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Hello, and welcome to the module five of the computational techniques course, what 

module five is goning going to cover is essentially, what is known as regression, and 

interpolation. We have perhaps encountered regression right in our high schools, when 

we started looking at how to fit a straight line to a bunch of data points, and we have 

done this regression fair number of times. For example, you have several number of data 

points, and we need to find out the best fit line that passes through these data points; that 

is what is known as linear regression. Interpolation is another thing again, what we 

would have done earlier as well, essentially you are given some amount of data say n 

number of data points. So, those represent discrete data points in continues set. So, if we 

want the value at any other point between these among these n data points any other 

point other than these n data points, we will have to use interpolation. 

(Refer Slide Time: 01:17) 

 



In this particular module is go go through an overview of where regression, and 

interpolation are going to be used in chemical engineering system systems. And then, we 

will look at several ways of doing this regression, and then we will continue with several 

ways of doing interpolation. Each method has it is own advantages or disadvantages or 

rather more appropriately. It it has a range of applications, where you could use that 

particular method. 
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So, let us look at an example. Let us say, we have been given the following data x is the 

independent variable and y is the dependent variable. And we need to find out a 

functional co-relationship between the independent variable y, how this particular y 

relates to this particular x and this is just the data that is given to us. For example, one 

example could be how that rainfall in the city of Chennai relates to say the temperature 

that we find are relate to the relative humidity and temperature and things like that. So, 

just we have an independent variable x, we have a dependent variable y. And we want to 

find out a functional relationship between x and y that is, what regression is going to be 

about… 

 So, what we have done over here is plotted this y against x and these are the six data 

points. Regression in this particular example is means to obtain straight line that fed best 

feds the data. In general the regression may we may not necessarily be interested in 

fitting straight lines. We might be interested in fitting some functional forms to the given 



data, but in this for motivating examples in the beginning. We will just look at fitting 

straight lines to to the data. 
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Now, let us look at interpolation case interpolation again, we have been given the same 

same data as as before and we have plotted the data as before, what interpolation the 

question we ask interpolation. For example, is given this data let us say, I want the value 

at x equal to two. So, let us say value at x equal to two, how do I get that particular value. 

So, in a way interpolation is like joining the dots. It is basically trying to find a curve that 

passes exactly through all of these points that we have shown over here. If we look at the 

previous slide and see what we did with regression regression the curve did not 

necessarily pass through all the data points.  

So, for example, none of these data points actually this best fit curves passes through it is 

just a curve that is going to minimize some kind of an error or some kind of a distance 

between this point and and the straight line that is what we do in regression on the other 

hand in interpolation. We will get a straight line the sorry we will get a curve that passes 

through all the data points that we have so, if we want to find out the value at this 

particular location. We just get this value by reading of from the curve substituting x 

equal to two in the equation of the curve. And we will get the interpolated value at x 

equal to two; we will get the value of y. 
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 Let us compare regression and interpolation in this particular case specifically what I 

have done is, I have fitted a best fit straight line to these data points. And in this 

particular example, I have fitted what is known as spline interpolation both of which we 

are going to cover in a due course in this particular module. So, in regression we have we 

fit the chosen function to the data in this particular case, it is a straight line and the 

equation of the straight line is y equal to 0.45 plus 0.47 x. 

 In case of interpolation, if given a finite amount of data. We are obtain interested in 

obtaining new data points within the range again within the range is a very important 

term over here, because since the data coverage is between 0.8 and 4.9. We will be able 

to interpolate only within these data points. We would not be able to extrapolate beyond 

any of these data points. So, what interpolation does is within this these data points. You 

can, if we are interested in finding the value of the of the independent variable y given a 

particular dependent variable x we can find that particular value. For example, if we have 

x equal 2 y will be 01.87. So, this particular point is about one two comma 1.87. 
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That is what we do in interpolation. Now, let us look at examples, where regression and 

interpolations are are used and again these are examples these are simple examples these 

are examples, which you would have done in if some of your courses earlier for example, 

we have this rate expression. It is a first order rate expression in which the rate depends 

on the temperature as well as concentration of species a. So, if we carry out this reaction 

in a batch reactor or say in a continues reactor. And we do that, we run that reaction for 

certain amount of time and try to figure out the conversions from the conversion that we 

get we can get the rate, which is essentially going to be the slope of the conversions right 

in the right before right at the start of this particular experiment. 

