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Hi and welcome to lecture 3 of module 7, where we are considering ordinary differential 

equations initial value problem. So far in the first two lectures, we have looked at what 

we mean by the numerical solution of ordinary differential equations; we considered 

Euler’s method - Euler’s implicit and Euler’s explicit method - and then, in the previous 

lecture 2, we moved onto Runge-kutta methods, specifically we talked about the second 

order r k method. 
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So, let me just go over some of the results of the r k - 2 methods that we derived in the 

previous lecture. So, the r k - 2 method in we are going to obtain our y i plus 1 is going 

to be equal to y i plus h multiplied by sum slope s computed explicitly based on the 

values of y i and t i, that means, we are not going to use the value of y i plus 1 in order to 



compute this slope S. For r k - 2, we choose the slope s as a weighted sum of the slopes 

computed at two specific points within the overall interval. So, S we wrote that as equal 

to w 1 k 1 plus w 2 to k 2, where k 1 was equal to function f computed at (y i, t i) and k 2 

was f computed at y i plus sum value q multiplied by h multiplied by k 1, t i plus some 

value p multiplied by h. So that was our k 1 and k 2. 

And the conditions that we derive, We derived certain set of conditions for r k - 2 

method and those conditions gave us the order of accuracy as h to the power 3 and those 

conditions, were w 1 plus w 2 equal to 1; w 2 times p equal to 1 by 2; and w 2 times q 

equal to also 1 by 2. And based on these two equations, we said that p equal to q is one 

equation; w 1 plus w 2 is equal to 1 is the other equation; and w 2 p equal to half can be 

the third equation. 

So, p is equal to q is one of the things that we obtained in the Runge-kutta method - 

second order runge-kutta method - and the geometric interpretation of the second order 

Runge-kutta method is when you are going to plot y against t and we have any arbitrary 

curve of this sort and let this be t i and let this be t i plus 1, which with the difference 

between the two being equal to the step size h. 

And that time k 1 is nothing but the slope computed at this particular location and that 

slope is represented by this particular yellow line and that is going to be our k 1. And we 

take certain point not at an arbitrary location, but… may be this particular line does not 

exactly represent the slope very well; I will just redraw that line. 

So, now, we have this particular guy as k 1 and then, what we said is, now we select one 

point and this particular condition tells us that this particular point is going to be selected 

somewhere along this line not an arbitrary location in this rectangle, but somewhere 

around that line, perhaps over here and then, we compute the slope at that particular x 

that particular point and that slope let us say is this guy and that is going to be our k 2. 

And thus the value of S that we are going to consider is going to be a weighted average 

of k 1 and k 2 and that value might look somewhat like this, and this is going to be point 

y i plus 1 that we will get, and this the slope of this purple line is going to be nothing but 

S. 



So, this is the geometric interpretation of the r k - 2 method. So, the yellow that I have 

shown over here is the geometric interpretation of the Euler’s method; the purple line 

that I have shown over here is the geometric interpretation of r k - 2 method. 
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The two specific r k - 2 methods are that of a greater interest to engineers - one is the 

midpoint method. In midpoint method, we had chosen our p equal to half; so our q also 

was equal to half ; w 2 was equal to 1, and w 1 was equal to 0. 

So, p equal to q equal to half; w 2 equal to 1, w 1 equal to 0 was the midpoint method. 

And the other method was Heun's method for which we had obtained p equal to q equal 

to 1, and w 1 equal to w 2 equal to half, this is what we had obtained for Heun’s method. 

In the previous lecture, what I had mentioned, but not really expounded on it was that, in 

some ways the idea behind Heun's method is kind of collinear or similar to the idea 

behind the trapezoidal method. 
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And let us see why I made that particular statement. So, let us consider the case, where 

this particular function f of (y i, t i) was not a function of y i explicitly, but it was only a 

function of t i. If that is the case, f is just going to be a function of t i, then k 1 is just 

going to be equal to f of t i. For Heun's method, we are talking about. k 2 is going to be 

nothing but f of t i plus p h, and p for Heun’s method is equal to is equal to 1 and so that 

is going to be t i plus h. 



