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Hi and welcome to lecture 3 of module 5, where we are looking at regression and 

interpolation. In the previous 2 modules, we introduced what we meant by regression, 

what we meant by interpolation. And then we looked at various different ways of linear 

interpolation, started off with fitting a straight line y equal to a 0 plus a 1 x and then 

extended that to multi-linear regression, where y in general will be a function of more 

than one variables. The example that we took was a 0 plus a 1 x plus a 2 u plus a 3 w and 

we saw, that the overall equations that we get, follow a certain pattern and we can reduce 

the problem of finding a 0, a 1, a 2 and a 3 and so on. 
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To the problem of solving n linear equations in n unknowns, that was the first method 

that we looked at; the second method that we considered after that, was a matrix based 

method, where we wrote our equation as y equal to the linear function plus error and then 



amounted to a least square problem; what we are going to do today is look at polynomial 

fit and fitting of some functional forms, which are essentially non-linear functions, but 

which we can linearize them and then go ahead and use linear or multi-linear regression 

in the same form. 

So, starting off with this polynomial fitting; an example of this would be the specific heat 

C p is written as a function of temperature and it why might be a polynomial function of 

temperature, we can write this as a 0 plus a 1 T plus a 2 T square plus a 3 T to the power 

3; so this is a polynomial fit that we want to obtain; we want to obtain a 0, a 1, a 2 and a 

3, such that the error between the C p computed by the model using this value and the C 

p value that is obtained from the data is minimized. 

So, in this case, the data that we have is going to be C p 1 or rather I should write T 1 C p 

1, because we have been writing it in the form x, y where x is the independent variable 

and y is the dependent variable; so we have T 1, C p 1 T 2, C p 2 and so on up to T n, C 

p N; so this is the data that we have; so, let us now define y i as nothing but C p I, x i is 

going to be nothing but T i u i is nothing but T i square, and w i is nothing but T i cubed. 

So, with this definition y i as C p I, x i as T i u i as T i square and w i as T i cubed, so 

what we can say is that, the overall equation that we now want to fit, so its amounts now 

fitting the functional form a 0 plus a 1 x plus a 2 u plus a 3 w; in this case, x, u and w are 

not 3 independent variables as we had in the previous lecture, but instead x is going to be 

temperature, T u is T square and w is T cubed. 

Once we write it in this form, we can then use the same ideas of multi-linear regression 

and we can then go ahead and obtain the overall solution and this is going to work as 

well as a general multi-linear regression of that form as well. 
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So, let us see what we got in the multi-linear regression case for this particular model; for 

this model, what we had is the matrix Y was defined as y 1 y 2 and so on up to y n; Y 

recall is nothing but C p; so, we have C p 1 C p 2 and so on up to C p N, that is going to 

be our vector Y. Our matrix X, if you recall from the previous lecture, the first column of 

the matrix X was 1 1 1 1 repeated n times; the second column was x 1 x 2 x 3 up to x n; 

third column u 1 u 2 u 3 up to U N and fourth column w 1 w 2 w 3 up to W N using the 

relationship that we have just written few moments back. We can write X as 1 1 and so 

on up to 1, we have n number of 1’s over here; next is going to be T 1 T 2 and so on up 

to T n; T 1 square T 2 square and so on up to T N square and T 1 cube T 2 cube and so 

on up to T N cube. 

So, this is going to be our Y; this is going to be our X (Refer Slide Time 05:38); and our 

a 0 a 1 a 2 and a 3 are going to be nothing but X transpose X inverse multiplied by X 

transpose multiplied by Y; this particular term X transpose X inverse X transpose is 

known as the left inverse of matrix X. 

So, this is what is the function form, this is how we go ahead and do the polynomial 

regression; for in general we have n data points and we want to fit an mth order 

polynomial. 



So, to extended from this particular case to a general mth order polynomial, if we need to 

extended all, we need is additional columns in this particular matrix; so, if extending it to 

n to mth order polynomial, in that case I will erase this particular column also. 

