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We have seen the approach – the computational plane approach, where we solved the 

equations not in the physical plane, that is xyz, but in a transformed plane, the 

computational plane, where it is expressed in terms of the coordinates are psi, eta and 

zeta. So, this transformation, this need for solving the equations in the computational 

plane also requires us to transform the equations, which are described in xyz into the 

corresponding derivatives appearing in the psi, eta, zeta directions. So, this 

transformation of equations is done systematically like the following. We will illustrate it 

with the for a simple two-dimensional flow case. We will take case of heat conduction. 
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Let us say that we are looking at dou square T by dou x square plus dou square T by dou 

y square equal to Q x, y. This is the equation that we have, where Q is the source term 

and T is the temperature. And, of course, as a thermal conductivity and all that is 

included in this. 

Now, when we are trying to solve this in a computational plane in two-dimensions in 

terms of psi and eta, then our physical domain may be for example, like this. This is x 

and this is y. This is transformed into the computational domain. And, here if you say 

that this is A, B, C and D, this is A prime, B prime, C prime and D prime. Therefore, 

there is this C prime, D prime corresponds to this and this AB corresponds to this; A 

prime D prime corresponds to this. And, lines, which are uniformly distributed here may 

correspond to lines, which are curvilinear like that; 1 2 3 4 5; 1 2 3 4 5. So, this is the 

physical plane; and, this is the computational plane. And, we do not want to solve the 

equations in the physical plane, because that is not a constant y line. But, since this is 

mapped on to the computational plane like this in which this is a constant eta line and 

this is a constant psi line here, therefore, we can think of doing it like this. 
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Now, we have write dou T by dou x. We can write in terms of this as dou T by dou psi 

into dou psi by dou x plus dou T by dou eta into dou eta by dou x, because x is a function 

of psi and eta in two dimensions. And, this is dou T by dou psi into psi x plus dou T by 

dou eta eta x. And, what we want is dou square T by dou x square; that is, dou by dou x 

of dou T by dou x. And, dou T by dou x is given by this. So, this is dou by dou x of psi x 

dou T by dou psi plus eta x. 

(Refer Slide Time: 04:48) 

 



Now, we can write this as dou T by dou psi into dou by dou x of psi x plus psi x times 

dou by dou x of dou T by dou psi plus dou T by dou eta times dou by dou x of eta x plus 

eta x times dou by dou x of dou T by dou eta. And, each of these derivatives here, dou by 

dou x is like this and that will have two components; this will have two components and 

like that. So, we have to evaluate this as dou T by dou psi times psi xx plus psi x times 

dou by dou x of dou T by dou psi. So, this will be… Here we take this. So, dou by dou x 

of something is equal to… So, we can write this as psi x dou by dou psi plus eta x plus 

dou by dou eta of this T. So, this is the operator, which is acting on T. And, now, this is 

the same operator which will be acting on dou T by dou psi. So, we can write this as psi 

x dou by dou psi of dou T by dou psi plus eta x plus dou by dou eta of dou T by dou psi. 

And, here we have plus eta xx – second derivative dou T by dou eta plus here again we 

have plus eta x times dou by dou x of this operator psi x dou by dou psi plus eta x dou by 

dou eta of dou T by dou eta. So, we can see that this becomes dou square T by dou psi 

square. 

(Refer Slide Time: 07:50) 

 

So, we can write this as dou square T by dou x square as psi xx dou T by dou psi and 

here we have this eta xx dou T by dou eta plus psi x whole square dou square T by dou 

psi square. And, similarly, we have eta x whole square dou square T by dou eta square. 
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Then, we have psi x eta x dou square t by dou eta dou psi. And then, we also have psi x 

dou x dou square T… 

(Refer Slide Time: 09:14) 

 

So, psi x eta x dou square T by dou psi dou eta here. 
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So, we will have plus 2 psi x eta x dou square T by dou psi dou eta. So, this is what we 

have for dou square T by dou x square. And similarly, we will have dou square T by dou 

y square. 