So, f is going to be t i plus h, which is nothing but f of t i plus 1. So, our S is going to be 

half multiplied by k 1 plus half multiplied by k 2, which is f of t i, which is equal to f of t 

i plus f of t i plus 1 divided by 2. 

So, now, if we had to solve d y by d t equal to f of t using Heun’s method, the expression 

that we are we are going to get from Heun's method is y i plus 1 is going to be equal to y 

i plus h multiplied by S, and h multiplied by S is nothing but h by 2 multiplied by f of t i 

plus f of t i plus 1. 

And this particular term for us is reminiscent of nothing but the trapezoidal rule. 

trapezoidal rule was for the trapezoidal rule we obtained the trapezoidal rule we had we 

had obtained as follows: d y d y is going to be f of t d t and then, we integrate this from t 

i to t i plus 1 and this is going to go from y i to y i plus 1 and the trapezoidal rule would 

give us y i plus 1 minus y i is approximately equal to h by 2 multiplied by f of t i plus 1 

plus f of t i, which is same as the expression that we get from the Heun's rule. 

So, for this reason, I had made a statement that Heun's method reminds us of trapezoidal 

rule. And recall from what we did in module 6, is trapezoidal rule also gave us order of h 

cube accuracy. It’s actually not really that Heun's method reminds us of trapezoidal rule, 

originally the Heun’s method was developed as a predictor character method and we are 

going to talk about that later on in this particular lecture in a few minutes from now, 

what were that predictor character forms of the Heun’s method. 

But to go over what we have in Heun’s method what we do is, we find a slope at this 

point, the slope at the projected point and true slope S that we are going to use for 

moving forward with the O D E solving is going to be just a way just an average of those 

two slopes that is about the Heun’s method. 
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Before going on to the predictor character idea of Heun’s method, let us very quickly go 

over the Euler’s method and derive the expression for accuracy of Euler’s method. So, y 

i plus 1 is, if we do a Taylor's series expansion of for y i plus 1 that is going to be equal 

to y i plus h multiplied by f of (y i, t i) plus h square by 2 factorial multiplied by d f by d 

t plus dot dot dot. We actually have d square y by d t square, and d y by d t is nothing but 

f; these are the derivation that we had actually done in the previous lecture. 

So, I am just using short hand over here; now, if we drop these terms, we will get 

accuracy of order of h squared, and our y i plus 1 is going to be approximately equal to y 

i plus h of f (y i, t i). And we have dropped these terms; so the accuracy of the Euler’s 

explicit method is of the order of x squared. 
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So, the Euler’s explicit method is x squared accurate, whereas the r k 2 method is h 

cubed accurate that we had derived in the previous lecture. Like, trapezoidal rule our 

Heun’s method also is h cubed accurate. 
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So, to summarize the accuracies - Euler’s method that we just derived is accurate to the 

order of h squared; r k - 2 that we derived in the previous lecture is accurate to the order 

of h cube; the best r k - 3 method is accurate to the order of h to the power 4; r k - 4 



method, the best one is accurate to the order of h to the power 5; and now, this is where 

the fun starts is r k - 5 method is also accurate to the order 5. 

H squared, h cubed, h to the power 4, h to the power 5 and we go for a more number of 

terms in the Runge-kutta method, but the order of accuracy does not increase. So, there is 

not a big jump in accuracy that we get by going to more computationally complex r k - 5 

method. As a result of this particular observation, r k – 4 method is usually the method of 

choice for solving O D E’s. In fact, in various packages such as Matlab and Mathematica 

and so on, as well as a lot of codes that you will get for download at various different 

sources for initial value problems of non-stiff nature and I will come to come to explain 

what the term stiffness and non-stiffness means, perhaps two lectures from now. 

But for a typical o d e i v p you will find that the r k - 4 method is perhaps the most 

popular method that is used, and r k - 4 has an accuracy of the order h to the power 5. so 

its its Since it is an r k - 4 or a 4 order r k method, our S is going to be written as w 1 k 1 

plus w 2 k 2 plus w 3 k 3 plus w 4 k 4, where k 1 is going to be written as f of (y i , t i); k 

2 as we had before, is going to be written as f of y i plus q and now, we will put 

subscripts for q, we will write this as q 1 1 h multiplied by k 1 , t i plus p 1 multiplied by 

h. Our k 3 is going to be f of y i plus q 2 1 h k 1 plus q 2 2 h k 2, t i plus p 2 h; and k 4 is 

going to be f of y i plus q 3 1 h k 1 plus q 3 2 h k 2 plus q 3 3 h k 3 p 3 h. 
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So, what we do is, we compute slope at four different locations within t i and t i plus 1. 

