Computational Fluid Dynamics
Prof. Sreenivas Jayanti
Department of Chemical Engineering
Indian Institute of Technology, Madras

Module No. # 07
Dealing with Complexity of Geometry of the Flow Domain
Lecture No. # 45
Topics
Unstructured Grid Generation
Domain Nodalization
Advancing Front Method for Triangulation

We have seen that for a given geometry, which may be such that it cannot be described
in simple coordinate systems, we can come up with a body-fitted grid one in which that
coordinate lines follow the shape of the body in terms of especially the walls that enclose
the overall control volume. We have seen that the generation of this grid is fairly
complicated and you have to solve partial differential equations especially if you want to
have some control over the way the grid is structured. And, not only that, if you want to
do for example, impose orthogonality condition especially at the wall, we have to do
some post-processing, we have to do further work in order to do this. But, generally
speaking, it is possible to get a body-fitted grid for a three-dimensional flow geometry

using the partial differential equation approach.

The other alternative to this kind of structured grid is the unstructured grid. And, we have
remarked earlier in one of the lectures that unstructured grid gives us great flexibility in
dealing with complicated geometry. And also, it gives us great flexibility in terms of
local refinement of the mesh. So, the question is what kind of method or algorithms we
can use to generate an unstructured mesh. It may look trivial, but the actual problem is
not so easy. And, one has to make sure that the grid that we get is such that there are no
overlapping parts. And therefore, the internal meshing and joining of several points
together to make up control volumes and to make up the tiles is not a trivial thing; one

has to do a lot of book keeping.

There are many methods used by many researchers for the unstructured mesh generation.
In our course, we will look at only the case of two-dimensional computation domain and
then we can see what issues are involved in this. We would not be dealing with every
possible algorithm, but we look at a possible algorithm by which we can generate an
unstructured mesh for a given domain. If it is a simple domain, it is not so difficult. But,
when we have what is known as multiply connected domain, that is, a domain with holes
inside — for example, you have a duct of rectangular cross section and inside that you put
a tube; and then, the flow can take place only in the region, which is not occupied by the

tube. So, that is an example of a multiply connected domain.

(Refer Slide Time: 03:25)

Essentially what we mean by multiply connected domain is that if we had a flow domain
like this and if we were to shrink this whole thing, write down to a point and if you are
left with nothing there, then it becomes a simply connected domain. But, if you have a
flow domain here, which is not part of this — so, this is not part of the flow (Refer Slide
Time: 03:45) domain, no matter how much you shrink here, there is this part, which is
remaining. So, in that sense, we call this a doubly connected domain. And, if we have
two such things, then it becomes multiply connected domain and so on like this. So,
these multiply connected domains are quite possible if you are looking at for example,
flow through a heat exchanger either this type with so many tubes in staggered
arrangement; or if you are looking at flow with some baffle plates for flow distribution.

These are the kinds of things that are quite often occur in practical industrial situations,

where you want to put some flow optimization devices within your duct, so that the

overall pressure drop is minimized or that the flow maintains uniformity.

Or, if you want to reduce noise and so many other features for which you would like to
intervene into the duct domain, then you want to make some changes to that. So, in
normal practice, we do not have the luxury of simply connected domain we have the
practicality of multiple connected domains and we have to generate a mesh in spite of the
complexity that is there. So, we are going to look at the generation of an unstructured
grid for a two-dimensional geometry essential to three-dimensional on a case by cases.

And, there are special algorithms developed for that.

(Refer Slide Time: 05:29)

Now, let us say that we have this as the flow domain. The objective of the grid
generation is to discretize this domain into small tiles, such that when you put all the tiles
together, you get the shape. And so, we need to have points on the boundary and points
in the interior also. And, as mentioned several times that in a CFD solution, we would
like to have these points at which we want to evaluate the solution variable. The number
of points should be very many and they should be spread throughout the domain, so that
at every part of the domain, we can make reasonably accurate approximations for the
derivatives that appear in the governing equations. So, we would like to have some way
of spreading points throughout the domain not leaving out any part and we also would
like to have a method by which we take only the points, which are inside the domain and

not outside. So, in the process of doing this, we cannot take a point here, because that is
outside the domain and that is outside our zone of competence of our interest. So, we
need to have a very distinguishing algorithm — one which distinguishes between what is

outside and what is inside and then only deals with what is there that is inside.