(Refer Slide Time: 09:51) 

 

We will have dou psi by dou y here and dou eta by dou y. So, the operator here will 

become psi y dou by dou psi plus eta y dou by dou eta of this. 
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So, we can write dou T by dou y equal to psi y dou by dou psi plus eta y dou by dou eta 

of T. And then, we can again differentiate this and finally, we can get dou square T by 

dou y square equal to something similar – psi yy dou T by dou psi plus eta yy dou T by 

dou eta plus psi y whole square dou square T by dou psi square plus eta y square dou 

square T by dou eta square plus 2 psi y eta y dou square T by dou psi dou eta. 

(Refer Slide Time: 11:26) 

 

So, this equation Q, which is x and y here will now become Q corresponding to psi and 

eta. 
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So, we can put up this whole thing here as psi xx plus psi yy dou T by dou psi plus eta xx 

plus eta yy dou T by dou eta plus psi x square plus psi y square dou square T by dou psi 

square plus eta x square plus eta y square plus 2 of psi x eta x plus psi y eta y dou square 

T by dou psi dou eta equal to Q of psi, eta. 

(Refer Slide Time: 13:00) 

 

This is the transformed equation from here. 
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And, one can see that in the transformed equations, we have the metrics of the 

transformation; we have psi x, psi y, eta x, eta y. And, double derivatives of psi and eta – 

these are all coming. 

(Refer Slide Time: 13:25) 

 

And, one can immediately see that this equation is much more complicated. There are 

many more terms that are coming here for the general case of transformation, where both 

x and y depend on psi and eta. In this particular case, it looks like x direction; there is no 



change, but y direction is obviously changed. So, some of the derivatives may cancel out. 

But, in the general case, all these things are present. 
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Now, what is also important is that… Whereas, this equation – we have only normal 

derivatives. 

(Refer Slide Time: 14:00) 

. 



Here we have cross derivative term, which is coming here. And, we have these terms – 

the first derivatives, which are not there in this. But, what is especially important is that 

we have the cross derivative term, which comes here. 

(Refer Slide Time: 14:22) 

 

And, we have seen that if were to use a central differencing scheme for… Let us say that 

this point i comma j. 
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Then, if we consistently use second order approximation, then the second derivative dou 

square T by dou eta dou psi will be represented as in terms of this point, this point, this 



point and this point. And, it would not have any contribution coming from this. So, this 

will be T i plus 1, j plus 1; let us put it as a plus b tau i plus 1, j minus 1 plus c times T i 

minus 1, j plus 1 plus d times T i minus 1, j minus 1. This whole thing divided by some 

delta eta. This sort of approximation will come, where a, b, c, d are some numerical 

coefficients. And, especially, what is important is that this discretization around point i j 

does not have any contribution from T i comma j. So, when we put this together in the 

form of overall… 

(Refer Slide Time: 16:17) 

 

When we convert this into A T equal to b type of situation, the contribution to the central 

term, that is, i j from this derivative is 0. And, there is contribution term from half 

diagonal terms. 
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So, a direct discretization of this will lead to loss of diagonal dominance. This is an 

important factor when we deal with this. And, we have deal with… We will have to 

therefore use a method, which does not depend on diagonal dominance for the solution 

of this, for example, a direct method like Gaussian elimination or an iterative method 

like conjugate gradient method. These are all methods which do not depend on diagonal 

dominance. But, if you wanted to use Gauss-Seidel method for the solution of this or 

even the TDMA method, they depend to some extent on diagonal dominance for 

assurance of convergence. So, there is a problem with this. And therefore, one way of 

solving this is to take this term on to the right-hand side and evaluate all these (Refer 

Slide Time: 17:44) things for the kth iteration in terms of k minus 1 based on the 

previous values. And, since all these things – T k minus 1 are known at all i j from the 

previous iteration, this will go to the right-hand side. In the discretization here, we will 

have only terms, which will be contributing to i comma j. 



(Refer Slide Time: 18:12) 

 

And, here we have normal derivatives appearing. 