So, if we go back to this particular figure that we have drawn, we will compute k 1 at this 

particular point, then we choose a point in this rectangle - an arbitrary point in this 

rectangle- find the slope k 2, based on the slope k 1 and based on the slope k 2. We find 

out another slope k 3 at another arbitrary point and that arbitrary point will lie in this 

particular rectangle. 
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So, the third point will lie in that particular rectangle and find the slope at that particular 

point k 3. And another point - fourth point - will also lie in that another rectangle so 

constructed and that slope will be k 4, and the final S that we are going to use in order to 

compute the term y i plus 1 is going to be a weighted sum of k 1, k 2, k 3 and k 4. The 

most typical r k - 4 method that is often used has w 1 equal to 1 by 6; w 2 and w 3 equal 

to 1 third; and w 4 equal to 1 by 6 again. 

So, common slash typical common or typical r k - 4 method has k 1 plus 2 k 2 plus 2 k 3 

plus k 4, k 1 of course is f of (y i , t i); k 2 just like the midpoint method, k 2 is going to 

be f computed at y i plus h k 1 by 2 t i plus h by 2; k 3 is f computed at y i plus h k 2 by 2 

, t i plus h by 2; and k 4 is going to be f computed at y i plus h k 3 and t i plus h. 

So, this is the most typical r k - 4 method. What r k - 4 method actually will do is, I am 

not going to draw the true curve over here; this is t i ; this is t i plus 1 and let us say this 



is our y i. So, our first slope is nothing but slope of that curve, let say that curve is 

somewhat like this; then our first k 1 is going to be just f of (y i , t i). So, let us say k 1 is 

actually shown by this particular white line. 

So, now, k 2 is going to lie, because our q 1 1 and p 1 are both equal. Our k 2 is actually 

going to lie on this particular line itself and k 2 is lying actually on the midpoint. So, k 2 

is computed actually on at the midpoint; so k 2 is actually computed at this at the central 

point the over here. 

And k 2 is going to give us a slope at this particular central point; so let us say k 2 is 

given by this yellow line. So, what we do is, then we go back and then we project that 

yellow line over here and we will get that that particular yellow line looking somewhat 

like this; k 3 is going to be a point computed again at the midpoint, but this midpoint is 

now computed using the slope k 2. 

So, the k 3 is computed on the same vertical line over here, but at this particular location 

and that is going to be the value k 3 and let us say for argument sake, k 3 looks 

somewhat like this. 
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So, we go back to this particular point and then project k 3 again, and k 4 is then 

computed at the final point and that I am going to show with a pink color. So, k 4 is 

going to be computed at this particular point and let us say that the slope at that point is 

over here and so that is that red line is going to be the fourth slope. 

So, the white line represents the slope k 1; yellow line represents the slope k 2; the 

purple line represents the slope k 3; and the red line represents the slope k 4. And the 

final S that we are going to use in order to compute y i plus 1 is going to be k 1 plus 2 

times k 2 plus 2 time k 3 plus k 4 the whole thing divided by 6. 

So that is the geometric interpretation of the simplest of r k - 4 methods. In one of the 

summary lectures, I will go over the various different types of r k - 4 methods that people 

have actually come up with over the last sixty, seventy years. 
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So, now, what I will do is, I will go on to Microsoft excel and solve the specific problem 

of the p f r. The p f r problem, the design equation that we had solved; we had obtained 

the design equation based on the overall equation d c by f multiplied by d c by d v, where 

f is the flow rate - volumetric flow rate - that is going to be minus k c to the power 1.2 5. 

