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Hello and welcome to the module 2 for the computational techniques course. In module 

2, we are going to cover computation and error analysis. And what I will do here is just 

go through an overview of what we are going to cover in this particular module. 
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The definition of errors: as we had seen in the introduction module, numerical methods 

will lead to approximate solutions; so, what that means is that the solution will differ 

from the actual value of the solution. The difference between the true solution and the 

approximate numerical solution is what we call the error. There are various reasons why 

these errors come about; these errors are classified into two different types, what is 

known as round off errors and truncation errors. We will talk about that in this particular 

module. Before we do that, we will just define what we mean by - or how what we mean 



by - the error; we are going to use two different definitions of error - one is the small e 

over here is just the difference between x star, where x star is what we are representing 

as the true value of the solution, and x a over here represents the approximate value of 

the solution. So, the difference between the two is going to represent error.  

Again we do not want to bias ourselves to positive e or negative values; and therefore, 

we are going to use the absolute value of that difference as our definition of error; this is 

what is known as the absolute error. Often what is important is not just the absolute value 

of error, but the value of error relative to the true value of the solution and that is what is 

known as the relative error. And the relative error is defined as: a difference in the true 

value minus the approximate value divided by the true value - the absolute value of that. 

So, the reason for doing this is because an error of 0.1 is very large, if the true value of 

the solution is say 0.2; but it is negligibly small, if the true value of the solution is say 

1000. So, we need to differentiate between the error value, what they really mean, and 

that is the reason why we have an absolute value, absolute value error and the relative 

error.  
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This is the square root example from the Henon algorithm, that we had talked about in 

the introduction lecture; and the x i plus 1 over here is an average between the previous 

value x i and 2 divided by x i, it is just an algebraic mean of these two values; and this is 

the curve that we had seen - the blue and the red curves - we saw in the previous module, 



and these are the approximate values of x and how these approximate values of x change 

with the iteration number; the black line over here represents the true solution x star; the 

difference between the true value and the approximate value is what we call the error; so, 

e 0 over here is essentially this particular difference between 1.4 1 4 and 0.5; the value e 

1 is essentially, this particular difference e 2 is essentially this difference, e 3 is this, e 4 

is this, so on and so forth. So, the definition of error really is that, the absolute error is the 

difference between the true value and the approximate value; and the relative error is this 

difference divided by this particular true value of the solution. 

So, that is as it goes with respective the definition; what we mean by error propagation 

is, the error e 1 depends on the previous value x and the value x star or in general, it 

depends on the error e 0; likewise, error e 2 depends on the value x 1 as well as the error 

e 1, so on and so forth. So, what we see over here is the error e 0 and the value x 0 are 

going to determine what the next error e 1 is going to be, that in turn determines what the 

next error e 2 is going to be, what the next error e 3 is going to be, and so on and so 

forth. An understanding of how this error propagates is going to be very important in 

analyzing these numerical techniques; so, that is what this numerical techniques we are 

going to do. In this particular lecture is define the error - define what we mean by error 

propagation - and try to find out what are the reasons? Why this particular error comes 

about.  
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Again this is the square root example and these are essentially that the absolute errors; 

so, this is 1.414 minus 0.5 the absolute value of that, 1.414 minus 2.25 the absolute value 

of that, so on and so forth; the column here is the last column over here, represents the 

error in the approximate solution and as you can see the error is quite significant, we start 

with an error of 0.9 and very quickly the error drops to 10 to the power minus 16. So, 

how this error behave as the iteration proceeds is going to be a very important property 

of any numerical technique and that is what we are going to cover in the various different 

numerical techniques, that we are going to talk about starting from the next module; and 

the question is, now what if we do not know x star. 

You know, in this particular example that, we took we knew what the true value of x star 

was going to be; but in general, when we have we are going to use these numerical 

techniques, we do not know what this x star value is going to be. So, we define what is 

known as the approximate approximation error; so, we represent this as e a and again the 

e a at the i iteration is the difference between the value that we have from the i iteration 

and the value that we have from the i minus 1 iteration; and the relative error over there 

is again in the same way as in the previous case, we have defined that as epsilon a and it 

is the difference - divided by the true value of sorry - divided by the approximate value x 

i minus 1. And essentially, what that particular definition means is that, the difference 

between this value and this value is going to be e 1, difference between this and this 

value is going to be e 2, e 3, e 4, and so on; and if you remember from the module 1, 



what we had said is, we have stopped at iteration number 6, the reason why we stopped 

at iteration number 6, is because the result wasn't changing from the fifth iteration to the 

sixth iteration up to the desired accuracy, that we were seeking; and the desired accuracy 

we were seeking over here is that, the sixth decimal place should not change. 

