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Let us take stock of the situation. We have derived already the continuity equation which 

is nothing but the mass conservation equation. We have also derived the momentum 

conservation equation on a control volume. Let us write this down and see what form we 

finally have. 
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So, we can start with the conservation equation. We have derived the mass conservation 

equation as partial with respect to t of density plus partial derivative with respect to x of 



rho u plus partial derivative with respect to y of rho v plus partial derivative with respect 

to z of rho w is equal to 0. 

For the momentum, we considered three separate directions in the x y z directions, and 

we could write x momentum conservation equation as d by dt of rho u plus d by dx of 

rho u square plus d by dy of rho u v plus d by dz of rho u w, and this, we said was equal 

to the stresses acting on the different surfaces to the rate of change of momentum rising 

out of the stresses in the x direction plus stresses in the x direction from phases in the x 

direction plus stresses in the x direction resulting from faces in the z direction plus the 

body force, which is the gravitational force, and here, we could write down similar 

equations for the y momentum and the z momentum, and we said that these equations are 

not sufficient in themselves and that we need it to find extra relations for the stresses, and 

here, we made a certain assumptions. 

We first of all divided the stress into a hydrostatic component plus a stress component - a 

viscous stress component - which arises only from relative motion of fluid, and we said 

that the stress arising out of relative motion arises only from sheer deformation and 

extension deformation but not from rotation strain rate, and we saw that we could write 

this as mu du i by dx j plus du j by dx i plus du k by dx k delta i j with a lambda there, 

where mu is the conventional dynamic viscosity that we have, and lambda is the second 

coefficient of viscosity; mu is the dynamic viscosity, and lambda is the second 

coefficient viscosity; it is also known as the bulk viscosity. 

While the value of u is easily measurable, for example, a rheometer, the second 

coefficient of viscosity - the lambda value is not easily measured, and in many case is 

neglected, and in the specific case of incompressible flow, this whole term will become 

0. So, the value of lambda does not really matter. Whatever it is, it does not come into 

the picture at all. So, we do not have to worry too much about the value of lambda. We 

just would like to say that it is usually not a big problem when we consider this. 
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Now, we can substitute these two expressions into this and derive the x momentum 

equation. We can finally get an x momentum equation like this. The p coming from 

minus p here. (Refer Slide Time: 05:54) We know that delta i j is the conique delta - 

where delta i j is equal to 1 if i is equal to j and is equal to 0 if i is not equal to j. 
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So, with that notation, then we have dou by dou x of we can add the rho g x term. We 

have in this, we have already accounted in this for the pressure term. We have tau x x, 



and tau x x can be written from this as mu times dou u x by dou x plus dou u x by dou x 

plus lambda times dou u k by dou x k. 

Because when we say x x i is equal to j equal to 1, so this thing becomes non-zero. So, 

we can write it as two mu dou u by dou x plus dou u k by dou x k is a term with repeated 

index k and it implies summation over the 3 values of k, so, that is k equal to 1, in which 

case, this becomes dou u by dou x k equal to 2; in which case, this becomes dou v by dou 

y and k equal to 3; in which case, this term becomes dou w by dou z. 

So, we can write this as plus lambda times dou u by dou x plus dou v by dou y plus dou 

w by dou z. This is what we have for this term. We have minus dou p by dou x plus this. 

Then we come to sigma y x. This p is here i is equal to 2 and j is equal to 1. So, this term 

here becomes 0 because i is not equal to j, and this term becomes 0 here, and so, the 

pressure term does not appear in this term here, and the viscous term here becomes mu 

times i is one. So, this is dou u by dou v plus dou v by dou y or dou x by dou x so plus 

dou by dou y of mu times dou u by dou y plus dou v by dou x. 

Now, we have z x; z x means that i is equal to three and j equal to 1 in this expression. 

So, again, this becomes delta 3 1, so that is equal to 0, and here, tau 3 1 is the tau z x, and 

so, this becomes mu times dou w by dou x plus dou u by dou z, and this term becomes 0 

because this is 0. So, we can write this as plus dou by dou z of mu dou w by dou x plus 

dou u by dou z. 