So that was the overall expression and then, we converted that through straight forward 

techniques. We had converted that to get give ourselves the design equation V equal to F 

times C A0, which we had called F A0 multiplied by integral from 0 to x d x divided by 

minus r of x, where minus r of x was nothing but k multiplied by 1 minus x to the power 

1. 25. 

And then, we had plotted F C A naught divided by k multiplied by 1 minus x to the 

power 1.2 5; we plotted that against x and the area under that curve that we calculated 

was equal to V. So, instead of solving this particular problem, we are actually going to be 

interested in solving this particular problem. And if you recall in the previous module, 

the value of F C A naught divided by k, we had taken that equal to 2. 



(Refer Slide Time: 27:32) 

 

And C A naught was equal to 1. so what we had we had So, for these conditions, we had 

tried to solve this P F R problem using the integration method. Using the design equation 

of the P F R, we can rearrange this and we can get an analytical solution and k by f k by f 

for C A naught equal to 1 k by f is nothing but 1 by 2. 

So, this we can write as C to the power 1. 2 5 divided by 2 and we can just rearrange that 

and we can write d c and I forgot the minus sign over there, d c negative of d c divided 

by C to the power 1.2 5 is going to be equal to d v by 2 and then, we are going to 

integrate this; we are going to get c to the power minus 0. 2 5 divided by 0. 2 5, there 

will be a minus sign over here and there is a minus sign over here; that is going to be 

equal to be equal to v by 2 and C going from C A 0 to the value C A. 

And then, if we rearrange this entire thing, we will get C A; C A to the power minus 0. 2 

5 minus C A naught to the power minus 0. 2 5 is going to be equal to 0. 2 5 multiplied by 

V by 2 that is going to be v by eight plus C A 0 to the power minus 0. 25. So, C A to the 

power minus 0. 2 5 is going to be equal to this term and then, we will divide by minus 0. 

2 5 in the exponent over there and we will get this as C A equal to C A naught to the 

power minus 0.2 5 plus v by 8, where v is the volume of the P F R whole raise to the 

power of minus 4. 



So that is the analytical solution and this is the problem that we will try to solve 

numerically, and using the Euler’s method, using the Runge-kutta second order method 

and then, we will compare the results that we have obtained from the two methods. 
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So, now, we will go on to Microsoft excel and we will try to solve this this particular 

problem. Now, the problem that we are going to solve is the is d c by d v was equal to 

minus c to the power 1. 2 5 divided by 2. 

That is the expression that we have just derived a few minutes ago on on the board. So, I 

will write that down, d C divided by d V is going to be equal to minus C to the power 1. 

2 5 divided by 2. so by d C by d V equal to minus C to the power 1. 2 5 divided by 2. 

And I will just format cells and make that superscript. So, this is the problem that we are 

trying to solve with C 0 equal to 1.0. So, that is the problem that we are trying to solve 

and let us get the true solution. So, we will have V and the corresponding C 

concentration. As we had obtained earlier, the true solution is actually going to be equal 

equal to to the concentration C A 0 to the power minus 0. 2 5; C A 0 is 1, so 1 to the 

power anything is also going to be equal to 1 plus volume multiplied volume divided by 

8; the volume is given over here, this guy divided by 8, the whole raise to the power of 

minus 4. 



So that was the value that we had we had obtained. So, let us look at the volume of the 

reactor going from 0 1 2 let us say up to10, and let us find out the concentration that we 

get from this particular figure. 

Now, let us try to see what values we had derived in in the lecture on integration. At that 

particular case, what we had said is, we need to find out the volume that gives the 

conversion of ninety percent; ninety percent conversion means that the exit concentration 

C that we get from the reactor is going to be equal to 0. 10. 

So, the solution - the actual solution - is going to lie close to 6; so the volume is going to 

be close to 6. So, what I will do is, between 6 and 6. say 6.1, 6.2 and so on. I will just 

plot a few more values and 6. 3 as well and let us see what value we will get over here. 

So, between 6.2 and 6.25, the value has gone below 1; so, perhaps our solution is going 

to be between… not perhaps definitely our solution is going to be between 6.2 and 6.25. 

So, let us try to actually get that solution also. So, 6.2, 6.21, 6.22, 6.23 and so our 

solution is somewhere between 6.2 6.22 and 6. 23. 