So, the stopping criteria that we decided, essentially was not based on whether the true 

value is reached or not, but whether there is a significant change with the iteration in the 

approximate value, we have or not and this is where the approximation error between i 

and i minus 1 iteration comes very handy, is when we do not know the value of x star. 
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Next, we are going to look at the causes of the errors. Before we do that, we will discuss 

about, what we mean by precision? What we mean by accuracy? What we mean by 

significant digits? 
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In the previous example, the significant digits that we looked at are essentially 7 

significant digits. We know for sure that the solution is correct up to this particular 

number of digits, we do not know what happens beyond this particular point. 

So, we are interested essentially in six digits after the decimal point; in this particular 

case, there is 1 digit before the decimal point and we are interested in the result up to the 

seventh significant digits. 
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Next, we are going to look at what truncation error and round off error means; again we 

will go back to the work horse Taylor’s series expansion and approximation of the 

Taylor series. 

We will talk about the computer, the binary number system and the fact that the 

computer is what is called a finite precision machine; and we will take an example of an 

infinite series of e to the power x in order to use - in order to continue with this particular 

module. So, that is what we are going to do in this particular module. 
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Let us just look at the example of the infinite series expansion of e to the power x; so, as 

we had said before, e to the power x can be written as 1 plus x plus x square by 2 

factorial plus x cube by 3 factorial and so on; so, this is an infinite series, the greater the 

number of terms that you use, more accurate your results are going to be. 

So, let us look at the problem of e to the power 1; now, e to the power 1, it is 2.718282, 

so, we are stopping at essentially this particular point and what this signifies is the 

number of significant digits, I will come to that later - number of significant digits. Now, 

this is the actual value of e to the power 1; we will call this as star, star to represent that 

the true value. Now, we will try to get the approximate values of e to the power 1 by 

including additional terms in this infinite series. 



So, if we use only the first two terms of this infinite series, we will get e to the power 1 

approximate - the subscript a stands for approximate - is 1 plus 1 that is going to be equal 

to 2. So, if you see that the difference between the true value of e to the power 1 and the 

approximate value of e to the power 1, is going to be significant when you are just going 

to include only the first term over here; this difference between the two is what is known 

as error; so, error is going to be defined as the difference between the true value minus e 

to the power 1 approximate value. 
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Now, we do not want to bias ourselves saying that, the positive error is acceptable or 

negative error is acceptable and so on; so, error in either direction is not acceptable, what 

we want to do is, we want to really reach the value 2.718282 as closely as possible. So, 

the error is actually going to be defined as the absolute value of the difference between 

the two; this is known as the absolute error; and we will represent it as E a, the absolute 

error. Now, the absolute error is not the only criterion that we are interested in, what does 

some times more useful is to find out how far the two numbers deviate compared to what 

the true value of e to the power 1 is; and in that particular case the error which is known 

as the relative error, which we will represent using the term epsilon, that we will define 

as the absolute value of the true value minus the approximate value divided by the true 

value; so, this is the relative error that we are interested in tracking. 



Now, let us involve instead of just the first two terms, we will involve the first three 

terms over here and in that particular case, e to the power 1. Or I should actually we 

writing at approximately equal to is 1 plus 1 plus 1 by 2 which is equal to 2.5. So, now 

what you see is the error has decreased, when you are increasing the number of terms in 

this expansion - the infinite series expansion of e to the power x. So, the error over here 

is going to be 2.718 minus 2.5, that is 0.218282, that is what the error is going to be 

when we include three terms. 

Now, we can include additional term; when we include the fourth term, what we will 

find is the error, is going to be 1 by 2 plus 1 by 6, it is going to be 2.5 plus 0.18; so, that 

will be 2.617778. So, now this value is getting closer to the value 2.71828; so, what we 

see over here is, as we include additional terms in this infinite series expansion; we are - 

- going - getting closer and closer to the true value of e to the power 1. So, that leads me 

to the first definition that is of a importance to us and that definition is truncation error. 