So, this is the x momentum equation that we have, and we can similarly write the y 

momentum equation. In a similar way, taking the u converting one of this use into v’s 

here. This dou p by dou x becomes dou p by dou y, and this becomes rho g y the y 

component, and these things will also change; we will just look at that. So, we can say 

that rho v plus partial with respect to x of rho u v plus partial with respect to y of rho v 

square plus partial with respect to z of rho v w is equal to… 

Now, we come to, we have this rho g y the gravitational component, and here, we will 

have sigma y x, and sigma y x means that this will be 0 and, tau y x, tau y x we have 

seen already that this thing will be 0; this will be dou u by dou y plus dou v by dou x. So, 

we can write this as plus dou by dou x of mu times dou u by dou y plus dou v by dou x, 

and here, we have sigma y y will be coming. 



So, sigma y y is i equal to j equal to 2. So, this has a value of 1 here; this has a value of 1 

here. So, you get minus dou p by dou y plus tau y y is given by mu times d v by d y plus 

d v by d y, so that is 2 mu d v by d y plus lambda times dou u by dou x plus dou v by dou 

y plus dou w by dou z, and then, we will finally have sigma z y; so, sigma z y means that 

i equal to 3 and j equal to 2. So, this becomes 0 and this is equal to 0, and tau z y 

becomes mu times dou w by dou y plus dou v by dou z, and similarly, we can write the z 

momentum equation in a very similar fashion on the left hand side, this v here, which is 

appearing in these 4 terms differential w. 
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And here, you will have sigma z x sigma z y and sigma z z, and we will have the 

gravitation term as rho g z. So, sigma z x is dou by dou x of sigma z x will be mu times 

dou w by dou x plus dou u by duo z, and sigma y z will be dou by dou z of mu times dou 

w by dou y plus dou v by dou z, and sigma z z means that z equal to i equal to j equal to 

3, so this is 1 here and this is 1 here, and this becomes dou w by dou z dou w by dou z. 
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So, this term here becomes, so, we have minus dou p by dou z plus dou by dou z of 2 mu 

dou w by dou z plus lambda times dou u by dou x plus dou v by dou y plus dou w by dou 

z. So, we can now look at the overall equations that we have. 
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We have the mass conservation equation otherwise known as the continuity equation. 

We have an x momentum equation and we have a y momentum equation and we have a z 

momentum equation. So, we have four equations, and the variables that are appearing in 

this apart from the properties of the fluids are here. Rho is obviously a property of the 

fluid which is the density here. In the continuity equation, we have u v w. Then we come 

to the x momentum equation, and let us also put the properties. We have rho which is the 

density, and in the x momentum equation, you already have rho u w here, and pressure is 



coming which is a flow variable, and of course, g is the gravitational vector; we expect it 

to be specified in terms of orientation of the vector volume. 

We have mu and lambda. Otherwise, everything else is given here. In the y momentum 

equation, no additional variables; in the z momentum equations, no additional variables. 

So, we have now 4 equations for the 4 variables for a given properties of the fluid. 

So, the properties that are needed are the density, the dynamic viscosity and the second 

coefficient of viscosity. So, in that sense, we can now claim that we have as many 

numbers of equations as there are the numbers of variables. 

We have derived these equations subject to some conditions. We have derived them, 

subject to the condition of an isotropic fluid, and linear relation between viscous stress 

and strain rate and deformation, right, and in the process, we have also made use of the 

condition of material, frame invariants of the linear relation between viscous stress, and 

stress in the strain rate. So, with these things and, as a, as a result of this frame in various 

conditions, the rotational, strain, strain rate which is expressed in terms of for example, 

dou u by dou y minus dou v by dou x. 

So, in terms like this, when you have a pure solid body rotation, then there is a 

corresponding non-zero strain rate, but we say that, so there is a corresponding relative 

motion, but we say that that is not causing any stress. So, that comes as an inbuilt 

package of the frame invariants of the relation. 