So, we will have T 1 square T 2 square up to T 2 to the power n, T 1 cube T 2 cubed up 

to T N to the power 2 and so on up to T 1 to the power m T 2 to the power m and so on 

up to T N to the power m and this is what we will get; if we have to extended to a 

general mth order polynomial in temperature, what the first thing that is necessary in a 

case like this is that, m has to definitely be less than N, you cannot have m to be equal to 

or greater than N; in general, m has to be much lesser than N for this to work, if we do 

not have that particular condition satisfied, we will do this particular left inverse of the 

matrix will not exist and if the left inverse does not exist, there will not the a least square 

solution a 0 a 1 a 2 up to a m plus 1; keep in mind that, the number of coefficients that 

we are going to find through this procedure are going to be one more than the order of 

this equation, why because we have the first coefficient as a 0, so we will have a 0 a 1 up 

to a m, that makes total of m plus 1 coefficients that that we need to obtain through this 

least squares procedure. 
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So, this is what is known as the polynomial regression. A few words of caution for 

polynomial regression, first thing is the polynomial fit that that you want to obtain; if you 

have the number of data points as capital N, the order m has to be in general much less 



than the value of N in order for you to have a good confidence on the values of the 

coefficients that we have obtained; of course, if m is of the order of N or m is 1 less than 

N in that particular case what we will end up having is, over fitting of the polynomial. 

So, if polynomial will be over fit, which basically means that, you can perhaps use this as 

one way of doing interpolation, but in order to get a regression fit, this is a very poor way 

of getting a regression fit; in general, to fit an mth order polynomial, my rule of thumb 

that I use essentially is N, it should be about at least 2 or 3 times greater than the value of 

m. 

The second problem is as m increases, the matrix X becomes yield conditioned; what we 

mean by the matrix becoming yield conditioned is that inverse of the matrix, there is 

possibly going to be a lot of errors associated - with the - with the inverse of the matrix. 

In other words, what yield conditioning really means is that, the largest Eigenvalue of the 

matrix X transpose X is several order of magnitude greater than the smallest Eigenvalue 

of X transpose X; when we are inverting a number, for example, if you are to invert a 

number say 1000, when we inverted, that number becomes 0.001; on the other hand, if 

you are inverting a number say 10 to the power minus 5, when we invert that, the inverse 

becomes 10 to the power 5; as a result, the small numbers in X transpose in some ways, 

again I am using pedagogical liberties over here, but the small numbers in X transpose X 

are the small Eigenvalues; X transpose X becomes large Eigenvalues in its inverse. 

As a result, small errors in those eigenvalues appear as very large errors when you try to 

invert the matrix; because of this when we try to invert a particular matrix, we have to 

ensure essentially that the largest Eigenvalue divided by the smallest Eigenvalue should 

not be a very large number; usually, what will happen? Let say, if m becomes greater 

than or equal to and again I am using an approximately equal to sign, say m becomes 

greater than or equal to 6, the matrix becomes fairly yield conditioned, in that lambda 

max divided by lambda min starts becoming greater than 10 to the power 10, at under 

these conditions, if you try to invert the matrix X transpose X, an inversion algorithm 

that we are trying to use should give a warning that this particular matrix is going to be 

yield conditioned and we may not be able to relay on the results that we obtained from 

this matrix. 
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So, that is essentially what I wanted to cover about polynomial regression. Next, we go 

on to functional regression and the idea over here is the same idea that we used while 

fitting - the rate law - the Arrhenius rate law, for example, when we had the rate constant 

k equal to k 0 e to the power minus E by RT; we took logarithm on both sides and when 

we took the logarithm, we actually got l n k, I will just write it again k equal to k 0 e to 

the power minus E by RT; when we took the logarithm, we will get l n of k is l n k 0 plus 

minus E by R multiplied by minus 1 by T. So, in this particular case our l n k was our y 

and minus 1 by T was our x. 

So, when we plotted, essentially l n k against minus 1 by T, we got this particular curve 

as a straight line with the y intercept as l n k 0 and the slope as the dimensionless 

activation energy E by R, actually not dimensional less activation energy, it is a 

activation energy E by R. 

So, that is what we got when we took logarithm over here; another example comes from 

biological systems, enzymatic kinetics follow, what is known as the Michaelis–Mentens 

kinetics and over there the rate constant k is going to be or the rate r is going to be given 

by some constant k multiplied by the substrate S divided by K m plus S, which is K m is 

going to be a saturation constant and S is the concentration of the substrate that we are 

interested in and when we invert this particular expression, we will get 1 by r is going to 

be equal to K m plus S divided by k plus S sorry divided by k S not k plus S, which we 



can write this down as K M divided by k multiplied by 1 by S plus 1 by k. So, in this 

particular expression 1 by r is our y, 1 by S is going to be our x, this particular term that 

we have K m divided by k is going to be our a 1 and 1 by k is going to be our a 0 (Refer 

Slide Time 14:58). 