Truncation Error comes up because we are not going to use infinite number of terms in 

the series expansion, but at some pint of time we will say that, we are not going to use 

any additional term and this current approximate value is sufficient for our purpose; so 

the truncation error comes about because we are truncating this infinite series at certain 

point. 
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So, what happens is, when we truncate the series at this particular location, the difference 

between the approximate value of e to the power 1 and true value of e to the power 1 is 

arising, because we are truncating at the second term; in the second case, this truncation 

error is dropping; the reason why this truncation error is dropping down is because, we 

have used an additional term in this error, in this approximate value of e to the power 1; 

so, the idea about truncation error is because it arises because we are truncating the 

infinite series; so, that is where the truncation error arises. 

Now, the second type of error which is of vital importance to us is, what is known as the 

round-off error? So, for example, if you are using a calculator like I am using, the 

maximum number of digits in this particular calculator are going to be 10 digits; so, you 

can only represent numbers up to 10 significant digits using a calculator of the kind, that 

I am using. 
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So, any error that comes up, because you are chopping off the remaining part of the 

number come is what we call as the round off error. For example, e to the power x is 

actually not 2.718282; if you include additional terms it might end up being 2.7182818 

and then additional terms beyond that particular value, so when we are stopping at this 

particular point, what we are essentially doing is we are neglecting all the data beyond 

this particular value. 



So, that round off error now comes up, because we are chopping in our mathematical 

representation; we are chopping off the way we are representing a complete number. 
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So, the binary system uses numbers 0 and 1 to represent any number within the 

computer. So, for example, let us say, we have the number 16, this number 16 in binary 

is going to be represented as 10000; this particular digit represents 2 to the power 0; this 

one represents 2 to the power 1; this represents 2 to the power 2; this is 2 to the power 3; 

and this is 2 to the power 4. 

So, this number what it means is, 2 to the power 4 plus 0 multiplied by 2 to the power 3 

plus 0 multiplied by 2 to the power 2 plus 0 multiplied by 2 to the power 1 plus 0 which 

is equal to 16; so, this particular number is the binary representation of the number 16 in 

in the decimal representation. Likewise, in the decimal representation also, the way we 

represent a decimal number is really this is going to be 10 to the power 1 and this 

represents 10 to the power 0; so, 16 really is, 1 multiplied by 10 to the power 1 plus 6 

multiplied by 10 to the power 0; so that is 10 plus 16. 

This is how, essentially, the numbers the integer numbers are going to be represented, if 

we have only interested in 0 and positive integer numbers; if we are interested in 

negative integer numbers also, in addition to this particular, these 5 numbers we will 



require one more digit to represent, whether it is a positive number or a negative number; 

and that particular digit is what is known as a sign bit. 

Bit stands for a binary digit and the sign bit represents that it determines, whether the 

sign of that particular number is positive or negative. 
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So, in general, what we are going to have in a computer representation is that, an integer 

number will be represented by a finite number of bits; the first bit represents the sign bit 

and the remaining bits represent the actual number; the first bit over here will be a sign 

bit and the remaining 5 6 7 remaining 7 bits are going to represent a number. 

So, let us first talk about a positive number; for a positive number, the sign bit is going to 

be 0, and then remaining bits are going to represent the rest of the numbers; the smallest 

non-negative number that you can represent is, of course, going to be 0 and the 0 is going 

to be equal to 00000000. 

So, we have eight 0s representing the number 0, the highest positive number that we will 

able to represent in this binary system, is going to be 0 which stands for the sign bit 

representing a positive number followed by seven 1s.  

Now, what the number does this represent, this represents 2 to the power 0 plus 1 plus 2 

to the power 1 plus 1 and so on up to 2 to the power 6 plus 1, right 2 to the power 0 1 2 3 



4 5 6. So, the maximum number this is going to represent is, 2 to the power 0 plus 2 to 

the power 1 plus 2 to the power 2 up to 2 to the power 6, which we know can be written 

as 2 to the power 7 minus 1; so, the maximum integer that can be represented using this 

particular notation is, 2 to the power 7 minus 1, which turns out to be 127.  

(Refer Slide Time: 23:46) 

 

So, 127 is the largest number that can be represented using an 8 bit integer 

representation. Likewise, the smallest number that can be represented is going to be 

actually minus 128; and I would not go into the details of how the negative numbers are 

represented. Let us just stick to the fact that, for the negative numbers in the sign bit, we 

will have the number as 1; and for the positive numbers the sign bit, we will have the 

number 0. When we go to real numbers, what happens is, the things get a little bit more 

complicated and the reason why it gets complicated is because a number is going to be 

always represented in a computer using what is called finite precision. 