So, once we have this rate of reaction R and the temperature T basically, what we can do 

is we can then take a logarithm of this particular function. And once when we take the a 

logarithm of this this function, we we we will be able to get the k value k value is 

nothing, but k 0 e to the power minus E by RT and the logarithm of that we will get get 

to get us log of k 0 and E by R multiplied by minus 1 by T. So, now if we plot log of r as 

the y axis and minus 1 by T on the x axis what will essentially get is are rather what we 

should get if this particular functional form is correct is a straight line that passes through 

the data that we we have over here. The intercept of this straight line is nothing but log of 

k 0 and slope of this line is essentially E by R. 



So, this is an example that we have studied much earlier, while talking about, while 

finding out rate expression in in chemistry courses some things like that, what we are 

interested in doing is formalizing the ways in order to get the best line the best line that 

passes through these points. And we are going to look at a formulation, which is not only 

going to be finding straight line through y versus x type of data, but when we have 

multidimensional data as well in that particular case, how do you get the straight line or 

or any kind of a functional curve passing through the data. So, what we have over here is 

an inherently it is a non-linear function and we use some transmer transformation. For 

example, here a logarithm we take in order to transform a non-linear problem into a 

linear problem. And then we can go ahead and do the regression for this linear regression 

for this particular example. 
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The next example would be interpolation and the viscosity of lubricant oil. For example, 

will be measured at various different temperatures, but some times the value of the 

lubricant may not be available at the temperature of of our interest. And if that is the case 

we might need to use interpolation in order to find out at that particular temperature, 

what the viscosity of oil is… 
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So, just to look at the the example the data that we had previously this is not the viscosity 

data this is just the same data that we had previously, what we can do is essentially fit all 

these data fit fit specific type of curves through that through these data points. And one 

example would be to fit straight lines between each subsequent each successive data 

points. So, you have a straight line joining this point and this point, you have another 

straight line joining this point and this point, you have a third straight line joining this 

points forth one and fifth one. 

So, what we have over here is six data points get give us essentially five intervals. And 

for each of this interval, we fit one straight line that goes through all of and the final 

curve will eventually go through all of these data point. But this curve that we get finally 

is composed of five independent straight lines. So, that is one way of doing this 

interpolation, the other possibility is what is known as spline interpolation. And spline 

interpolation for example, will fit a curve to each of this subsequent data points. And that 

that final curve is going to be what is the interpolating curve from, where we can get the 

data in addition to all of these six data points. 

So, for example, the value at x equal to two was 1.87. So, that was just read of from this 

particular curve.  
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So, that is the difference between essentially interpolation and regression. So, let us now 

formalize the way of dealing with this interpolation and and regression. So, we have 

some set of data six data points in this particular case. So, let x be an independent 

variable and let us y be a dependent variable. And we have been given n capital N 

number of data points. In this particular case N was six. So, we have been given (x 1, y 

1), (x 2, y 2) up to x N y N. We want to find out a best fit curve in some some way or the 

other on on that curve is given by y equal to f of x semicolon theta, where theta is the set 

of parameters. So, this is the functional form of that particular curve. 
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So, the model we will write as y equal to f of x comma theta. So, that is our f x 

semicolon theta. So, that is the model we are we are interested in we are interested in 

finding the values of theta that will in some ways best fit give a best fit for y equal to f of 

x curve. The actual data again to recap consist (x 1, y 1), (x 2, y 2) and so on up to (x N, 

y N). The prediction is going to be now let us say we we assume certain value of theta. 

So, we we decide on a function, we assume certain value of theta. Once we substitute the 

value of x, we will get certain value of the dependent variable y. We call this particular 

value of dependent variable y with a hat, the hat represents that it is a prediction. Keep in 

mind that this is the model whereas; this is the prediction from the model. So, what we 

have done is we have substituted x i over here, and we will get the value of y i. 

 Now, because there is an error for example, if we look at if we look at this particular 

curve so, this particular value the x coordinate is x i and the y coordinate for this value is 

y i. So, if you if you substitute basically x i into this particular equation of this particular 

straight line, we will get the value of y, which we obtained from the function at this 

particular point, which is actually different from the actual data that we had. So, this data 

point will be called y whereas, this particular predicted value is will be called y hat.  

So, we have written the prediction equation in the form y i hat equal to f of x i comma 

semicolon theta. Now there is an error as we we showed in the previous graph there is an 

error between the true data value and that value that is obtained through the model. And 



this error is essentially we will write that as e e subscript i and we just take y i on to the 

other side, we will get y i hat on to the other side. We will get y i which is the the true 

value from the data is going to be equal to f of x i comma theta, which is nothing but the 

model prediction of y i plus the error between the true i i and the module prediction.  