So, with under these conditions, so those fluids which satisfy these conditions are called 

Newtonian fluids, and for these equations, for these kinds of fluids, these equations are 

valid. We have said earlier that fluids like air and water are newtonian fluids, and there 

are number of non-newtonian fluids which obey either, which do not obey either this 

relation or this relation or both. For example, polymeric fluids which preferred 

orientation of the chains may not be isotropic, and typically the relation between stress 

and deformation rate is also not linear in such cases. So, such fluids are called non-

newtonian fluids, and these kind of fluids include very common fluid like blood. The 

dough that is used to make in India like the dosa and idli and chappati and bread and all 

those kind of things and also concentrated sugar solution. 



So, many other polymer related fluids are not Newtonian fluids, and for these kind of 

equations, these kinds of fluids, these equations are not valid. So, only for these 

Newtonian fluids, we have these equations valid. 

We have not made any assumption here on compressibility of the fluid. So, these 

equations are equally valid for a compressive fluid as for an incompressible fluid. But in 

many cases of chemical engineering interest, the fluid, the flow is usually 

incompressible. So, for example, the usual condition of incompressibility of a flow not of 

a fluid, we have an ordinary gas is typically incompressible, but if the gas is flowing at 

not too high velocities, for example, if the gas is flowing at a velocity which is less than 

a third of the speed of sound in that particular gas is medium. Then we can assume that 

the flow is incompressible and that the density changes, arising out of the pressure 

changes, arising out of velocity changes within the flow are not significant enough for us 

to consider seriously the effects of compressibility. 

So, from that point of view, we can say that when the velocity of the flow is not very 

high compared to the speed of sound. Typically, if it is less than a third of the speed 

sound or the velocity is less than point 3 3 of a mass number. Then we can say that the 

fluid is incompressible or the flow is incompressible. For incompressible flows, density 

is can be taken to be constant; it does not vary from place to place, and here, we are 

talking about density being constant in an isothermal flow where we have no temperature 

changes, and whatever density changes that we are talking about are density versus 

pressure versus density relation, for example, if you consider the bernoulli’s equation, we 

have p plus half rho u square plus rho g z equal to constant along the stream line. What 

this means is that when u changes, then p changes. 

When we say that the flow is incompressible, we are saying that the velocity changes 

arising out of all the forces that are acting on it. As the fluid goes along the stream line, 

does not cause sufficient changes in the pressure that the density is greatly affected. So, 

that is the condition of incompressible flow that we are bringing here. So, that is why 

incompressible flow is a flow property; it is related to the velocities and the pressure, and 

then, the corresponding density. It does not talk about the fluid itself. So, you can have 

an incompressible flow even of a gas. So, for such cases, you can say that density is 

constant. 
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So, when you come to the continuity equation, this term becomes 0, rho is constant, so it 

can be taken out of the domain and we can write the continuity equation reduces to dou u 

by dou x plus dou v by dou y plus dou w by dou z equal to 0, and in the x momentum 

equation also here dou can be taken out, and it can be put here as one by rho dou p by 

dou x. This rho here gets cancels out, and this whole term becomes 0, because from the 

continuity equation, and again, here, it becomes 0, and here, it becomes 0. Therefore, the 

number of the fluid properties in here, lambda is not necessary. 

So, we need only two fluid properties - which is rho and the viscosity; each of which are 

very easily measurable, and we can show that under the condition of incompressible flow 

with the continuity equation becoming like this. These x momentum and y momentum z 

momentum equations are considerably simplified. 
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So that we can write the x momentum equation as, we will write here - dou u by dou t 

plus dou by dou x of u square plus dou by dou y of u v plus dou by dou z of u w equal to 

minus 1 by rho dou p by dou x plus mu times dou square u by dou x square plus dou 

square u by dou y square plus dou square u by dou z square. So, this, where u here is a 

kinematic viscosity, that is, the dynamic viscosity divided by the density. 