So, I will talk about floating point representation for decimal numbers. The floating point 

representation will always be written as, some number m multiplied by 10 to the power 

e; this particular m carries the name mantissa; and e is called the exponent. 

So, let us take this particular number 2.5134; so, 2.5134 in this kind of representation 

will be represented, let us say, as 2.5134 into 10 to the power 0. 



So, this particular number is 2.5134. Now, we can also represent this number as 25.134 

multiplied by 10 to the power minus 1. We can also represent this as, 0.25134 multiplied 

by 10 to the power 1. 

Now, the question is which of these representations is correct. Now, when we are talking 

about, you know, doing things by humans; all these representations mean one and the 

same thing you can interchangeably use any of this representation and you know really 

what that particular representation means and you can do your calculations. However, 

when you are going to use a floating point representation, we require certain ways of 

representing the numbers, that is uniform and that is standard over various different types 

of machines. 

So, the standard that is used in floating point representation is that, this mantissa should 

necessarily lie between 1 divided by 10 and 1 for decimal systems. Again I am taking 

some pedagogical liberties over here, so please bear with me and I will try to summarize 

all of this after I finish explaining the floating point representation. 
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So, with this particular definition, that m lies between 0.1 and 1; the correct 

representation of our number is going to be this; so, instead of having a binary computer, 

if we had a decimal computer, the floating point number 2.5134 would be represented as, 

0.25134 multiplied by 10 to the power 1. Any number in our decimal computer is going 



to be represented as 0 point dash dash dash dash dash, so we have five blanks over here, 

so we are using five digit mantissa multiplied by 10 to the power dash. So, we are using 

1 digit exponent. In order to not complicate things, we will just look at the positive 

values of exponent, we will only look at the positive values of mantissa; the reason is, 

because in binary notations, for example, you will use a sign bit in order to determine the 

sign of the entire number and you will use a signed way of representing the exponent. 

We will come to that later, but let us just assume for the time being for the sake of 

simplicity, that we are only going to represent positive numbers with positive exponent. 

So, what does, what do actually these five blanks really mean; this blank really means 

that, this particular number is multiplied by 10 to the power minus 1, just the way we had 

it in the binary notations of the integers; likewise, the decimal notation of the mantissa, is 

this guy multiplied by 10 to the power minus 1, this multiplied by 10 to the power minus 

2 and so on. 

So, when we have the five digit representation 2 5 1 3 4; this actually means, 2 

multiplied by 10 to the power minus 1 plus 5 multiplied by 10 to the power minus 2 and 

so on, which will give us 0.25134; keep in mind that, our decimal computer is not going 

to waste any space in representing this 0 dot, it is only going to represent this five 

numbers. The first digit is going to be multiplied by 10 to the power minus 1; second 

digit 10 to the power minus 2; third digit 10 to the power minus 3, so on and so forth. 

Now, let us say that, this one, this is the kind of representation we are going to use. So, 

the first, that the number that we can represent the 2.5134, the way we will represent is 

as we said is 0.25134 multiplied by 10 to the power 1; the number 2.5135, we will 

represent that as 0 point and again I am putting this in a bracket, because in our decimal 

computer we are not going to spend any waste space in representing the 0 point; the next 

number will be represented as 0.25135 into 10 to the power 1. 

Now, let us say, we had a number between these two numbers; let us take that number as 

2.1345; the question is, how do we represent 2.51345, is if we try to do that we will have 

0 point 25134 and now we have run out of space to represent that particular number. 

So, what is happening over here is, if we have said we are going to save five spaces to 

represent a mantissa and one space to represent the exponent, we will not be able to 



represent a number 2.51345. So, this you will either be able to represent that as, two 

point five one 0.25134 into 10 to the power 1 or you will be the representing this as two 

point five 0.25135 into 10 to the power 1, you will not be able to represent one more 

digit over here. 

Now, what we will try to do in our decimal computer is, we will use what is known as 

chopping off; what we mean by this is, for example, if I give you a number say 2.51347 

and I tell you that, I want you to just give me five significant digits for this particular 

number, you will give the number as 2.5135, why because you are rounding off this 

number; what a computer, what our decimal computer will do? It will just throw away 

this number, this number is just discarded off and any number between 2.5134 and 

2.5135 will be represented as 2.5134 itself, because we are discarding all the numbers or 

chopping off all the numbers. 