So, when we try to do a linear regression or try to fit a straight line between 1 divided by 

r as the y axis and 1 divided by S as the x axis, 1 by rate constant k is going to be our  - 

intercept - y intercept and the slope is going to be nothing but the saturation constant K 

M divided by the rate constant k. 

So, that would be another example of functional regression - regression of any particular 

functional form; third example that we can look at is a power law type of a model, let say 

we have a model which of the form mu equal to k times x to the power alpha, we can 

then again take logarithm of that and then we will have l n of mu is going to be equal to l 

n of k plus alpha times l n of x; so, l n of mu becomes our y; our l n of x becomes our mu 

x; our alpha is the slope a 1 and l n k is the intercept a 0; so, this is this is what we get. 

So, there are a lot of functions of interest to chemical engineers, especially they arise in 

rate expressions of various definite forms and under those conditions we can actually do 

some straight forward manipulation of those equations; in order to get those equation in a 

functional form which would still be linear in a modified parameter, whereas it can be 

non-linear in x, x is the independent variable and that is essentially a very important 

point when we talk about linear regression; for example, all these functional forms if we 

look at, they are reduced to y equal to a 0 plus a 1, x y equal to a 0 plus a 1, x y equal to a 

0 plus a 1 x; x as such is a non-linear function of the independent variable; y itself could 

be a non-linear function of the dependent variable; but in either case whether they are 

non-linear functions or not, finally the functional form that we are going to use in order 

to do the fitting should be a linear functional form of the type y equal to a 0 plus a 1 x 

plus a 2 u plus a 3 w and so on and so forth, if we go on back to what we looked at when 

we talked about the polynomial fitting part. 
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So, this is what we did with our polynomial fitting and one of the questions – that - that 

often get us, but this is not a linear equation, so how can we do linear fit? It is not linear 

in terms of the temperature T, however in terms of the parameters a 0 a 1 a 2 and a 3, this 

is indeed linear, what does linearity essentially mean? Linearity basically means that, 

there is either multiplication of that particular parameter by a scalar quantity or a known 

constant quantity or there is just simple addition, there are no sign terms,  no exponential 

terms, no power terms and so on and so forth, in the quantity that we are interested in 

and when we talk about regression or curve fitting the quantity that we are interested in 



regression is the parameters, so these are the parameters that we are interested in; so, our 

overall expression has to be linear in parameter space. 
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So, if we look at the parameters a 0 a 1 a 2 a 3, there is no term a 0 square or a 1 square 

or a 2 square or something to the power a 0 a 1 a 2 so on and so forth; as a result of - this 

- this polynomial fitting that we have is still a linear fitting; however, there are other 

certain conditions where the fitting may not necessarily be linear and the cases where, for 

example, the fitting are non-linear, of course the obvious example where the fitting is 

non-linear is indeed, if we write k equal to k 0 e to the power minus E by RT and we are 

interested in finding out k 0 and e without having to wanting to go through that 

transformation by taking a logarithm; if we do not do the transformation indeed this is a 

non-linear example, its only after the logarithm transformation that we will get this 

particular equation as say a linear equation. 

So, likewise, the other example was the saturation type of an example, where we saw r 

equal to kS divided by K plus S; in this particular equation, again we had this as a linear 

form, which can be converted into a linear form essentially by doing certain 

transformations. 

However, instead of this, if we let say for argument say we had this particular equation 

as, say e to the power minus E by RT, in a case like this, it is going to be difficult or in 

this particular case it is not going to be possible for us to - perhaps - split this into a 



functional form, which is going to be linear in the various parameter space; sometimes it 

is not possible to do that and when that is not possible, then we will need; if you want to 

fit, we want to do a non-linear parameter fitting, then we need to go to non-linear 

regression or non-linear regression is non-linear parameter fitting. 