And what we are interested in doing is we are interested in finding out methods that will 

minimize these errors. Before going further, we will also just define a few terms from 

statistics statistics the mean of data is nothing but sum of that data divided by the total 

number of data points. It is something that we are all familiar with this is essentially the 

variance of the data variance of data is nothing but square of this standard deviation 

which is which essentially gives us how the data is spread with respect to the mean x bar. 

So, how how much is the spread of x i with respect to x bar is what is given by the 

variance. And sigma is the square root of variance is nothing but the standard deviation. 
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So, again to how is interpolation and how are interpolation and regression going to be 

different from each other. In regression, what we do is we will choose a functional form f 

of x. Now, how do we choose the functional form f of x. For example, in the Arrhenius 

rate rate kinetics the functional form, we choose for excuse me the functional form we 

choose for the rate of reaction are was nothing but k multiplied by c a and for the rate 

constant k it was k naught, which is a frequency factor multiplied by e to the power 

minus E by RT  



That is how we choose the functional form form of x for a given value of theta. We 

obtain the y i hat, which is the module production. And we recursively use some method 

or we use some kind of a direct method to find out the theta, which minimizes some 

norm of the error in some way. So, this could be the absolute value of the error sum of 

the absolute value of the error or it could be the sum of square of error and so on and so 

forth that is what is going to be our objective is to find out theta that will minimize the 

error in some form. 

As against that in interpolation case, we do not have to choose a functional form there 

are several standard functional forms that exist and based on the method that we are 

going to use, we will use one of those standard functional forms for for interpolation. 

Interpolating function passes through all the data points, which means that the error is 

going to be 0 for each of the data points. And the the usefulness of interpolation is to fill 

in the data at new x values whereas, the use of regression is to get a close functional form 

that can then be used for various purposes. For example, the rate of reaction can be used 

in order to design cstr or PFR and so on. 
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That is the difference between and the silent features of using regression and 

interpolation. So, after we look at so, initially we look at a single variable case; that 

means, the output is one variable and the input is a single variable. Next we will extend 



that particular example to a multivariate case, where x 1 to x n are smaller number of 

variables and capital N is the total number of data points. 

So, we have the data in the form x 1 to x n at data one comma y 1 y x x 1 to x n at data 

two comma y 2 so on and so forth from x 1 to x n at data N and y N. So, this is what our 

data would be and our objective in multivariable case. We will be to obtain theta, which 

is going to be a victorial theta that will give us the best fit for y for a curve y equal to f of 

x. 
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An example of multivariable case is to find this specific heat as a function of 

temperature. If you go to the NASA’s website there is NASA polynomial form of 

specific heats of several gases and this has been taken from that that that particular 

NASA polynomial fit. The specific heat of methane the constant pressure specific heat of 

methane is a given by this particular quadratic function is a 0 plus a 1 T plus a 2 T square 

as a 0 is 85.8 so on and so forth. So, what we have over here is we are trying to fit a a 

specific function in order to functional form to the data c p versus T and as we will show 

later on in this particular module this is an example of linear regression.  

Another example is a functional regression, where we want to fit a functional form of 

this type this is an Antoine vapor pressure relationship log of the saturation pressure is a 

function of the temperature and a b and c are the three constants in this particular 



equation. This particular equation as it is formulated is going to be going to require non-

linear regression of course, there is an alternative way of formulating this problem also 

which is going to result in ah linear regression. We will look into that as well how to 

look do a non-linear regression or functional regression or polynomial regression in this 

particular module. 
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So, to just recap the overall methods that, we are going to use in this particular course. 

First we will talk about linear regression in one variable, after that we will go on to linear 

regression in multi variables also known as multi linear regression followed by 

polynomial regression. We will then analyze these regression methods and look at the 

extension and then finally, look at the non-linear regression. So, this is the regression 

part of the of the course. The linear regression is nothing but fitting the curve y equal to 

m x plus c to the x versus y y data.  

