted to cover today. The next thing, I will cover today is will 

go on to a little bit more advance topic, really what I want to cover is adaptive step sizing 

but, before going to adaptive step sizing. we will look at Richardson’s extrapolation you 

will recall, what we had done in Richardson’s extrapolation in module six was we 

computed the integral for h, we recomputed the integral for h by two and used these two 

integrals in order to compute a better value or a more accurate value of  integral. 



So, and we had said, I knew was going to be equal to 2 to the power n multiplied by i h 

by 2 minus i h divided by 2 to the power n minus 1. So, this is what we had derived in 

the previous module, we are essentially going to go, over all most exact same derivation 

for Richardson’s extrapolation in case of the Runge-Kutta methods or in case of, o d e 

solution methods. So, the idea is this, what we want to do is - we want to get y i plus 1, 

as accurate as desired, what do we mean by as accurate as desired is that we need to 

define what tolerance value that we need. 

So, we need to define and we will call this, as if we have been doing in the past, will call 

this as epsilon tol - that is - the desired tolerance value or desired error value that we will 

give. Now, in Richardson’s extrapolation before going to and or talking about this 

particular tolerance values and so on will go over there is Richardson’s extrapolation the 

idea is this the true value y i plus 1 the true value is going to be equal to y i that is 

complete or y i plus 1, which is computed numerically plus some constant c 1 multiplied 

by h to the power 5 for the r k 4 method. 

This is what essentially, we had written over here, I have just rewritten this particular 

equation over here for r k 4, we have the true value y i plus 1 bar equal to y i plus 1 plus 

c 1 h to the power 5. What I will do is I will just modify this a little bit in line with what 

we had done over here. And I will put in bracket y i plus 1 h plus c 1 h to the power 5. 

So, this is using the r k 4 method. Once going from y i going from y i to y i plus 1. This 

is what we get. Now, let us, redo the same thing going from y i to y i plus 1 in 2 steps. In 

this case, the step size is going to be h by 2. So, we will go from y i to y i plus half and 

from y i plus half, we will go to y i plus 1 computed at with a step size of h by 2. 

So, this particular method, when we use this method is going to be more accurate, as we 

have been seeing all throughout this method is going to be more accurate in giving us the 

value of y i plus 1 compare to the method in which we are going to use one single step to 

go from y i to y i plus 1. Now, there will be error that is going to be associated with this 

particular step, as well as an error that is associated with this particular step. So, we will 

have our y i plus half bar is going to be equal to y i plus half plus c 1 h by 2 to the power 

5. So, this is going to be our true value of y i plus half y i plus 1 bar is going to be equal 

to that the value computed at y i plus 1 from this particular guy plus the error that that we 

will get at y i plus 1. 



So, now, this error is also going to propagate into the future. So, without going actually 

into any of the numerical complexities into this, I will write this y i plus 1 is going to be 

approximately of the form of y i plus 1 plus 2 times c 1 h by 2 to the power 5, the first c 

one h by 2 to the power 5 comes, because of the go from y i to y i plus half the second c 

one h h by 2 to the power 5 comes because of the local truncation error going from y i 

plus 1 to y i plus half to y i plus 1. 
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So, this is essentially, how we will write our y i plus 1, we when we go for the true value 

of y i plus 1 related to y i plus 1 computed by taking two steps and because it is 

computed by taking two steps, I will put in the bracket y i plus 1 h by 2, as I have we had 

done before we will multiply, this particular equation by 2 to the power 4 not 2 to the 

power 5 but, 2 to the power 4, just as we had done in the integration method we will 

multiplied by 2 to the 4 and then subtract this equation from this equation. So, we will 

get 2 to the power four y i plus 1 equal to 2 to the power 4 multiplied by y i h by 2 plus c 

1 h to the power 5. 

So, we had two times c 1, we had two times c 1 h by 2 to the power 5, when we 

multiplied this with 2 to the power 4 all this got canceled away. And we were left with c 

1 h to the power 5 and that is what I have written over here as well as y i plus 1 i forgot 

the bar over here is going to be y i computed with h plus c 1 h to the power 5 and of 

course, there are c 2 h to the power six is c 3 h to the power 7 terms also and so on over 



here which are not going to get canceled, because we will have we will essentially have 

plus c 2 h to the power 6 by 2 and here we will have c 2 h to the power 6. This is the 

term that I had not written down earlier. 