So, non-linear parameter fitting will be used when the model that we have developed is 

going to be non-linear in the parameter space; it may be linear or non-linear in the input 

outputs space, but it has to be non-linear, it cannot be linear in parameter space; if it is 

linear in parameter space, of course, we will go ahead and use the linear fitting - in - in 

this particular case and we will look at the gauss Newton method for non-linear 

regression in a short while. 
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So, let us say we have the data x 1 y 1 x 2 y 2 and so on up to x N y N, what we have 

seen so far is we try to fit a linear form of the form y equal to a 0 plus a 1 x; the other 

possibility is to fit the form x equal to b 0 plus b 1 y; the question that one would ask is, 

this particular form and this particular form, since both are linear, they are to be 

equivalent; so, the question is whether a linear regression technique of this form is going 

to give us the same straight line or not; for example, let us just rearrange this by 

subtracting by b 0 and dividing by b 1; so, we will get x minus b 0 divided by b 1 equal 

to y and comparing it y equal to a 0 plus a 1 x, what we get is a 0, is nothing but minus b 



0 by - b sorry - b 1, I will just write this as plus minus b 0 by b 1, that is nothing but our a 

0 and 1 by b 1 equal to b 1. 

So, the what I am seeing is this; is let us say, we have data as before and let say we got 

this particular curve as y equal to a 0 plus a 1 x (Refer Slide Time 27:12) , then we try to 

fit another linear form x equal to b 0 plus b 1 y, what we see over here is the with a 

straight forward division of this type b 0 by b 1 multiplied by minus 1 and 1 by b 1; we 

will get this to be converted into y equal to a 0 plus a 1 x. 

Now, the question is, is the curve y equal to a 0 plus a 1 x obtained from this particular 

method and the lines not the curve - the lines I am sorry - obtained from this particular 

method are they going to be one and the same line or not and the answer to that question 

is, it depends on what we use as our functional form in order to get this particular 

regression fit, remember the functional form that we use in order to get; so, this was the 

model and then we had certain errors, the errors in this particular case we assumed y i 

was a 0 plus a 1 x i plus e I; in this particular case, it is going to be x i equal to b 0 plus b 

1 y i plus e I; so, in this case, what we are assuming was that the errors are in x and in 

this case we are assuming that the errors were in y. 

So, what I mean by this is, let us say this is our best fit curve shown over here, then what 

we are actually minimizing? As we had seen - in the - in one of the previous lectures in 

the module is, we are minimizing these vertical distances between this straight line and 

the data this is what we are actually minimizing; but if we have to fit the curve x equal to 

b 0 plus b 1 y, it is not the vertical distances that we are minimizing, but its indeed the 

horizontal distances that we are minimizing. 

So, let us say, this is going to be the best fit curve and this is the best fit curve because 

we are minimizing these horizontal distances; so, these are the horizontal distances that 

we are trying to minimize or under certain cases we would definitely get our a 0 equal to 

minus b 0 by b 1 and a 1 equal to 1 by b 1 to be same as a 0 and a 1 over here; but in 

general, for most cases, that is not going to be true; so the question is, whether you need 

to use a functional form y equal to a 0 plus a 1 x or whether you use x equal to b 0 plus b 

1 y depends on what you know about the overall system, for example, if we go back to 

this particular example of trying to fit, C p as a polynomial form with respect to 

temperature. 
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What we get is, essentially there are errors in measurement of the specific heat C p; there 

are errors in the measurement of temperature; so, there are errors both in x and y; in that 

case, if we minimize the errors in x versus we minimize the errors in y, we are going to 

get different results. 

Again we will take up the example that we had worked in the previous lecture and see 

what results we will get if we are going to do regression of the form x equal to b 0 plus b 

1 y.  
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So, this is what we had done in the previous lecture, we were given the data x and y, this 

was the data that we got and then we had obtained summation of x, summation of y, then 

we computed xy and summation of xy; we computed x square and this (Refer Slide Time 

33:07)  and then we obtained a 0 and a 1 using these formulae; this is the a 0 and a 1 that 

we had obtained in the previous lecture, I have just made them bold phase. 

Now, what we are going to do is just interchange x and y data, because now x is going to 

be the dependent variable and y is going to be the independent variable and as we had 

done before our b 0 and b 1 will have almost the same form, the only difference is 

wherever we have x that will be replaced by y, wherever we had y that will be replaced 

by x. 

So, we will have this as indeed, the numerator is indeed going to be summation of x 

multiplied by summation of y divided minus n times summation of x multiplied by y; if 

you replace essentially x with y and y with x, you are going to get the same expression; 

however, in the denominator what we will have is, we will have summation of y the 

whole square minus n times summation of y square, that is going to be different in this 

case and b 0 is going to be nothing but x average minus b 1 multiplied by y average; this 

is going to be our value b 0. So, those are the two main differences really that we will 

have in this particular example; so, I will just drag it upward so that it is all visible in a 

single. 