And let us go and look at what Newton-cotes integration formulae had given us, as the 

volume that will give us 90 percent conversion and the Newton-cotes formulae - the one 

third rule results that we got was 6.2262, that was the volume of the reactor that gave as 

90 percent conversion and the analytical solution gives us the value as 6.22 something.  

We can we can just go a little bit further and we can get the actual result and we will be 

able to find that the values indeed that we obtained using integration over the same as the 

values that we will obtain using the true solution - the true analytical solution. 
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So, this we can use as one more check to check our integration that we did in our 

previous lecture. Now, let us use Euler’s method - Euler’s explicit method - with certain 

value of h. Let us let us choose the value of… I will just insert; so let us let us choose the 

value of h equal to 1 and see what the Euler’s method gives us. And one of things that 

that happens with Euler’s method is that Euler’s method is not always Euler’s explicit 

method is not always stable, what that means we will we will talk about soon. 

So, C i I will I will write over here; so initial C i is going to be equal to 1; the V i, V i is 

nothing but the independent variable; the value of C i at V i equal to 0 was equal to 1. I 

will just move this over here; we will we usually put our independent variable in the first 

column. So, V i equal to 0; our C i is equal to 1. Let us compute our f of (c, v) and our 

function f is d c by d v equal to minus C to the power 1. 2 5 divide by 2. So, it is going to 

be equal to… I will increase the font size; so this is going to be equal to minus C to the 

power 1. 2 5 the whole thing divided by 2 that is going to be our value of f. 

So, the value of f is going to be minus 0.5. Now, this guy is going to be equal to previous 

guy plus h and I will put dollar signs over here. And remember, the Euler’s explicit 

method is y i plus 1 equal to y i plus f i that was the expression sorry y i plus h multiplied 

by f i. 



So, y i plus 1 equal to y i plus h multiplied by f i. Now, we will go and put dollar signs in 

front of h so that when we drag and drop this, we do not have to go and change our our h 

and now we will just drag drag it down up to 10 and then drag this f value below. 
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And we will just go ahead and check what we see with this. So, f 2 is going to be in sorry 

c 2 is going to be nothing but c 1 plus h multiplied by f 1 that is what we get over here. 

Now, we will check the value of f of (C i, V i), of course f of (C i, V i) again we get as 

negative C i to the power 1.2 5 divided by 2; so this is what we get. Now, if we if we 

compare the Euler’s explicit method, the errors that we get with the true solution - we see 

that there are some amount of errors between the true solution and the Euler’s explicit 

method and so we will just plot the errors over here. So, errors are going to be equal to 

the absolute value of the difference between C i true minus C i that is obtained from the 

numerical solution divided by the C i true. So that is the error; error of course, write in 

the beginning the error is 0 and as we proceed further, the error is…  
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So, this is relative error and the relative error is actually as high as… So, its starts with 

20 percent goes to approximately 30 percent and eventually we get error as high as 40 

percent using the Euler’s explicit method, if we choose h equal to 1. So, this is what we 

get with Euler’s explicit method for h equal to 1. Now, we will again use Euler’s explicit 

method for with h equal to 0. 5. 

So, what we will do is, h we will redo this for h equal to 0. 5 and this is going to be this 

guy and I will put the dollar signs over there; our f is again correct. Now, let us get our C 

i plus 1 that we have C i plus 1 over here is going to be nothing but equal to C i plus h 

multiplied by f i. 

And we will go back and put dollar signs in front of h so that we get this. We just drag 

and drop this over here and we will do this over here as well, drop this over there and we 

will just copy this down, and 0. 5 so that we are able to computed for the same set of 

values. And these are the errors that we get with h equal to 0. 5. Now, if we compare if 

we compare the errors that we are getting for the Euler’s method using h equal to 1, I 

will just copy this and put them over here. 