Similarly, the y momentum equation reduces to dou v by dou t plus dou by dou x of u v 

plus dou by dou y of v square plus dou by dou z of v w equal to minus 1 by rho dou p by 

dou y plus mu times dou square v by dou x square dou square v by dou y square plus dou 

square v by dou z square. 
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So, we can, in that sense the final equations here are much simpler, and we can take 

advantage of the index notation that we are familiar with, and write the continuity 

equation as dou u k by dou x k equal to 0, and here, we are following the Einstein’s 

convention that in a term, this is a term here, in which, if we have a repeated index like k, 

then that implies summation over all the 3 values of k here k equal to 1 means dou u 1 by 

dou x 1 k equal to 2 is dou u 2 by dou x 2 plus dou u 3 by duo x 3 equal to 0, and we 

know that u 1 is u and x 1 is x u 2 is v and x 2 is y and u 3 is w and x 3 is z. 

So, from that, we get back this equation, and we can also write the i th momentum 

balance equation as dou u i by dou t plus dou by dou x k of u k u i equal to minus 1 by 

rho dou p by dou x i plus nu dou square u i by dou x k into dou x k. So, this are the 

Navier Strokes equations for incompressible flow, and we can see that for the Navier 

Strokes equation, we need only the density here and the kinematic viscosity, which is 

reducible from the dynamic viscosity. 

So, there are only two properties that are required. There are four variables - u v w p, and 

there are four equations; that is the continuity equation, and the three momentum 

equations for the three directions. 

So, in computational fluid dynamics, the objective is to solve these four equations for the 

four variables for a given flow domain and so on. So, that is the objective. 
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We now have the equations which describe the motion, and these equations are here. We 

have the continuity equation and the three momentum equations written in the index 

notation for a cartesian coordinate system, and these equations are valid at every point 

within the flow domain. 

So, if you consider this whole room to be the control volume, the fluid domain of 

interest, and if you are interested in the circulation pattern of air, then we can apply these 

equations with the properties of air in terms of density and kinematic viscosity, and we 

expect these equations to be valid at every point, at this point, this point, that point, and 

anywhere else, and the equations also, such that, if we solve these equations, then we 

would be getting u as a function of x y z and t v has a function of x y z and t, and w also 

has a function of x y z, and p also as a function of x y z, and in that sense, the 

information of how the flow variables, that is, the three velocity component pressure 

vary within the flow domain is contained in these equations, and if we solve these 

equations, then we should be able to predict the flow variables at any point and every 

point within the flow domain of interest. 
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So, in that sense, the equations contain all the information that is necessary but not quite 

all, because what we see here are these are partial differential equations and these are not 

algebraic equations, and that means that it is necessary to give the boundary conditions 

and initial conditions in order to get a proper solution. 

So, let us consider these boundary conditions and initial conditions. So, we need to have, 

in addition to the equations ,we need to have initial and boundary conditions, and these 

initial and boundary conditions are applied in the flow domain, in which, we want to 

compute this. 

So, the initial condition is specified throughout the volume. So, the initial condition is of 

the form that u at x y z t 0 is equal to f of f 1 of x y z, and similarly, v of is equal to f 2 

and w is f 3 and p is this f 4. So, all this at time equal to t 0 are functions, given functions 

of x y z. 

So, this is how we specify the initial conditions. What about boundary conditions? 

Boundary conditions are typically of three types - one is where you specify the variable 

of interest, where you are talking about a boundary condition of u you say that u equal to 

something some value. So, that is known as Dirichlet boundary condition - where you 

specify u equal to a constant for example. 



We can also specify the derivative, for example, dou u by dou x is equal to something. 

So, that is we specify the gradient of that particular quantity. Then that is known as 

Neumann boundary condition - where you say that dou u by dou x is c 2, and you can 

also have sometimes a mixed boundary condition, where you say that a value plus it is 

derivative is equal to something, and that is known as Robin backward boundary 

condition - where you say that a times u plus b times dou u by dou x equal to c 3, where 

a b c are specified constants. 

So, these are the three types of boundary conditions, and in the general case, you can 

even have more complicated boundary conditions. For example, you have a gas liquid 

interface; you can have the curvature interfaces coming into the boundary conditions to 

satisfy the kinematic boundary condition and so on. 

So, in such a case, we can have even more complicated things, but generally speaking, 

these are the boundary conditions, the types of boundary conditions we have, and when 

we talk about a fluid flow situation, we talk about more realistic boundary conditions. 