And, if there is a body, which is inside this, which is not part of the domain, then that
method should also make sure that this is a no go area and within that there should not be
any points. So, putting the points itself is one challenge in the general case. The second
challenge is that we should be able to join this together in such a way that we get tiles.
For example, one can say, visually, I will join these three points to make this triangle
(Refer Slide Time: 07:42). How will I know that | should join only these three and not
for example, this, this and this, and this, this and this. So, I can see some areas, which are
overlapping here. Firstly, one should have an algorithm by which we can put points
throughout the domain including the boundary and only on the boundary and including
the domain not outside the domain. And, one should also have an algorithm by which we
can join them in a sensible way, so that there is no overlapping, so that there are no
nodes that are left out, so that there is no area of the tiles, which is left out. So, these two
stages: one of putting points throughout the domain in as uniform way as possible taking
account of the boundaries inside and outside of the flow domain; and secondly, join them
in a sensible way so as to get an unstructured tile. These are the two stages of an

unstructured mesh generation.

(Refer Slide Time: 08:56)

1 _F.ﬂ'd-.rq.k_'\ L).J_ — .Fg“ ful I-11 o [T il
i ﬂ\h\julnk'—* - -'h-v\ wh M woiriae a'
ke wmaky Evtavyclay [

-

|/ -l-“-’\:' Aaskmmiy bk s
[l ¥
[D M vy
J -

S

When we talk about unstructured, by definition it is unstructured, so that the tile that we
have can be a polygon of n number of sides. The simplest possibly is a triangular tile, so
that any complicated shape here can be put through in the form of a triangle with one
side always coinciding with the boundary like this. So, triangulation of the flow domain
is very useful way of generating an unstructured mesh. Although one sees the structure in
the sense that every part of this domain is a triangular, it is still unstructured in the
technical sense that the points that we are looking at here are not associated with any
coordinate lines. So, when we talk about a structure, it is not about what elements we
have made use of to discretize to cut this up into tiles. But, whether or not the nodes that
are associated with these tiles are at the intersection of coordinate lines. So, in that sense,
even if we use the same element throughout, it is still an unstructured mesh as long as we
make the point that these points at which we are joining together to make the tile are not
associated with constant values of coordinates either X, y, z or psi, eta, zeta that type of
thing.

We are going to look at something like this kind of computational domain. Firstly,
nodalized and then triangulated. So, when we say nodalized, we would like to cover this
entire area and only that area, which is available for flow and fill it up with nodes.
Spread throughout with some notional distance between the nodes. We will see that we
cannot exactly satisfy that the distance between any nodes is the same for all the points,
but we would like to have some notion of what is the distance that we would like to have

between nodes and we would like to honor that particular thing.

And, triangulation here — we would like to join up the nodes sensibly to make triangular
tiles in such a way that when we put all the triangular tiles together, then we get the
entire flow domain and only the flow domain nothing beyond, nothing less. So, how do
we do this? We would like to describe an algorithm for each, which appears to work on
the face of it and which has been successfully used by our students to do nodalization
and triangulation. So, what we are looking at is, first part is to take a domain like (Refer
Slide Time: 12:55) this and we want to take for example, a domain in which this is the
flow area and all this is wall, so that it makes it some way a doubly connected domain.
So, this is not a simply connected domain. And, we would like to put points throughout
this. So, how do we do this? We are looking at an xy plane. And, to start with, we have a

complete description of this bounding curve and this bounding curve, so that we know

the X, y points at each of this. So, we can start with at some point here and then go along
this curve and then put boundary points at some distance, which is roughly the distance
that we would like to maintain between nodes.

Now, what should be the distance between (Refer Slide Time: 14:02) nodes? There is no
single answer to that. The distance between nodes depends on what we can afford,
because if we make the distance very small, then that means that will have very large
number of points. And, large number of points means that large number of storage of the
variable information and also large matrices in terms of a phi equal to b type of solutions.
That means large amount of computational time. So, we cannot put very small distance
between the nodes. But, at the same time, unless the distance between the nodes is very
small, we will not get accuracy in terms of representation of the first and second
derivatives, which appear in governing equations using first order or second order
accurate formula, because we have to keep in mind that we do not have the luxury of
going to higher order of approximations especially in the unstructured meshes. And
therefore, we have to restrict ourselves first or second order accuracy, which means that
the distance between nodes should be small. So, we should have a compromise between
the amount of computational storage requirement and time requirement for the solution
of a phi equal to b (()) equations and the accuracy requirement that is needed.