So, this is what we get for b 1 and b 0; so, for b 1 and b 0, we will really need is xy, we 

will need or x 0 and now we will also need our y square, because instead of x square we 

will be using y square in this particular expression; so, y square is going to be nothing 

but this to the power 2; I will just increase the font, so that it is all visible for us. 

So y square is going to be this value to the power 2 and I am just going to drag it all the 

way, so that all the data is covered and we will get the summation and then we will just 

save it over here; y hat remember is nothing but our y that is obtained from the model 

given x from the model a 0 plus a 1 x. 

So, same way now we are going to try to find b 1 value; b 1 value is nothing but 

summation of, this is not visible again so I will just do this very quickly and now we are 

good to go. So, now we have the expression for b 1; b 1 expression is summation of x 



which is this value multiplied by summation of y which is this value minus n which is 6 

times summation of xy, which is this particular value. 

So, A10 is summation x; B10 is summation y; C10 is summation of xy and 6 is our n, 

that is our numerator divided by the denominator and the denominator in this case is 

summation of y the whole square, this is summation of y, B10 is summation y whole 

square minus n, which is 6 multiplied by summation of y square, that is the value we 

have recently found and that is what our b 1 is and b 0 is nothing but x average; so, I will 

just change the font size here again, because it is not visible; so, this is nothing but x 

minus b 1 times y whole divided by n summation of x minus b 1 multiplied by 

summation of y whole divide by n which is n was 6. 
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So, this is going to be our b 0 and the above value was our b 1; let us find out what value 

of a 0 and a 1 that we get over here; a 1 is nothing but 1 by b 1 equal to 1 divided by b 1, 

which is 0.51 which is different from the previous value that we had obtained and a 0 is 

nothing but negative b 0 by b 1, so a 0 - I will just increase the font size here again - 

equal to negative b 0 divided by b 1 and this is the value of a 0 and a 1 that we will get 

corresponding to the fitting, instead of x versus y we have now fitted y versus x; so for 

the given y data, what is going to be x hat? Again as usual we will just increase the font 

size before continuing. So, we have x hat over here; x hat is nothing but x hat equal to b 

0 plus b 1 multiplied by y I; so x 1 hat is nothing but b 0 plus b 1 multiplied by y.  



Remember what we did in the previous lecture, because the terms b 0 and b 1 are not 

going to change when we drag the particular equation downwards, that is why we will 

put dollar signs over there; dollar signs basically mean that, as we drag this particular 

column D18 which is our b 0 value and D16 which is b 1 value remains the same, the 

only value that is changing as we drag this particular column downwards is going to be 

the b 3 value, that is going to change. 

So, I drag this particular line downwards and this is what we get as x hat. So, now, let me 

add that data to our original data, so we will add this data, this first guy is going to be x 

hat, the second is going to be again our x hat value and the y axis is going to be the y 

values. 

So, these are essentially our green data points, I will select the green data points and 

format data series and I will just zoom in format axis and I will just zoom into that 

particular axis by taking values of x as from going from 0.7 to going to 5. And likewise, 

the y axis also we will zoom in the reason why I just want to zoom in and show you 

essentially is to see that the two regression methods are indeed going to give us different 

results; so, we have 2.8; so, this red curve that I have highlighted now is the curve that 

we had fitted the data y hat equal to a 0 plus a 1 times x hat and this green curve that I 

have highlighted now is the data that is fitted, is x hat equal to b 0 plus b 1 y. 

So, as you can see these two lines are indeed two different lines, what happens in case of 

the red line is, we have this minimization of these vertical distances between the data 

point and between the actual line, whereas in case of the green line, the minimization is 

between the horizontal distances over here between the blue data’s and the green data 

points. 

So, this is the two different cases or two different ways for the same data the linear 

regression is behaving - one case when the error is in x variable; the another case is when 

the error is in y variable. 

We will go back to the board and we will take up the same chart, we will look at again 

and we will see what else can actually be done and this goes into what is known as multi 

variable data regression type of an idea. 
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What we have done so far; now if you want to go into advanced data analysis stuff, 

which we are not going to cover, but just a very quick two minute summary of that is, 

what we have covered so far is what is known as ordinary least squares. 