So, at at at the volume equal to 1, the error using the h equal to 0.5 in Euler’s explicit 

method is all most 80 percent, whereas it was almost 20 percent using h equal to 1 for for 

this guy; the error is again again half of what we obtained using h equal to 1 so on and so 



forth. So, this is what we see for h equal to 4; again, the error is 38 percent, whereas error 

using h equal to 0.5 at volume equal to 4 is approximately 80 percent; so error is 

approximately half using h equal to half compared to h equal to 1. 
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And what we will do is, we will just carry out until 10 and we will do the same thing 

over here as well. And these are the errors that we get. And the Euler’s explicit method, 

we will repeat at once again for h equal to 0.25 and then, we will do the plots. And 

volume is 0; at volume of 0, we will get C equal to this; our f, we will write this as again 

will just we can just copy and paste it that is not going to be a problem; we will write h 

equal to 0.25. And next value of V is going to be V i plus 1 is going to be V i plus h and 

then, we will again put… as we have been doing always, we will put dollar signs over 

there. 

So that when we drag and drop, we do not get any problems and then, we will go right up 

to volume of the reactor equal to 10. And the concentration C is going to be equal to… 

So, C i plus 1 equals c i plus h, and for h we will put dollars, because h is not changing 

multiplied by f I; so C i plus 1 equal to C i plus h multiplied by f i. 

And then will just double click this and will double click this; so that our solution is now 

obtained. Now, we will plot the true solution is well and the true solution and this double 

click this and this will give us the true solution and then, I will compute the error as well. 



Ok yes And we have computation at error over here and error is the absolute value of 

true solution minus the numerical solution divided by the true solution. And I will just 

double click this and we now have the error using h equal to 0. 2 5. 
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So, now, what I will do is create a plot of how the error changes with volume for the 3 

different h values. So, I will choose this as our x axis; I will choose this error as the y 

axis; I will click on insert and then, we want scatter plot and this, we wanted connected 

by smooth lines. So, this is going to be our scatter plot; I will increase the font sizes now. 



So, what we are plotting over here is how the error changes with with the volume for the 

P F R and then, I will add another set of data - the x values these are the x values; y 

values are going to be the errors over here. 

So, the second series is Euler’s method using h equal to 0.5 and we will add one more 

series with errors using 0.25. So, this blue line represents the error using the Euler’s 

explicit method with h equal to 1; the red line indicates Euler’s explicit method with h 

equal to 0.5; and green line indicates euler’s Euler’s explicit method with h equal to 0.25. 

One of things that you see is what is what is known as the propagation of errors; as we 

go further and further away from y 0, we see that there is that the overall truncation error 

increases. How the error changes from one point to another point is what is known as the 

local truncation error, and how the error changes over all throughout the overall ah 

solution is known as the global truncation error. 

At each point we are trying to find out the at a difference between the true value of 

concentration and the numerical value of concentration. So, what we have plotted over 

here is not the local truncation error, but what we are actually plotted is the global 

truncation error. So, in case of Euler’s method, although the local truncation error scales 

as h squared, the global truncation error scales as h. So, what we seen is, when we are 

going to half the ah the h value, the overall errors are also going to reduce by the same 

factor. 

So, when we go from h equal to 1 to h equal to 0.5, the overall errors have half; when we 

go from h equal to 0.5 to h equal to. 2 5, again the errors have half. If we go from 0.25 to 

0.1 to 5, again the errors are going to be half. Even further, keep in mind that when I say 

half, it is not exactly half it is approximately half. Because in the derivation using ah 

basically using our mean value theorem, we do get f of f at (t zeta , y zeta), where zeta is 

a point which lies arbitrary between t i and t i plus 1 and y i and y i plus; this particular 

point is not known a priory. 

So, we cannot exactly say that the errors are going to reduce exactly by half, but 

approximately the errors are going to reduce by half and that is what we have 

consistently seen when we compare this blue line, which was for h equal to 1; with this 

red line for h equal to 0.5; with this green line for h equal to 0. 25. 



So, this is now, where we come to end of this particular lecture of this module. So, what 

I am going to cover in the next lecture is, I will go over this results for Euler’s explicit 

method once over again and show you how this over all error are changing when we 

change our h value for the Euler’s explicit method. Then I will take on the midpoint 

method and solve using the midpoint method, also solve using the Heun’s method. I will 

solve the same problem of O D E solving. Next, we will go on to the predictor corrector 

form of Heun’s method. 

Thanks and see you in lecture 4 of this module. 

 