And now, when we subtract these two equations and then divide throughout by 2 to the 

power 4 minus 1, we are going to get y i plus 1 is going to be equal to 2 to the power 

four y i h by 2 minus y i h divide by 2 to the power 4 minus 1. So, this is essentially, 

what we are going to get we can write this as sixteen times y i plus 1 I should have here 

sixteen times y i plus 1 h by 2, I can write this as fifteen times y i plus 1 h by 2 minus y 

or sorry plus y i plus 1 h by 2 minus y i plus 1 h divided by 15 and which we will be able 

to write it as y i plus 1 computed at h by 2 plus delta divided by 15. Where delta is 

defined as the difference y i plus h by 2 minus y i plus 1 h and this is going to be our 

final result and similar derivations can be done for the r k 2 method also and for r k 2 

method we are going to get. 
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So, for r k 4 ((no audio 29:13 to 30:22)) now, how this 15 comes in, it comes in 2 to the 

power four minus 1 likewise, this 3 comes in because it is going 2 to the power 2 minus 

1 the exponent is the order of accuracy minus 1. The local truncation error is h to the 

power 5 accurate over here h to the power three accurate over here. So, the exponent for 

two is going to be one less than the local truncation error accuracy. So, it is two the 

power 2 minus one that that becomes three and the overall accuracy of this method 



increases by one order. So, it is increased from h cubed to h to the power 4 and this is for 

the r k 2 method this is for the r k 4 methods that we get. 

So, these are the results of Richardson's extrapolation, now the idea is this particular 

difference delta this in Richardson's extrapolation was use in order to improve the 

accuracy of the r k method and go to a more accurate method however this delta says 

something about the true error that we might expect to have in this particular system; to 

the new topic, we are going to tackle is adaptive step sizing. 

So, y i plus 1 bar is y i plus 1 computed with h plus c 1 h to the power 5 y i plus 1 bar is 

going to be equal to y i plus 1 computed at h by 2 plus 2 times c 1 h to the power 5 

divided by h, sorry, h by two to the power 5. So, when we take the difference between 

these two, we will get zero is equal to delta plus h to the power 5 c 1 by 2 to the power 

four minus c1. So, what we have done is - we are subtracted this equation from this 

equation, these two are the true values and therefore, the differences going to be zero the 

difference between these two values is going to be equal to delta and the difference 

between these two values is going to be some constant multiplied by h to the power 5. 

So, we take this particular equation on to the other side and we can, so this is going to be 

1 by 16 minus 1 take it to the other side will become 1 minus 1 by 16 or 15 by 16. So, we 

can write this as delta is going to be the estimate of the delta is going to be h to the power 

5 multiplied by 15 c 1 by 16 or it is some constant this of  this particular form this 

particular value is constant and it depends essentially on y i and y i plus 1 based on the 

mean value theorem and the exact value we will not have an estimate of unless the true 

solution is exactly known. 
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But what this says is that the delta that is the difference between these two guys is 

proportional to h to the power 5. So, delta is some constant some other constant c 

multiplied by h to the power 5 c could be 15 c 1 divided by 16, if you want to write it 

that way. 

So, this is the value of delta this is estimate value estimate of this particular difference 

delta, now if h was the step size, this is going to be the delta that will get, so delta at new 

for another h new is also going to be c multiplied by h new to the power 5. So, if we 

were to change h from the actual value of h to a new value of h h new this delta will 

change from this true delta to the ah delta new. 

Now, we can take basically divide this particular equation by this equation and what we 

are going to get is delta new divided by delta is h new divided by h to the power 5 and 

we can just rearrange this and we can write this as h new equal to h multiplied by delta 

new divided by delta to the power 1 by 5. So, what that what this equation says is... So, if 

we change from h to h new, the difference between a more accurate method and the less 

accurate method is going to change from delta to delta new. 

So, now, if we instead of choosing this the delta new arbitrarily, if we choose that delta 

new equal to the tolerance value, then the h new that we are going to get is the step size 

that will help us in reaching that particular tolerance value. 
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So, what we are going to write over here, is that h new is going to be h multiplied by 

epsilon tolerance divided by delta to the power 1 by 5. So, what we mean by that is we 

can go back to this particular schematic that we had drawn for the r k 4 method is if this 

particular error is not acceptable to us. 