So, in ordinary least squares what we are doing is, we are minimizing the vertical or 

horizontal distances, or horizontal or vertical error between the best fit line and between 

the data points; An alternative to this is, what is known as total least squares or error in 

variable methods and so on and so forth. There are various different methods that use the 

statistical properties of the data, that we have in order to get a better fit of the overall 

curves and simplest way of looking at it is, rather than minimizing the vertical distances, 

we can minimize the perpendicular distance of the particular straight line for the best fits 

the data and the data point. 
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So I will just erase this (Refer Slide Time 46:24) and draw the various points all over 

again and where I am just widely spacing these points so that and let us say, this is the 

best curve line. 

So, what we have seen when we are trying to fit a 0 y equal to a 0 plus a 1 x; what we 

have done over there is, we are minimize the vertical distances that I am showing as thin 

white lines and we fitted x equal to b 0 plus b 1 y, we minimize the horizontal distances; 

another alternative is, if there are errors in both x and y variables, what we may want to 

do is to minimize the perpendicular distance of the data point from the line, that we have 

drawn over there and some of the advance techniques allow you to - actually - do this 

kinds of a least squares minimization. 

So, that essentially covers the linear regression part. In the final few minutes of this 

particular lecture, I will just talk about non-linear regression. 
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And let us say that, we want to do a non-linear regression, when the equation is of the 

form say y equal to some function f of x comma a 0 comma a 1; in this particular case 

what we will do is, we will use a similar idea that we use earlier, for example, in 

Newton-Raphson's method or any of the earlier methods, what we will do is, we linearize 

the equation f with respect to a 0 and with respect to a 1. 

So, we will start off with initial guess. Next, we linearize the function f with respect to a 

0 and with respect to a 1; so, f of x, a 0, a 1 can be written as f of x a 0 1 a 1 1 plus partial 

f by partial a 0 computed at a 0 1 a 1 1 multiplied by delta a 0 plus partial f by partial a 1 

computed at a 0 a 1 multiplied by delta a 1; and we are ignoring any of the higher order 

terms over here. 

So, y is going to be nothing but equal to this particular value; we will take this value to 

our left hand side and what we will get is this, is y i minus f of x I, x I; a 0 1 a 1 1 is 

going to be equal to dou f by dou a 0 computed at a 0 a 1, we will call that our u i and 

this we can call this as say v i. 

So, v i is y i minus f of x i a 0 1 a 1 1, u i is nothing but partial f by partial a 0 computed 

at the current value and w i is again this particular expression and from this, we will 

essentially we able to get delta a 0 delta a 1 is nothing but X transpose X inverse X 

transpose V, where V is v 1 v 2 up to V capital N, x is u 1 u 2 up to u capital N, w 1 w 2 

up to W capital N. 



So, our capital X u 1 up to U N; w 1 up to W N and our capital V is nothing but v 1 and 

so on up to V N; so the overall procedure is to start with initial guesses a 0 and a 1, then 

compute delta a 0 and delta a 1 using this particular linear regression; based on delta a 0 

and delta a 1 we will get a 0 2 as a 0 1 plus delta a 0 a, 1 2 is going to be a 1 1 plus delta 

a 1 and so on and keep repeating until there is no more change in the delta a 0 and delta a 

1 value. 

So, that essentially ends our the third lecture of this module and with the third lecture of 

the fifth module, we have finished talking about regression. From the next lecture 

onwards, I will talk about interpolation. In regression, what we did is, we started off with 

linear regression in one variable moved on to multi-linear regression. We looked at two 

different methods of doing multi-linear regression, both of this methods are exactly 

equivalent to each other, only it expressions are slightly different from each other. Next, 

we look at the regression for polynomial functional form polynomial regression, after 

that we covered functional regression; then we took up an example where we compared 

the regression of the form y equal to a 0 plus a 1 x with the regression of the form x 

equal to b 0 plus b 1 y; although those equations could theoretically be for equations for 

the same line, they are inter convertible into each other. We saw that the two different 

ways of doing these regression; in the first case, we minimize the vertical distances when 

we plot y versus x; in the second case, we minimize the horizontal distances when you 

plot y versus x. And finally, very briefly we covered the non-linear regression part just 

involves linearizing the overall regression module with respect to the regression 

coefficients a 0 and a 1. 

So, that is essentially what I intended to cover in regression; for the most part, it is linear 

regression and the reason why we spoke about non-linear regression as well as total least 

squares idea is to motivate some of you to go ahead and read up these advance topics if 

you have more interest in these topics. From next lecture onwards, we will start talking 

about interpolation and we will start off with polynomial interpolation. 

Thank you. 

 