So, to summarize, if we have represented a decimal number through using five digit 

mantissa and one digit exponent, we can at most represent the number of the form 2.5134 

or 2.5135; we cannot represent any number between those two numbers that is what is 

known as a finite precision. 

(Refer Slide Time: 33:57) 

 

So, coming back to what we were talking about or where we got started off from; we got 

started off from talking about errors and we said they are two types of errors: truncation 



error and round off error. The round off error comes up, because a finite precision 

machine is chopping off the numbers beyond what it is capable or what you have asked it 

to store; you have asked to store a real number using only five decimal digits, as a result 

of this, anything that requires six decimal digit is going to be chopped off. So, what I 

want you to do is, just think about you have the representation 0.5 digit mantissa 

multiplied by 10 to the power 1 digit exponent. Think about what is the largest number, 

you can represent using this particular notation; and what is the smallest number, that 

you can represent using this particular notation. 

So, the various possible answers that people had come up with the largest numbers, 

actually, I think most of the people got it right; the largest number that you can represent 

is going to be 0.9 9 9 9 9, because those are the largest numbers, each place holders can 

hold multiplied by 10 to the power 9. This is the largest real number that our floating 

point representation is going to hold. Now, what is going to be the smallest real number, 

the smallest real number is perhaps going to be 0.00001 multiplied by 10 to the power 0; 

that is the smallest real positive number that can be represented. 
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If you wrote this as your answer, unfortunately your answer is incorrect, the reason why 

this is incorrect is remember what we said about the mantissa; the mantissa will lie 

between 0.1 and 1; keep in mind there is an equality sign over here, there is no equality 

sign over here; the largest number that is represented by the mantissa is 0.9 9 9 9 9 and 

not 1.0, 1.0 remember would be represented as 0.1 multiplied by 10 to the power 1; so, 

the mantissa lies between 0.1 less than and equal to mantissa less than 1. So, this 

particular number will not be represented in this way; this particular number has to be 

represented as 0.1000 multiplied by 10 to the power minus 4. 

Now, the requirement we said with respect to the exponent is, we said we did not want to 

represent negative exponents over here. So, this particular number is not admissible in 

our scheme of things - in our decimal computer; so, the smallest number that is actually 

admissible in our decimal computer is going to be 0.10000 into 10 to the power 0, that is  

the smallest positive real number; so, the largest positive real number was 0.9 9 9 9 9 

into 10 to the power 9; the smallest positive real number is 0.10000 into 10 to the power 

0. Keep in mind that, we have are going to use all the five digits; so, that means, the 

number is not 0.1 into 10 to the power 0, the number is 0.10000 into 10 to the power 0. 

Now, if you relax our assumption of only positive exponents and to say that even the 

negative exponents are admissible. 



So, let us say that, the exponents that are possible will range from say minus 9 to plus 9; 

this is again for the argument sake and there would not be represent necessarily a 

representation in the decimal system, the reason is because we need one storage for this 

particular negative number and if you are going to use a decimal digit in order to do this 

storage, is going to be a waste of a lot of space. 

So, this is perhaps not something that we would want to do in the decimal system. But, 

let us say, for argument sake for now just that, the exponent that is allowed is from minus 

9 to 9; in that particular case, the smallest positive real number, if the exponents were 

allowed from minus 9 to plus 9 is going to be 0.10000 into 10 to the power minus 9. 

So, the crux of matter is that, the smallest and the largest real numbers are actually 

determined through what your exponent is; the exponent determines smallest and largest 

real numbers that can be represented using our floating point notation. 

Now, as I said, the use of number minus 9 to plus 9 is very wasteful. Now, if you want to 

admit negative exponent also using a single digit, what can we possibly you do? Well, 

one thing that we can possibly do is, in order at admit positive and negative numbers also 

is the exponent, we will represent rather than saying e is the exponent, we will actually 

say exponent is actually e minus some constant; and let us use for this particular constant 

10 divided by 2 equal to 5. 