(Refer Slide Time: 15:59)

For a given problem, it may not be something that is known straight away, but at least we
should have some idea of what kind of flow profiles we may expect. And, based on that,
we may want to have enough number of points. If this is the domain length and if you are
getting a velocity profile like this, then we should have enough number of points to make
like this, so that we can join them by smooth line to get a velocity profile. So, if you
want to capture a velocity profile like this, then if you have only four points at which the
velocity is evaluated, then we would not be able to get a faithful representation of this
curve. Therefore, one would say that for a curve like this, we would like to have at least
20 points to be able to represent. That is a useful number. But, at the same time, if the
same number of 20 points will not be useful, if you had a velocity profile like (Refer
Slide Time: 16:53) this, because this is a steep variation and probably in order to capture
this, we need more number of points here. So, we need to have grid points like this. So,
from that point of view, the distance between nodes is related to the kind of flow solution
that we are expecting and that we want from the problem.

And, it may not be settled right at the beginning itself. One may have to start with some
grid and some distance and then come up with a grid, have a computation. At the end of
that, we have to see whether the grid that we got is good enough. If not, we can go back
and remesh it with more spacing or less spacing like that. So, in that sense, it is someway
dynamic process that we have to adapt. But, we must have some notional idea of what
this distance between the nodes (Refer Slide Time: 17:50) is and also in terms of the
accuracy and in terms of how many grid points we can afford. Based on our computer
time and based on the past practice, we may say that let us have 100 points in one side or
we can say we can have a total number of 10,000 points for a two dimensional problem;
or, we can got up to million points. If we are doing a time dependent problem with very
fine time step, then we want to go through large number of computational time. We may
not want to be doing with ten million grid points we may want to come down to 10 to the
power 4 grid points. If we are done with 10 to the power of 4 grid points and then found
that the resulting... There are lots of fine details that you want to resolve. Then, you may
have to go to a higher number grid points. So, in that sense, we have to suck it and see in
a way if we have absolutely no idea of what we have to do, what the grid spacing the
node should be.

(Refer Slide Time: 19:00)

poakipd = B S
{-_wymu'\.'jvjtﬁx“l - ‘Zf‘“‘h"‘?““

ke ok,

But, when we start the grid generation, we come up with some idea of the distance
between nodes and we can use that as a measure to start the discretization of the
boundary nodes like this and also the interior boundary; whatever is all the boundary of
the computational domain, we have to do it. And, at this stage, we would like to number
these boundary nodes like 1, 2, 3, 4,5, 6, 7, 8, 9 and so on. And, it is usually to... If we
measure doing like this in an anti-clockwise way, the interior domains are numbered in
the clockwise way. So, that kind of thing is there. But, at this stage, what we are
interested in is to fill this domain with lots of interior points, such that they are only
interior not exterior and such that there is some defined spacing between the grid points,
so that ultimately when we joint them, we have a size of the tile, which is not very far

from what we wanted to be. So, how do we do that?

We know that overall maximum height (Refer Slide Time: 20:24). So, this is the
variation of the minimum height and the maximum height. And, this is where the flow
domain is constrained. And, we can divide this maximum or the delta y by that I, which
is roughly the distance between the nodes that we want to have. And, based on this, we

can draw parallel lines across this, which are separated by the distance of | here.

(Refer Slide Time: 21:17)

And, we see that these |, these horizontal lines will cut this domain at a several points,
which we can find out. We know this curve and we know the equation for this; we can
find out; otherwise, we can look at now... What we are saying is that this boundary here
is now represented by so many edges. And, that edge is a linear element between two
successive nodes like this. So, this is the line and this is also a line. So, from that point of
view, we can check which edge is being cut by which line here. So, we can evaluate the
points of intersection of each horizontal line with the boundary and the boundary which
is exterior boundary as well as the interior boundary. So, now, we take that line, which

has even number of intersections with the boundary.