What we need first is we do not know the true solution. So, we need a method to find out 

to estimate, what this particular error is going to be, so what we will do is in addition to 

running this particular method, using this step size we will also run this method, using 

the h by 2 step size and we will get this red crosses using h by 2 this guy is delta. 
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Now, if this delta is acceptable to us we keep the same h, if this delta is not acceptable to 

us we are going to change that. How we are going to change that h? We are going to 

scale that h in this particular manner, it depends on the tolerance value divided by delta 

to the power 1 by 5 that 5 comes in because, this method is accurate to the order of h to 

the power 5. 
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So, if this delta is too large, what we are actually going to do is we will shrink the step 

size if the delta is much larger than the epsilon tolerance, if delta is larger than the 

epsilon tolerance, what is going to happen is this number is going to be less than one, if 

this number is less than one h is going to shrink a little bit. 
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So, what is going to happen next is instead of taking a full step h, of this form we will 

then decide to take a shorter step h. So, instead of going all the way over here, we will 

decide our h is going to be this much and we will what we will do is from this point to 



this point, we will take we will want to take a step of h, again we repeat this adaptive 

step sizing once again. What we will do is we will take this particular h and redo this by 

taking two steps and those two steps are shown as circles; again we will compute this 

delta, again if this delta is not good enough, we will take a smaller step than the step that 

we had taken previously as a result of this, we will keep adapting the steps, as we go on 

further along this particular curve. 
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This is what is going to be an adaptive step sizing, where is adaptive step sizing useful in 

lot of example, let me just give you one particular example, where it is going to be 

useful, if this is that particular device, there will be a flame that stands over here. So, it 

could be a land lighter it could be a candle and if you start plotting the temperatures 

along this particular, direction you will get the temperatures to be fairly cool over here 

and then the temperature will start raising and then the temperature will shoot up; and the 

temperature will again fall, because there is a lot of heat loss taking place beyond this 

flame for example, if this is candle and we put hand over here, we do not feel too much 

heat of candle, because the heat has all dissipated throughout. 

So, now, if we want to make a model for the system and then run an r k 4 method with 

adaptive step sizing on a curve of this sort, what happens is that this the slope is very low 

in this particular region. So, in this particular region what the adaptive step sizing will do 

is it will take fairly large steps. So, it might take possibly, say three steps to reach over 



here. Now, a lot is happening in this particular region, as a result of this, the things are 

changing quite rapidly. So, the slope at this point is drastically different than slope at this 

point. So, if we are going to keep using the same large step sizes in this region also, we 

will miss the overall physical characteristics, that we see over as a result the adaptive 

step sizing is going to take multiple number of steps in this particular region. 

Now, the overall curve is tending to becomes smoother, because the curve tends to 

become smoother, the step sizes will increase. And this is what we, this is how we were 

going to get if we were to use adaptive step sizing. So, h over here are large in this region 

h s are small in this region h sizes will be medium. And finally, in this region the sizes of 

h will be large again. 

So, what happens is in the region, where a lot of things are gradients are changing quite 

rapidly, you have many more steps taken and this is what the adaptive step sizing method 

is going to do for our system. So, that is essentially about the adaptive step sizing. So, let 

us consider dy 1 by dt equal to minus 1000 multiplied by y 1, what this means is that this 

particular lambda value is very large. As a result, this system is going to respond very 

quickly for example, if we were to plot y one against p, it is going to respond in this 

fashion, the time scale for the time scale tau is going to be 1 divided by lambda. So, the 

time scale is going to be equal to 10 to the power minus 3. So, in approximately 5 

milliseconds, the system would have gone from whatever initial condition it was to zero 

in about 5 milliseconds. So, this is going to be zero, this is going to be .001, .002 and so 

on, and this is .005. 

So, this is what this particular system is going to respond. Now, let us consider another 

system. Now, this particular system is again qualitatively, the response curve is going to 

look like this itself, however the times at which we get a curve of this sort is going to be 

0, 1000, 2000 and so on and this is going to be 5000. 

So, this particular system responds very quickly, this particular system responds very 

slowly. Now, let us say, that we were to solve this by Euler’s method for solving this by 

Euler’s explicit method. In this particular case, we would have to take h of the order of 

say 10 to the power minus 3 or 10 to the power minus 4 in order to get stable solution 

and in order to get stable solution with a fair amount of accuracy. 
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Whereas in this particular case, if we take the step size of 10 to the power minus 4, we 

need to run this particular method up to time 5000 as a result the number of steps with h 

equal to 10 to the power minus 4 for this particular system is going to be equal to 

approximately equal to 5 into 10 to the power minus 7. 

Now, we do not want to take, so many steps for this method, as a result the h for the 

system we will take of the order of 10 to the power minus 1. So, this if this was only one 

equation that we had to solve we will take this h equal to 10 to the power minus 4, if this 

was the only one equation that we want wanted to solve, sorry not h to the power minus 

one it should be h to the power 3 minus 1 which is a h to the power 2, that is the sorry 10 

to the power 2. So, that is the h that we will use for this particular system. So, if this 

system and this system were to be solved independently, we did not have any issues, we 

can choose two different values of h, we can solve them independently and that is the 

end of it. Now, however, if we had an equation of the form d by dt y 1 y 2 equal to minus 

1000 00 minus 0.001 y 1 y 2. So, what happens over here is that y 1 and y 2 have very 

different time-scales. 