But it is actually more than that because for example, we have seen in in one of the 

earlier slides is we can actually fit a straight line after, we do some kind of 

transformation to the original function of this type. So, although linear regression per say 

a single variable case is fitting a straight line to x versus y data it is immensely useful 

way of doing regression. The next we will we look at is extension to the multi multi 

regression case, which which is again similar to what we had we had talked about earlier 

is if y is not just the function of x, but a function of multiple variables. 
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So, that is the overall outline for regression after finishing of regression, we will then go 

on to interpolation. We will look at a polynomial fitting basically, what we will we will 

we will say is some of the ideas that we learn from the regression part of this particular 

module whether we can apply the same idea to the interpolation part. And we will see 

that we run into certain problems, when we try to do this to do polynomial fitting for in 

order to get an interpolating polynomial. So, there are alternatives in order to do this 

interpolation and get rid of some of these limitations and specific methods that we are 

going to look at is Lagrange’s interpolating polynomial and Newton’s methods and 

finally, we will finish of with Spline interpolation. 

So, that is the overall over view of our outline of what we are gaw going to cover in this 

particular module. After doing an overview of what we are going to cover in this 

regression and interpolation module. We will now just go go and look at the linear 

interpolation case in single variable and derive the equations, how we can get the values 

of the slope and the value of the intercept for the single variable case.  
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Again for (No audio from 24:49 to 25:00) we have our data (x 1, y 1) (x 2, y 2) and so on 

up to x N y N. We want to fit a functional form or model form is going to be y equal to a 

0 plus a 1 x a a 1 is nothing but the slope and a 0 is nothing but the y intercept for this 

this particular curve. So, this is the model that we are interested in fitting, when we 

substitute the value of x i in this particular equation. The value that we will get from the 

module is we are we are going to call it y i hat is y hat is going to be a 0 plus a 1 times x 

i. For example, let us cons consider this particular data point. Let us say x 1 value of 0.2 

and y 1 value of was 0.3. So, if we substitute the x 1 value of 0.2 and given the values of 

a 0. So, what I am saying is x 1 is 0.2 y 1 is let us say 0.3 and the functional form over 

here was let say 0.5 minus say 1 times x. If this was let say the functional form then 

substituting x equal to x i, we will get 0.5 minus 1 into 0.3 that is 0.2 which is equal to 

0.3, which is exactly the same as y 1 that that we had earlier. 
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But instead, let us say instead of this let us say the y 1 was 0.29. In that case, when we 

substitute the values of x x 1 in this particular equation, we will we will get y 1 hat is 

going to be equal to 0.5 minus 1 into 0.2, which we just obtained as 0.3, which is 

different from the y 1 hat is different from y 1, this y 1 is data; this y 1 hat is the model 

prediction. So, the error e i is the difference y 1 multiplied by y 1 hat. And in this in this 

example that the error is minus 0.01 that is the error in between the data and the model 

prediction of that particular data. 

Previously, when we had taken x 1, and y 1 as 0.2 and 0.3 error e 1 was exactly equal to 

0. In general, we need not always get the error to be exactly equal to 0. So, we are going 

to look at a general case, where the error is going to be certain value e i. So, y i equal to a 

0 a 0 plus a 1 x i is as we had said earlier the model prediction.  
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(No audio from 28:29 to 28:58) 

So, the error is y i minus a 0 minus a 1 x i that is the error for i th point. You will have an 

error for first point second point and so on up to all all the N points. So, as we had 

before, let us look at the six data points that we we had we had six data points something 

like this. So, what let say a given value of for a given value of a 0 and a 1. We will get a 

straight line as shown over here this clearly is not going to be the best fit line the best fit 

line is perhaps going to be something something like this. The dotted line is perhaps 

going to be best the best fit line, but let say this is parti is the particular line that we have 

we have right now. 

In that parti in that case, let us look at graphically what the error e i really means I will 

just erase the dotted line that I had I had drawn. So, let us look at the forth point forth for 

the forth point basically this is the value x i this particular value is y i hat, y i hat is the 

value that we obtain from the module prediction that is by substituting the value of x i in 

the equation of that straight line and y i is the actual data. So, this particular vertical 

distance is the e i. So, what we have is essentially for each of the data points, we have 

this vertical distance as e 1, e 2, e 3, e 4, e 5 and e 6.  