For example, this (Refer Slide Time: 22:17) line here has intersected the total boundary
at two points: one point and one point here. And, this one has intersected at four points
between this point, this point, this point and this point here. And, if you were to draw a
line here for example, this might have intersected here and here and here. So, there is an
even number of things; that is an odd number of things, in which case we would like to
move this line slightly, so that we have even number of intersections. And, odd number
of intersections are possible when the boundary line for example, is also horizontal. For
example, if 1 make something like this and | am drawing one of the horizontal lines to

coincide with this, then | may have an odd number of things like that.

Essentially, what we are trying to do is that we want to take those line segments between
two successive boundaries. For example, | take this line (Refer Slide Time: 23:22) here;
this has cut the boundary at four different points. And, | take this line segment here and
then | put number of nodes such that they are separated by a distance of | — 1, 2 and 3.
So, I am putting internal points along the horizontal line segments, which are bounded by
two boundary nodes corresponding to this intersection here. So, similarly, this point of
intersection, this point of intersection constitute one line segment, which break up into
integral number of small segments roughly of length | each. So, | put a boundary point
here (Refer Slide Time: 24:06); | put this. Again, | take this length here and I put this
segment here; | take this segment; then, I put 1, 2, 3, 4; that is a bit smaller, but it is OK.

Again, | take this here (Refer Slide Time: 24:26) and then I can 1, 2, 3, 4, 5, 6. So, | can
locate internal points along the horizontal lines that | have drawn in such a way that the
two successful horizontal lines are distance | apart, where | is roughly the target distance
between the nodes, so that the individual points that I have here are of the order of |
distance here. And, they are also vertically of the order of | distance. When | cut this
segment also into roughly length I, one can see that | have a point here, | have a point
here and also | have a point here. If | were to join these, | would have a triangular
element of roughly of length | as a side. So, that is objective of this kind of nodalization.
So, the whole objective is to put points only within the domain and not outside the
domain. So, that we are ensuring by making sure that we are taking a line segment,

which is bounded on either side by the boundary.

(Refer Slide Time: 21:17)

For example, if I have even number of intersections like two points of intersection, then |
know that this whole line here from the first intersection point to the second intersection
point lies within the flow domain. And, | can put internal nodes at each of these
anywhere on this line. And, I put them in such a way that they are at length | apart — here,
here, here, here, here. If | come to this line, this horizontal line (Refer Slide Time: 26:17)
has intersected the overall boundary at four points. And, I can evaluate these points of
intersection and this point of intersection, this point of intersection. And, | can see that
this horizontal line now consists of three line segments: the first one, which is within the
flow domain; the second part, which is outside the flow domain; and then, the third part,
which is inside the flow domain again. So, | take each line segment, which is inside the
flow domain and then I can put points, which will be eventually the internal points,
internal nodes like here. So, in this way, | can fill up the entire flow domain and only

flow domain with nodes, which are roughly at distance of | apart.

And, if there is a point, which is lying too close to the boundary, then I can remove those
points at the end of this. For example, let us say that | have... These are the overall
points here and | find one point here, which is too close to this point, which is one of the
boundary points. Then, | have a choice of removing this completely; or, I can move it
back along this; | can readjust the lines here a bit and do that kind of post processing. So,
the algorithm for nodalization, that is, filling up the domain with nodes, which are
separated by a target distance | consists of breaking up the boundary, which is a known

curve into line segments, which are at distance | each; that is, the segmentation of the
boundary line both the inside one and the outside one. And, having done that, you look at
the overall spread of the flow domain in the y direction. We can also do it in the x
direction, but we take it in the y direction and overall spread is this much. And, we draw
horizontal lines (Refer Slide Time: 28:47) within the spread, which are separated by
distance | starting from the lowest point here. And, these horizontal lines intersect the
boundary edges at several points depending on what kind of internal domains we have;
they may intersect at two points or they may intersect at three points or four points or six

points, eight points; we have many such things; then, they can be like this.