Realistic in the sense down to earth more physical boundary conditions as we have a 

flow domain, and the flow domain implies that there is some flow coming in and some 

flow going out. 

So, in such a case, we can define something as an inlet; a particular zone of the surface 

as an inlet and another zone as the outlet conditions, and we can also have conditions of 

constant pressure or constant symmetric plane and so on. So, let us call this as real 

boundaries in terms of popular parallels. 

We have an inlet to the flow domain where we normally apply a Dirichlet boundary 

condition; that means that we have to say that on the inlet surface, all the flow variables 

are specified - u v w p; p is a special thing and we will right now leave it at that point, 

and we have right an outlet boundary condition. Again, this is where the flow is leaving 

the boundary, the domain of interest, and typically the values of these things are 

extrapolated from interior values and that can be done in a number of ways. So, this can 

be considered as a Neumann type of boundary, and essentially we may say that dou u by 

dou n is equal to 0, where the variable normal to the outlet boundary condition, outlet 

surface is equal to 0 is something and we can have a symmetry plane. 



So, symmetry plane is where the variation across the plane of symmetry is equal to 0. 

We can also have free shear boundaries, for example, on the top surface, we can have a 

sheer free boundary, that again implies something like a Neumann boundary condition, 

and we can have also constant pressure boundary condition. This is useful when you are 

looking at a periodically varying flow. For example, we can have a big heat exchanger 

and it has baffle plates, when coming like this, another going like this. So, the flow is 

made to go through like this. So, it is going through sections in this wavy pattern and you 

can take one section of this and say that you have a periodicity, that is, so, we can write 

that also as a periodic boundary condition, and in a periodic boundary condition, what 

we mean is that the variables at the two planes have the same profiles. So, that is what 

we mean by a variable. 

So, a particular velocity profile is repeated after a certain distance, and usually the 

pressure drop between the two planes which is driving the flow is specified here, and we 

also have a fully developed flow condition. This in a way is similar to outlet, whereas an 

outlet implies, fully developed plain place dou u by dou n is equal to 0. At an outlet, you 

can also get some use some extrapolation to get the outlet, the flow variable from the 

outlet plain from the interior. 

So, you can have many kinds of these. When we come to practical problems, we can 

discuss more of this in detail. Now, before we before we leave this particular section, we 

have to understand the implication of boundary conditions and initial conditions 

especially in the context of well posedness of a problem, well posedness of a 

mathematical problem. 
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What we are trying to say is that we have an equation and we have a flow domain, and 

we know that we have to specify the initial and boundary conditions, but the point that 

we have to consider especially from the point of well posedness is that any type of 

boundary condition for any kind of problem is not permissible if you are looking for the 

well posedness of the mathematical problem, and what we mean by well posedness is 

that if the problem is well posed, then it has a solution and it has a unique solution and 

the solution depends continuously on the boundary conditions and initial conditions. So, 

that is, if you change the initial condition or a boundary condition slightly, then the 

corresponding flow solution should also change. 

So, that it depends continuously, and it depends, so, when we change the boundary 

condition, the solution changes, and not only that, it should change continuously in the 

sense that it should not suddenly go off into a discontinuous solution. So, that means that 

small changes in the boundary condition should give rise to correspondingly small 

changes in the flow variables. 

So, this kind of sensitivity to the boundary conditions and initial conditions must be 

exhibited by the solution, and in, only in such case that you have a unique solution, and 

the solution exhibits to the boundary conditions and initial conditions which a part is 

specification. Can you claim that your problem is well posed? So, what kind of 

conditions may arise in which this well posedness requirement is broken. 
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It depends very much on what physics the equations that you are trying to solve contain, 

and what we see here is that we have a partial differential equation, and we have a partial 

differential equation which has a second derivative as the highest. We have the second 

derivative which is coming here, and we have first derivatives coming here and here, and 

not only that, we see that what we are dealing with are second order partial differential 

equations, and these are also quasilinear and coupled partial differential equations. 