So, the objective of any kind of regression technique is going to be for the regression 

technique will choose to minimize (No audio from 31:19 to 31:27) minimize the error in 



some form. And the way, we have learnt in so far the way that the thing that works the 

best with respect to minimization essentially is to minimize the square of error. So, if you 

were have to minimize the square of error.  
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(No audio from 31:53 to 32:10) So, what we want to do is we want find a 0, and a 1 such 

that… 

(No audio from 32:19 to 32:35) 

So, this is essentially our problem statement is we want find the values of a 0, and a 1; 

such that the sum of square of errors in the data, and the model prediction of the data is 

minimized. So, let us substitute the the form that we had for e i in this particular 

equation. So, we will get (No audio from 33:01 to 33:14) forgot the summation sign over 

here, summation i equal to 1 to N, y i minus a 0 minus a 1 x i the whole squared. So, this 

particular term, if if we look at within the summation sign, this particular term is going to 

expand as y i squared plus a 0 squared plus a 1 x 1 x a 1 x i the whole squared, multiplied 

by two times this term and this term with the negative sign, multiplied by two times this 

term multiplied by this term with a negative sign, multiplied by two times this and this 

term with a positive sign, because there are two negative signs, which which cancel of.  

So, this particular term can be expanded as y i squared plus a 0 squared plus a 1 squared 

x i squared minus 2 times y i times a 0 minus 2 times y i a 1 x i plus 2 times a 0 a 1 x i 



summation i equal to 1 to N minimize a 0 a 1. Now how do we find the value of a 1 a 0 

and a 1 that minimizes this this particular function. So, let us just lo look at the the 

equivalent problem (No audio from 35:05 to 35:16) to find some x that minimizes g of x 

the x that minimizes the g of x. We are going to take dg by dx the slope and equated to 0 

this will give us either the minima or the maxima for this particular g of this particular 

value g of x. 

So, in this particular case, since it it is a function of two variables. We want to find out 

this particular guy over here differentiated take a partial differentiation with respect to a 

0 and equated to 0 and take a part partial dipre differentiation with respect to a 1 and 

equated to 0. It is the same problem as we had stated over here, since this is sum of 

square of errors, we will write this as S E and our problem is to minimize are to find a 0 

and a 1 that is going to minimize S E 
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As we we just just said less than a minute back the way we are going to do this is to take 

partial differentiation of S E with respect to a 0 and equated to 0 take a partial 

differentiation of S E with respect to a 1 and equated to 0. What we mean by partial 

differentiation with respect to a 0 means that we hold a 1 constant and differentiate the 

overall equation. In this case, we hold a 0 constant and differentiate the overall equation. 

Keep in mind in this particular problem x 1 x y 1 x 2 y 2 and so on up to x N y N are data 



that have been given since it is data that have been given those for the purpose of 

differentiation have to be treated as constants. 

So, this is a constant term for the purpose of differentiation this term depends on a 0, this 

does not depend on a 0. So, d by d a 0 of this term will be 0 so on and so forth. So now, 

we start differentiating this term. Now, keep in mind that differentiation operator 

essentially is a linear operator. So, you can take the operator with in the summation sign. 

So, what we will do is, we will keep the summation sign outside summation i equal to 1 

to N and let us look at this particular expression over here  

Now, we are differentiating with respect to a 0. So, this term will go away there will be 2 

times a 0 term this will go away 2 times y y i term 2 times y i a 1 x i this will again go 

away because there is no a 0 over here and they will be 2 times a 1 x i term. So, the terms 

that we will we will we will retain in our a 0 in d S E by d a 0 are these these three terms. 

So, this particular term is going to be 2 times a 0, the second term is going to be 2 times 

y i, when we differentiate with respect to a 0. So, minus 2 times y i and the third term 

that we have over here is going to be 2 times a 1 x i (No audio from 39:05 to 39:14) 

equal to 0, and we will we can cancel of these two’s over here. 

So, that will be our first equation. So, our first equation is going to be now a 0 is is a 

value, which does can be taken out of this summation sign because a 0 is one particular 

value for while while we are trying to do this parti this summation. So, this a 0 

summation i equal to 1 to N of 1 is going to lead us to a 0 multiplied by N minus 

summation of y i i equal to 1 to N plus we take a 1 out of the summation. So, we will 

have a 1 summation of x i is going to be equal to 0. So, that is the first equation, what we 

will do is we will take summation y i on to the other side and retain the terms in a 0 and a 

1 on to the left hand side. So, we will take summation y i on to the other side and we are 

summing over from i equal to 1 to N. So, this is going to be our first equation. 

Now, let us look at the second equation. The second equation is going to be obtain by 

differentiating S E with respect to a 1. Again this particular term is going to vanish away 

this will be retained and this will be 2 times a 1 times x i squared. This term is going to 

vanish, because there is no a 1 term over here, this is going to be retained and this term is 

going to be retained. So again, we will have like before we will have three terms that get 

retained. So, the first term that is retained is to so, let us let us look at. So, in this 



particular term, we will have 2 times a 1 times summation of x 1 squared. So, we have 

again this summation i equal to 1 to N outside and in there we will have 2 times a 1 

multiplied by x i squared. 