Refer Slide Time: 21:17)

And, they may be intersecting at a boundary node or they may be intersecting between
two boundary nodes like this way (Refer Slide Time: 29: 27). Now, once we find out all
the points of intersection, at this point, we break up the entire horizontal line into line
segments such that each line segment is bounded by the boundary points. So, if you have
if you have even number of intersections, then one can say between first intersection and
second intersection is part of the flow domain; between second and third is not part of
the domain; between third and fourth is again part of the flow domain; and then, the next
one will be not part of the flow domain like that. So, we can identify those line segments,
which are part of the flow domain and we break up each line segment again into small
parts by placing nodes, which are at distance of | apart. So, we do that consistently. If
there is any horizontal line, which is intersecting at odd number of points, then we move

the horizontal line slightly up or down, so that we have even number of intersections. So,
in that way, we can break up the whole domain into horizontal line segments, along

which we put nodes, which are spaced at distance | apart.

At the end of all these (Refer Slide Time: 30:59) things, we will have many points,
which are roughly at distance of | apart in the horizontal direction, also in the vertical
direction; not exactly I, but roughly a distance of I. And then, we see whether there are
any points, which are lying too close to the existing boundary nodes. If they are very
close, then we can delete those things, because if they are very close here, then if we join
them by a triangle, then we have an edge, which is very small and that is not desirable.
So, as part of the overall discretization triangular element, we would like to have an

element, which is more or less equilateral.

(Refer Slide Time: 31: 50)

i

L gl
u '!gd.lﬂ-.rl--",li = A = --.1-,;..[!'-;""-

x= B =..-n_+|-.-|.--k'-"- =51 L e e mm e R
F be ok, Eimepday Bl

Aol w g

Py

T
e

Wl B

5 i . [|
R T T
St

We do not want to have a node, a triangulation, which is like this with a very small node
on one side and then large lengths on the other side. So, this is possible if we have a
boundary node and if we have an interior node, which is very close by. So, in such a
case, we just remove this; and eventually, when we do the triangulation, this node will
not be there; we can make a triangulation like this. That is better than having a
triangulation which is very small. So, in this way, we can do nodalization of a given two

dimensional domain, which may be either simply connected or multiply connected.

The next task is triangulation here. Triangulation here means that all the nodes that we
have put on the boundary end in the interior will have to be joined together in order to
make triangles. For example, | can join these three, | can join these (Refer Slide Time:
32: 57). So, | can go on doing this. But, here I am making use of my eyesight and hand-
eye coordination to do these things. But, we would like to have a computer to do this
automatically and in such a way that it does not do overlapping. So, we need to come up

with a good way of doing this.

And, there are two algorithms, which are widely used: one is what is known as an
advancing front (Refer Slide Time: 33: 38) method; and, the other is known as Delaunay
triangulation. There are advantages and disadvantages to either of this, which is what we
normally find in any scientific domain. If there are two things, then both of them must
have some advantages and disadvantages; otherwise, the one which has only

disadvantages, will not survive except as a text book example for example.

As part of a learning process, we may sight something, which would not work, so that we
can identify such non ideas right in the beginning itself. But, these (Refer Slide Time:
34:49) both the methods are used and they offer certain advantages and also certain
disadvantages. And, the primary advantage of an advancing front method is that it can
also deal with concave domains. When we say concave domains, something that is a
flow domain like (Refer Slide Time: 35:12) this and specifically the advancing front
method will make sure that no nodalization of this kind takes place; that is, it would not
consider any point, which has part of the domain, which is outside this. And, whereas,
Delaunay triangulation may not be able to take account of this concaveness and it may
come up with some tiles which have a part of this outside surface also included as part of

the domain.

(Refer Slide Time: 36:02)

The advantage with the Delaunay triangulation is that it has an inbuilt feature, whereby
we can triangulate for example, four points in the best way that is possible. If you have
four points here and if you want to this a quadrilateral, then one can immediately see that
we can make it into two triangles we can make it into triangles in two ways either like

this or like this; into two triangles like this or in this way. So, which of them is better?

One set of triangles like (Refer Slide Time: 36:50) this and the other set of triangles is...
may be some exaggeration, but these are the two possibilities. And, between the two,
which are covering the same overall quadrilateral area, one would prefer this, because in
this particular combination, both the triangles are more equilateral than in this particular
case. In this case, we can say that is almost equilateral, but this has got one side, which is
too small. So, this has a high aspect ratio; that is, the ratio of the largest line segment to
the smallest line segment within the triangular thing can be taken as the aspect ratio.
And, we would like to have an aspect ratio, which we can say is | max by | min. We
would like to have an aspect ratio of one, so that we have an equilateral triangle.