Quasilinear in the sense that the highest derivative, that the second derivative that is 

occurring here is appearing as a linear term at least in these equations, because u here is a 

property of the fluid, and we are, for the time being, we are assuming it to be a constant, 

and so, this is quasilinear coupled partial differential equations, because there are four 

equations and you cannot solve any of the four equations in isolation. You have to solve 

them together, in the sense that. Therefore, these equations are coupled together, but for 

the time being, let us forget this coupled equations. We can say that the equations that we 

are trying to solve share some features that are common with a second order partial 

differential equations, and we know that second order partial differential equations are 

typically of three types - these are hyperbolic, parabolic and elliptic. 

We will not go into the details of, what, when it is hyperbolic, parabolic and elliptic. 

Those are well known for a standard; this classification is well known, but we would like 



to look at the physical implication, the physical interpretation of what is hyperbolic and 

how these things may affect the boundary conditions. 

When we say hyperbolic solution, we mean that it is like a wave like a solution. A wave 

like solution has the property of a wave; which means that it has a certain sense of 

progression; it has a direction of progression, and it also crucially has a velocity of 

progression. 

So, this is, so, when we say that solution, a problem is hyperbolic, it implies that it the 

corresponding equations like the Navier Strokes equations that we have admit a certain a 

wave like solution with a certain sense of propagation and a velocity of propagation, and 

when we talk about a second order partial differential equation, then there are two wave 

like solutions, and along the lines associated with this propagation direction which are 

called the characteristic lines. 

We have two wave like solutions which are propagating along those line at a 

characteristic speed, and in a parabolic type of flow, we have only one way, one 

direction of propagation, and in elliptic problem, does not admit a wave like solution. 

Therefore, it has no specific direction of progression. It progresses if it can be said we 

were progressing; it is progresses in all directions. 

So, it is with respect to the wave like or the nature of propagation and the characteristic 

speed at which the propagation happens. That distinguishes the flow from being 

hyperbolic or parabolic or elliptic. This aspect is discussed in detail in the book by 

Hirsch. We will give the reference later. 

So, it is, in this context, we have to be vary of the boundaries conditions and initial 

conditions. So, depending on the existence of a wave like solution or not, we can see 

that, we can come across conditions, in which, the well posedness of a particular 

mathematical problem is threatened by an arbitrary specification of the initial and 

boundary conditions. 
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Let us consider a 1 dimensional domain. So, this is the boundary, and this is, let us say 

that this is x and this is the time. We are looking at variation of particular variable phi as 

the function of x and t, and this particular thing is given by a standard second order 

partial differential equation. 

So, in which case, if you are looking at a particular point p here, if it admits a wave like 

solution, we have two characteristic lines, which are, in general, curved lines. So, these 

are the characteristic lines which are passing through the point here, and which when 

extrapolated go backwards like this and forwards in this direction. So, associated with 

this particular point p here which is in this solution domain, we can identify some part of 

this solution domain which influences the value of phi at p. 

So, the value of phi at p depends if you call this as p here and let us call this is A B and C 

D E F G H, let us say that. So, phi p depends on phi within the domain A B p A. So, this 

is the domain of dependence of p, the value of phi on this, and this is the value of phi 

here will influence the values of the solution contained within this domain. 

So, this is the domain of influence, and this is the domain of dependence. For this 

particular point, within the solution domain which is in C D H G. It also means, so, we 

can say that phi p depends on this and phi p influences the value of phi within P F H G E 

p. So, for a hyperbolic problem, we can define clearly the zone of dependence and the 

zone of influence within the solution domain, and what it also means this that the value 



of phi here does not influence the value of phi in this domain or in this domain, nor does 

it depend on either of this. 

Now, when you look at it from the point of specification of the boundary conditions and 

the well posedness requirement, the value of p phi at the point p here in this solution 

domain depends only on the boundary condition between point A and B. It depends only 

on this part of the boundary condition and not on the entire boundary condition field. 

So, if we have a solution scheme which says that phi of p depends on the entire boundary 

condition C A B D, then that is not correct. So, phi p depends only on A B; it does not 

depend on not on C A or B D, where I am indicating these small brackets to say that this 

point A does not belong to this. So, that means that the true solution of phi at this 

particular point p will be continuously varying with any changes in boundary condition 

of point A and B but not with any changes in on the boundary condition between point C 

and A or between B and D. 