The second term is minus 2 times y i x i and the third term is going to be plus 2 times a 0 

x i we are differentiating this term with respect to a 1. So, we will have 2 times a 0 x i 

equal 0. And again we will discard this this twos so, we will have we will rearrange it 

again. So, that a 0 is our first term a 1 becomes our second term and so on. So, we will 

have some a 0 times summation of x i i going from 1 to N. The second term is going to 

be plus a 1 summation i equal to 1 to N of x i squared and what we do over here is we 

will take the x i y i term on to the right hand side. So, that is going to be equal to 

summation x i y i i equal to 1 to N  

So, now what we have is we have two equations in two unknowns. The two unknowns 

are our a 0 and our a 1 these are the two two unknowns and we have two equations and 

then we can we can solve these two equations we can solve this equation by. So, in this 

particular equation we will multiply by summation of x i and this equation will multiply 

by by N. So, multiplication by N I will I will write that using a different color chalk. So, 

we multiply this entire equation by N and we will get N times a 0 times this plus this 

equal to N times this. And then in this particular equation, we will multiply by 

summation of x i. So, we multiply this by summation of x i and this particular also we 

will have this multiplied by summation of x i.  

So now, what we will do is this equation minus this equation will lead us.(no audio from 

44:19 to 44:29) So, this and this term will vanish away, we will have a 1 multiplied by 

summation x i multiplied by summation x i minus N times summation x i squared will be 

equal to summation x i multiplied by summation y i minus N times summation x i y i.(no 

audio from 45:09 to 45:22) So, this will lead us to a 1, a 1 is going to be equal to 

summation x i multiplied by summation y i minus N times summation x i y i (No audio 

45:37 to 46:06) divided by summation x i summation x i minus N times summation x i 

squared (No audio from 46:12 to 46:32) and this that N term over there. So, this is going 

to be our a 1. And we can use this particular equation to get our a 0.  
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So, our a 0 (No audio from 46:55 to 47:04) N times a 0 is going to be so, just ignore this 

yellow terms over here, because remember this yellow terms had come because we had 

multiplied this entire equation with summation x i. So, ignoring this yellow terms what 

you will get is summation of y i minus a 1 times summation of x i is going to be equal to 

N times a 0. So, we have summation y i minus a 1 times summation of x i. And now, you 

divide throughout by N, we will have summation of y i divided by N minus a 1 times 

summation of x i divided by N. If you recognize this this is nothing but average of x i 

and this is nothing but average of y i. So, a 0 is going to be equal to y i avg minus a 1 

times sorry not y i avg y a v g minus a 1 times x avg.  

So, this is how we will get the value of a 0, this is how we will get the value of a 1. So, 

given N data points x 1, y 1, x 2, y 2 up to x N y N. We first find out summation of x i, 

we next find out summation of y i, we find out summation of x i times of y i and 

summation of x i x i squared. The difference between for example, this term and this 

term is that, we square the x i is first and then sum them up whereas, in this particular 

case we get summation of x i and then square of that that particular summation of x i. So, 

for example, if we have the value of x i as say 1 2 and 3 then summation of x i squared x 

i the whole squared is going to be 1 plus 2 plus 3 that is 6 squared that is 36 that is 

essentially this particular term whereas, this term is going to be 1 squared plus 2 squared 

plus 3 squared that is 1 plus 4 plus 9 that is 14. So, this particular guy is going to be 14 

whereas, this particular guy is going to be 36.  



So, that is the difference between summation x i the whole squared and summation of x i 

squared. Same difference over here also, we find the summation of x I, we find 

independently the summation of y i and multiply the two, minus the summation of the 

product x i y i. So, x 1, y 1 plus x 2, y 2 plus x 3, y 3 so on and so forth is what this terms 

is actually indicates. So, that is what we have for today for linear regression what we will 

do in the next class is going to be to extend this linear regression in one variable to linear 

regression in multiple variables. So, not just we we not just the data x versus y, but we 

have multiple independent variables then how to do the linear regression.  

Before, we do that we will take Microsoft excel, and show one example the same 

example that we saw in the in our power point slides. We will take that same example in 

order to do get the values of a 0, and a 1. And then we will find out an alternative, which 

and more general way of doing this linear regression. And then talk about linear 

regression for functional forms such as polynomial regression or functional regression 

that is what essentially we will be doing in the next lecture, thank you. 

 