But, for a given set of four points, the Delaunay triangulation can try to choose that way
of decomposition into triangles, which gives us the least lower aspect ratio. So, it will
automatically choose this particular way (Refer Slide Time: 38:17) of triangulation and
not this; whereas, the advancing front method — it will take either this or this as it comes;

it does not discriminate between the two possibilities. So, the overall triangulation that

we get with the Delaunay method has better aspect ratio, but it is not guaranteed to deal
satisfactorily with concave surfaces. So, if there is a concave part to the overall floor
domain, then we have to be careful with the Delaunay triangulation; whereas if we have
severe concavity, then advancing front method is preferable in that way. So, we will look
at the advancing front method and we will also look at Delaunay triangulation to get
some idea how the triangulation of a nodalized domain can be done.

(Refer Slide Time: 39:37)

Now, we will take a much simpler case than this. Let us say that we are looking at a
domain like this, a simple domain and which we have broken up into nodes; and, in the
process of the nodalization, we not only have the boundary nodes, but we also have some
interior nodes like this. Now, the idea is to join these things to make them into triangular
elements, so that when we join all the triangular elements, we can get them together as
one element. And, one can immediately see that if one were to do it randomly, this and
this and this — these three can be joined together; or, this and this can be joined together;
and, this and this can be joined together, which will play havoc with overall tiling. So,
we have to come up with a rational way of doing this, so that that kind of overlapping is

not permitted.

In the advancing front method, we start with the boundary that is there and the boundary
consists of several edges. And, this is where we can start with 1, 2, 3,4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14 — 15 edges we have in this. And, these (Refer Slide Time: 41:03) are the

outer edges, are usually put in this counter clockwise way. And, we can start with for
example, the first edge. The first edge could have been here, but we have started with
this. So, this is the first edge. And, we take any point that is close. For example, we take
this point here and then we say that this point should be joined with which edges in order
to make a triangle. For example, should | join this and this — these three or these three
like that? Which edges should it be joined? Of course, we cannot join with these three
points because this point can be joined with only an edge, which has already two nodes.
For example, I can join this with these two points or | can join with these two points or |

can join with these two or these two like this.

Now, the idea is that which edge do I join with this? So, | start with this (Refer Slide
Time: 42:07) edge here and | would like to choose that node, which is best joint with
these two nodes in order to make a triangle. So, how do | do that? | start with this and
then I am looking... | already know the counter clockwise direction. And, | look at all
the possible nodes, which are to the left of me. So, that is, if I consider this; and, that all

the possible nodes includes the interior nodes and the boundary nodes.

(Refer slide Time: 42:40)

I look at this point is on the... This is on the same edge. So, this is on the same thing. So,
on the same line, which means that | cannot join these three to make a triangle, but I can
join with these; I can make a triangle by joining these two. So, this is one possible
triangle. So, this is one possible node to which I can join this. Again, this is another

possible thing this. All these points here and these interior points are the possible nodes
with which | can make a triangle. Now, out of all these possible nodes, | would like to
take that node, which is nearest, which for example, if I join with this, then I have | 1 and
I 2. And, if I join with this, | have | 3 and | 4. So, | take | i square plus | j square
corresponding to each node and | see which combination will give the minimum value;
so, the minimum length here. So, that node is the node with which I should like to join
them, so that I can join with the closest node. So, from that point of view, if | take this
length plus this length square, is obviously much greater than this length and this length.
So, from that point of view, all these nodes and all these nodes will be out of contention
and one can only seriously consider this node and this node. So, for these two nodes, |
evaluate this length square plus this length square and this length square plus this length
square. And, | can see that this node wins over and then | say that this is the node with
which I should join these two points of the edge in order to make a triangle. So, | make a
triangle like this. So, this is the triangle 1.

And, at this point, | say that the boundary for this domain consists of this (Refer Slide
Time: 44:52) whole thing and this is not part of the boundary. So, at the end of making a
triangle, | redefine the boundary in such a way that I have the overall continuity here. So,
at this point | have made one triangle and | have deleted two edges here, which are no
longer in contention. Now, a new front, which is advancing towards the best possible
node to capture it and form a triangle. So, now, again | start with this and I look at all the
points, which are to the left of me and then see with which I can join. And, | can see that
almost all these points are to the left of me. And, of all these points, joining with this will
give me the smallest triangle. So, I will join this. So, | made a second triangle here and

again | take this out; this is now the front here.