So, y 1 and y 2 evolve at very different time-scales compared to each other y 1 is 

evolving in about 5 milliseconds whereas, y 2 is evolving over a period of an hour. Now 

the question is what is the value of h? We are going to take if we take the value of h 

equal to 10 to the power minus 4, we will end up taking the we will end up requiring 



almost 5 million steps in order to reach the solution at time t equal to 5000, if we take h 

of the order of 10 to the power 2, this particular method is going to go unstable. 
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So, because of this stiff system of o d e’s the definition of the stiff system essentially, is 

the stiff system is one in which there are components, which have very widely varying 

time-scales of evolution. So, if you have a multi-variable system, you can take, you can 

differentiate the system and get this particular guy over here find the Eigen values of this 

particular matrix the ration between the absolute value of the highest Eigen value divided 

by the absolute value of the lowest Eigen values is going to give you, how much stiff this 

particular system is if this Eigen value divided by this Eigen value is of the order of 10 to 

the power 4 or 5 or higher, in that particular case the system is going to be fairly stiff and 

we will need to use stiff solvers. 

So, for this particular system the evolution, the way it is going to be happen is like, this if 

you were to plot y 1 y 2 versus t y 1 f t, we look at up to 5000 steps, what is going to 

happen is that y 2 will evolve in this particular manner, whereas, y 1 is going to look like 

this, it is going to look like it is a vertical line and a horizontal line, if we zoom into this 

particular region, if we zoom into this region. This is what we are going to get at y 1 does 

evolve but, it evolves in 0.005 times and not in 5000 times and in this small zoomed out 

period if were to look at this particular part in the zoomed out period, what we are going 

to see is that y 2 is more or less constant if not even going to have the slope it is going to 



be more or less constant in this particular time-scale. Now, these types of problems 

create a fair number of numerical difficulties and that is because, we need a small step 

size for stability of this method whereas, we need a large step size. So, that we have the 

overall solution reaching the steady state fast enough. 

Now, Euler’s explicit method or any of the explicit method is going to have a problem 

use in stiff systems, because it is going to require very small steps as govern by this the 

fastest mode of the system. So, what do we do is the solution for stiff o d e’s is to use 

implicit methods. So, that we do not have to worry about the stability of these methods at 

all. We only have to worry about the accuracy of the system. In order to get more 

accurate solution in this initial region, we can have through the adaptive step sizing, we 

can have a lot of steps taken in this particular region and in the rest of the region, we can 

actually take much larger steps. So, that both the evolution of y 1 as well as evolution of 

y 2 we will be able to predict fairly well. 

Now, the problem is why we require an implicit method and not an explicit method is 

even, if we take with an explicit method, if we use adaptive step sizing over here the 

solution would not have gone to zero, in the finite amount of time. So, when we take 

start taking larger step size, what is going to happen is that the solution is going to be 

unstable. 

The reason why we cannot use explicit method is for h greater than t 10 to the power 

minus 3 or 2 into 10 to the power minus 3, this equation is going to go unstable. So, we 

cannot use a larger step size because as governed by this equation and if we take a 

smaller step size as governed by this particular equation, we are going to take a very 

large number of steps in order to reach the final value. 
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So, this is essentially, that all I wanted to talk about the stiff system, of o d e’s finish of 

the lecture over here, what we have done here, we started off with talking about the 

global and local truncation error. Solve, the where the geneses of global and local 

truncation error comes about then we talked about the Richardson’s extrapolation 

method in order to get more accurate solution. The Richardson’s extrapolation method 

depended, on difference between the error using, a more accurate method and a less 

accurate method that difference then we said can be used in this adaptive step sizing type 

of an idea, where we change the step size based on the difference between y i plus 1 

computed with h by 2, as the step size and y i plus 1 computed with h as the step size, 

that is what we do in adaptive step sizing. 
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And finally, we talked about stiff system of o d e’s and stiff system of o d e’s are the 

systems, where we have multiple time-scales, accruing in the same system. The systems 

might be linear or non-linear. Nonlinearity typically, makes the problem even more 

worse, than in the linear system, but stiffness is independent of linearity or nonlinearity, 

it is independent of the actual values of y 1 and y 2, it is depends only on what are the 

time-scales at which y 1 and y 2 evolve. 

And finally, we said that the explicit methods are going to be not very useful, when we 

are going to use, when we are trying to solve stiff system of o d e’s and we have to use 

implicit methods, so that is where I end this lecture today.  

Thank you. 

 