So, this means that the solution of phi at particular point depends only on part of the 

boundary condition and not on the whole boundary condition. So, this, and if you are 

trying to evaluate phi as a function of the entire boundary condition, then it is going to be 

wrong, because it should ideally depend only on part of the boundary; on that part of the 

boundary which is contained within the two character lines along, which the wave like 

solution propagates. 

So, that means that if you had a solution scheme which specifies, which evaluates phi at 

point p in terms of the boundary point C A and B D as well as the A B point, then it is 

wrong because the solution is exhibiting a dependence on C A and B D which should not 

be there; it should be dependent only boundary between A and B. So, that kind of 

boundary condition the dependence sometimes of the boundary condition of the solution 

only on part of the boundary is characteristic feature of a hyperbolic type of solution. 
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In a parabolic solution, typically you have in a parabolic, this is the zone of dependence 

and this is zone of influence; so, that means that this whole boundary at initial conditions 

will be influencing this, and the, here we have the initial condition and this is where the 

boundary condition comes into picture. So, and this part will not be influencing this. So, 

that is the specification of the boundary condition at this particular point x equal to 0 at 

this particular time will not be influencing the solution here. 

In the case of elliptic for the same boundary, we have the whole boundary is the zone of 

dependence, and the whole boundary is also the zone of influence. So, that means that 

the conditions on the entire boundary of this solution domain will be affecting the 

solution at any point within the domain. Whereas here, the solution at a particular point 

will be dependent only on this part of the boundary, and here, it depends only on this part 

of the boundary. 
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So, it is only on some part of the initial condition may be influencing this. If you go to 

some other point here and then if the two characteristics are like this, then the solution 

value here depends on this part of the initial boundary condition; this part of the 

boundary condition and this entire part of the initial condition. 

So, in that sense, that depending on where you are within the solution domain, you may 

have only part of the initial condition or part of the boundary condition influencing the 

solution value if the problem is hyperbolic or parabolic. Whereas in the case of an 

elliptic problem, the entire boundary condition is will be influencing and also depending 

on the value. 

Now, this has an implication on the specification of the initial and boundary condition 

for a well posedness problem, because if you are solving a hyperbolic problem, then it is 

necessary to take into account only that part of the initial slash boundary condition which 

will be influencing the value, and if you are solving an elliptic problem, you should not 

attempt to solve the problem without specifying all the boundary conditions. 

So, in a hyperbolic problem to include influence of all the boundary condition on the 

solution at every point will be incorrect; it will lead to ill posedness of the solution, and 

in the case of elliptic not to include some part of the boundary in the calculation 

procedure will lead to ill posedness. 



So, it is in that sense, we have to consider the well posedness of mathematical problem, 

and specify the initial and boundary conditions appropriately. So, this is something that 

we have to keep in mind when we consider the solution of this mathematical problem, 

and the mathematical problem consists of the equations like the partial differential 

equations that we have as well as the boundary conditions and initial conditions as 

appropriate. 

We must keep in mind that this is what we have for a quasilinear second order partial 

differential equation. What we are dealing with when we are in fluid flow are quasilinear 

coupled partial differential equations. So, it is much more complicated, but in a case 

where you have highly hyperbolic nature or highly elliptic nature of a problem, then we 

have to do, we do have to consider these kind of effects in making a solution. 

So, it is not exactly valid because we are dealing with it is much more complicated, and 

the solution, the equations that we have are mixed hyperbolic parabolic or parabolic 

elliptic or purely elliptical type equations. They are not as pure hyperbolic and pure 

parabolic and type of equations. So, this is just a guideline for us to see that we are 

imposing the right kind of boundary conditions and initial conditions for a particular 

problem. 

So, with this, we have completed the basic equations; the derivations of the very basic 

equation for a fluid flow. We have not considered the equations for problems, in which, 

heat transfer takes place or reactions take place or even for turbulent flow. So, those will 

be doing towards the end after we have looked at how to solve these equations using the 

computation fluid dynamics. 

So, we will, in the next lecture, we will start looking at how to solve these equations 

using the computational fluid dynamics approach. 