(Refer Slide Time: 18:19) 

 

And, here we have something like the advection term also coming in this. So, this is the 

first derivative and this is the second derivative. So, if we were to look at it as some kind 

of generic scalar transport equation with advection and all that thing, there is a first 

derivative coming here. So, one has to do a proper stability analysis for a discretized 

scheme for this derivative and this derivative put together. So, that is another complexity 

that we have to deal with. And finally, what we also see is that there are derivatives – 



first derivative or a second derivative of the grid coordinate transformation that is 

coming into picture. And, for these things to be faithful to the original equation, we 

should have a smooth grid – smoothness of the transformation. 

(Refer Slide Time: 19:25) 

 

If the grid lines are smooth like this, then the second derivatives will be small; otherwise, 

these will tend to dominate the whole solution and you may get away from the visca, the 

diffusion type of solution that is expected for this. So, we would like to have a… 

(Refer Slide Time: 19:52) 

 



This is an artificial thing that is being introduced into the equations because of the 

transformation. One can show that because of the transformation, the mathematical 

nature of this equation does not change; that is, if we are starting with an originally 

elliptic equation like this, then even this transformed equation will also be elliptic. If we 

are starting with the parabolic, then this will be parabolic if… So, that criterion is… That 

condition is maintained; that assurance is there that we are still dealing with a parabolic 

or elliptic equation as we started out with… Therefore, the wellposedness is not affected. 

(Refer Slide Time: 20:39) 

 

But, there are transformation dependent terms, which are coming here – first derivative 

square and then second derivatives. So, the influence of these things should be 

suppressed wherever possible. And, that is possible when we have a smooth grid. So, if 

we have a discontinuous grid, so that we have discontinuous things, where the second 

derivative becomes ill-defined and all that kind of thing, then we have problems. 
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And, the most important problem is also with respect to the appearance of the cross 

derivative. And, this cross derivative is multiplied by these metrics here. And, the 

contribution of these metrics, these terms will be higher if you have a non-orthogonal 

grid. So, if the grid lines psi and eta are orthogonal and x and y are orthogonal, for 

example, these lines here (Refer Slide Time: 21:55) are orthogonal with each other, then 

this term will be identically 0 and it can be shown in that way. But, in the general case, 

we cannot expect orthogonality. 

(Refer Slide Time: 22:08) 

 



For example, this is coming like this and this is here. So, this is cleanly not 90 degrees at 

this point. And, this point here is not 90 degrees. So, that means that for a general case of 

transformation, when you go back to here to here, this transformation, the resulting grids 

are not necessarily orthogonal. 

(Refer Slide Time: 22:34) 

 

If they are not orthogonal, then this term, this contribution here is not 0; we will have to 

live with cross derivatives. And, these derivatives can be treated in this deferred 

correction mode. So, we call this as deferred postponed correction. Because there is one 

term here which is not evaluated at the current situation, but at the previous situation 

value, the convergence of this scheme is compromised, is delayed. And, the 

convergence, the correction, which is coming after some time is going to delay it more if 

the value of the magnitude of the correction is large. So, in cases where this term is large, 

that is, where we have highly skewed grid… 
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If we have a skewed grid, which is not orthogonal, then this term may dominate and that 

may reduce the overall rate of convergence of an iterative solution of this in a deferred 

correction mode. So, these are some of the things that we will have to take into 

consideration when we are trying to solve the transformed equations in the 

computational plane. 

(Refer Slide Time: 24:17) 

 



Now, this particular form of the equation, where it is like this, where we have psi xx and 

eta xx and psi x like this, these are not very useful, because we are trying to write 

approximations for these things. 
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And typically, our computational grid is very simple like this by design. And, it is very 

easy to discretize this into equal spacing here and equal spacing here. 

(Refer Slide Time: 25:00) 

 

So, if you were to rewrite this not in terms of psi xx, but in terms of x psi psi like (Refer 

Slide Time: 24:57) this, then x psi psi, that is, dou square x by dou psi square can be 



written for example, as xi plus 1 minus 2 x i plus x i minus 1 by 2 delta psi whole square; 

whereas, psi xx, which is dou square psi by dou x square will have to be written as psi j 

plus 1 minus 2 psi j plus psi j minus 1 by delta x square. 