So, again from where we have gone, we have gone from trying to represent this number 

2.5134 in our decimal computer, we then we talked about how the mantissa and the 

exponent is going to be represented; and then we talked about how the representation of 

the exponent can be wasteful. And now we are going to talk about how we can admit 

both the negative values of exponent and the positive values of exponent.  
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So, again, now what we have over here based on this particular redefinition, is instead of 

defining our number as m into 10 to the power e; if we were to use this particular 

definition we are going to represent this as m multiplied by 10 to the power e minus 5; 

so, when we have this particular representation, we have five digits to store the mantissa, 

one digit to store the exponent; the exponent e, the value of e, the admissible values of e 

are 0 1 2 and so on up to 9; as a result, the admissible values of exponent become minus 

5 minus 4 minus 3 and so on up to plus 4; so, this revised definition of our floating point 

representation has the smallest positive number as 0.10000 multiplied by 10 to the power 

minus 5. 

This with the 6 decimal digits, that we are going to use in our computer, is going to be 

represented as 100000, this is m, this is e and our representation is m multiplied by 10 to 

the power e minus 5; so, that is the smallest positive number; the largest positive number 

is going to be represented as 9 9 9 9 9 9; so, this represents 0.9 9 9 9 9 into 10 to the 

power 9 minus 5 or 10 to the power 4. 
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So, we have talked about the floating point representation. Now, we will talk about the 

floating point representation in binary based or any base for that matter, so rather than 

writing the number as m times e 10 to the power e, we will write it as m times b to the 

power capital E capital, E stands for the exponent or we can instead of this we will write 

it as e minus c. 

So, over here, m is the mantissa, b is the base and this becomes our signed exponent. 

And in our binary representation that we use in our computers - in the binary 

representation what we will have is, in addition to this mantissa we will have a sign bit 

also for our binary and I will write this with the red chalk. 

So, now how a binary representation of a flowing point number would be. So, let us say 

that, we are that we will have a total of 16 bits for representing a real number; in that 

particular case, the first bit is going to be the sign bit, that will represent the sign of the 

complete real number, whether the real number is positive or negative, will be given by 

the value of the sign bit 0 would mean, it is a positive number 1 would mean, it is a 

negative number, we will then out of the remaining 15. We will keep some of these 

digits, some of these bits for the mantissa and some of these bits for the exponent. 

Let us say, again for argument sake, let us say that, we have kept 10 bits for the mantissa; 

so, 123456789 and 10 ,this will be kept for the mantissa, and the last five will be kept for 

the exponent; the exponent is an integer, so this the rules that we actually used for the 



integer numbers are the same rules that we will use for the exponent except, because we 

are representing this as e minus c, we will only worry about the positive representation of 

the numbers; so, if we are going to talk about positive integer, the largest positive integer 

in this particular case is going to be 11111. 

So, what I have written over here is, if we have five locations to store, then 11111 is the 

largest positive five bit unsigned integer; unsigned basically means, we are only 

admitting positive numbers; in this particular representation, there is no digit, no bit safe 

as a sign bit. So, this number is going to be 2 to the power 0 plus 2 to the power 1 plus 2 

to the power 1 plus 2 to the power 2, 3, 4, which is equal to 2 to the power 5 minus 1. So, 

the range that e can take using this unsigned integer is from 0 which will would be 00000 

to 11111, which is 2 to the power 5 minus 1 0 to 31, because this range goes from 0 to 

31; what we will do is, we will choose c as 32 divided by 2 that is 16. 

So, we will choose c in this particular representation as 16; so, with e going from 0 to 31 

and with the value of c equal to 16, the exponent or rather I should be saying signed 

exponent, the signed exponent will go from minus 16 to plus 15; this is the range of 

exponent that we are going to get with this particular representation, if we have 16 bit 

floating point numbers with one sign bit 10 mantissa and 5 exponent; so, the smallest 

number that can be represented is going to be 0.100000000 multiplied by 10 to the power 

2 to the power minus 16, because we have this as the base, the base is no longer 10 the 

base is b. 
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So, with this particular representation, why I emphasize the term because this is not a 

standard notation, I am just using it as pedagogical tool; in general, the real numbers are 

going to be represented as 32 bit or double precision numbers are going to be represented 

as 64 bit numbers; I 

 will come to that later, but in this particular representation, the smallest positive real 

number is going to be 0.1000 multiplied by 2 to the power, that is b to the power e minus 

c e minus c is going to be minus 16 2 to the power minus 16; when we represent this as, 



1 the decimal equivalent is 2 to the power minus 1; this is 2 to the power minus 2 and so 

on; so, the decimal equivalent of this is 2 to the power minus 1 is what the mantissa gives 

us multiplied by 2 to the power of minus 16, that is what the exponent gives us. 

So, the smallest positive real number is going to be determined through the exponent part 

of the representation. 