I can start with this (Refer Slide Time: 45:53) and then look at all the possible nodes,
which are to the left of me. So, if | take this, then all these points are to the left and these
points are to the right. So, I do not consider this. And, | take all these points here and |
choose which of them will give me the smallest triangle. So, obviously, this one. So, I
join this; 1 make one more triangle and then take out these things. And then, | have my
front, which is like this. Again, | take, look at all the possible things. And here now, I
will join these two to make a triangle, the fourth triangle; | take it out; my advancing
front is this. Start with this; and obviously, this should be joined to make the fifth

triangle; my front is like this. So, I can keep on going in each way. At each point, I look
at all the possible nodes including the boundary nodes and the interior nodes, which are
to the left of the edge that | am considering. And, all those qualified nodes are potential
mates to be formed into a triangle. And, | take that point, that node, which gives me the
least square of the lengths. So, that is | i square plus | j square. And then, use that to form
the triangle.

(Refer Slide Time: 47:17)

So, I join here; another triangle is formed; and then, I define the edge like this; and then,
I can go on here again; and then, may be here. So, | can see that each time | am forming
a triangle; and then, I can go on like this. Sometimes we may reach a dead end in which
case we have to stop that. Dead end is possible when for example, you have already
come here and you have formed a triangle and there is nothing else for us to go. So, in
which case, | can go back to one more edge and then start with that, continue the process.
So, in this way | can redefine my front which is trying to find, which is composed of
boundary edge elements. The boundary is such that if you have some notion of the
counter clockwise direction, and then for each edge, you try to find out what is the
nearest qualified node with which to form a triangle. And then, we can continuously do
this. And then, eventually, we will get all of them in decomposed triangles. So, this is
what is known as the advancing front method, in which at any time, you have one front
consisting of all the nodes on the boundary; and, the edges on this advancing front are to
be joined with the available qualified nodes, which are to the left of it; and, by making

sure that we are always looking at the left side of it in the counter clockwise direction,
we can eliminate the possibility of choosing points which lie outside the domain. So, that
is how we are trying to deal with the concave geometry; that is, by maintaining
directionality in defining the advancing front and also by looking for points which are to
the left of this.

This progresses (Refer Slide Time: 50:00) in an element by element starting with some
edge and then looking at what node is to be done at... So, the information that is needed
to make an advance here is what are those nodes which form this boundary and the
interior, which are to the left side of the current edge. And, once we do that, that can be
looked at based on the cross product of this vector and this vector. So, in that way, we
can find out. And, having decided all the possible nodes to the left of this edge, then we
try to find out which of them is the nearest node by looking at the length | square — 1 1
square and | 2 square for each node. And, that since we know the boundary points, that
is, X 1y j of all the nodes here, one can easily determine the lengths; and then, using that,
we can select the most appropriate one and then go through this. So, this is a good way

of progressing with triangulation after the nodalization done in this way.

And, this (Refer Slide Time: 51:21) ensures us that we will not take consider points
which lie outside the domain, so that triangulation is done only from the interior points.
And, by taking out these nodes as soon as a triangle is formed, then we can make sure
that we go through the process until every node is associated with one triangle or other
triangle, so that there is no node which is left unused and each node is associated into a
tile in an appropriate way. So, the essence of the advancing front method is that it can
deal with a complicated geometry in a systematic way and there is some sort of book
keeping and all that thing. But, in terms of actual solution of equations, there are none
here; we only have algebraic relations to find out which nodes are to the left and which

nodes give us the smallest overall length.

(Refer Slide Time: 52:38)

r: = ‘ - ?:7
ol o SR e

';:—"_.._II-_'_F J -

-

aramaloked — A =g e i el
] .‘:- o &n_...?‘_],_i_ E

"L e

T e,

So, the mathematics part of it is very small both in terms of triangulation and in terms of
nodalization. But, the logical part of it, that is, to write a program to do all these checks
and balances and all that is more tedious and one needs to be a good programmer in

order to make this algorithm work.

In the next class, we will look at triangulation using Delaunay method, so that we can see
what differences we have between advancing front method and the Delaunays method.