(Refer Slide Time: 25:47) 

 

In the computational plane, in the physical plane here, the delta x’s and delta y’s are 

changing all the time. But, in the computational plane, it is easy to take this rectangular 

and divide this into constant delta x and constant delta eta. 

(Refer Slide Time: 26:04) 

 



The evaluation of this is much more simple than evaluation of this. And, here you have 

uniform grids and here you have non uniform grids. So, the accuracies of the evaluation 

of this is also compromised. 

(Refer Slide Time: 26:35)  

 

So, making use of the relation between (Refer Slide Time: 26:20) metrics expressed in 

terms of psi x and x psi, which we have derived earlier, we have shown that psi x psi y 

psi z; eta x eta y eta z; zeta x zeta y zeta z can be expressed as x psi x eta x zeta; y eta y 

psi y zeta; z psi z eta z zeta, which we expressed in terms of the Jacobian. Now, we can 

go from here to here or from here to here. And, we are saying that it is easier to deal with 

dou x square by dou psi square rather than dou square psi by dou x square. So, we make 

use of this relation. 
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To rewrite this in terms of psi like this, (( )) x eta square plus y eta square dou square T 

by dou psi square plus x psi square plus y psi square dou square T by dou eta square 

minus 2 y eta y psi plus x eta x psi dou square T by dou psi dou eta equal to Q psi 

comma eta by (( )). In this form, we see that the metrics of transformation in terms of 

dou x by dou psi and dou x by dou eta and dou y by dou psi, these are appearing 

especially when we have a smooth grid, so that these first derivative terms will go to 0. 

(Refer Slide Time: 30:15) 

 



I think here we have made the assumption that we have a smooth grid. And, for a smooth 

grid, this is equal to 0 and this is equal to 0, so that we can cancel out these terms and we 

have a simpler form of this. 

 (Refer Slide Time: 30:41) 

 

So, the idea of the computational plane approach now is to solve this equation for a given 

relation between these lines (Refer Slide Time: 30:47) and these lines. So, we are trying 

to map the physical domain like this into this. So, this is… 

(Refer Slide Time: 31:00) 

 



For example, if you say that this is eta 1, eta 2, eta 3, eta 4 and eta 0… So, this 

corresponds to eta 0. On this line here, this is eta 1, is constant; this is eta 2, is constant; 

and, eta 3 is constant like this. And, these lines here corresponds to psi 1, psi 2, psi 

naught like this. 

(Refer Slide Time: 31:29) 

 

If you want to discretize this, we need to evaluate dou psi by dou eta, dou y by dou eta 

and dou x by dou psi like this. And, that comes from the transformation. And, how do we 

get the information? 

(Refer Slide Time: 31:43) 

 



We can say that we know this boundary; and, one can say that this boundary and this 

boundary are mapped. And, we know that this varies from say 0 to 1 and 0 to 1 like this. 

So, we know what this line is. That is a horizontal line at eta equal to 1. And, we know 

that eta equal to 1 corresponds to this line. And, since this is part of the boundary, we can 

potentially evaluate the metrics corresponding to this. But, we do not know these lines. 

That is part of the grid generation. So, the objective of the grid generation is to find out 

all the interior points in the physical plane given that the external boundaries here is A B 

C D, correspond to the computational plane of A prime B prime C prime D prime and 

subject to the condition that in the computational plane, we have uniform grid spacing. 

So, this point here is topologically the same as this point here. 

Topologically means that we have i equal to 0 let us say 1 2 3 4 5 and j equal to 1 2 3 4 

5. So, this is i equal to 2, j equal to 2; and, this is also i equal to 2 and j equal to 2. So, if 

you were to write this in terms of i and j and similarly, i and j (Refer Slide Time: 33:29) 

here, this point is 2 comma 2 and this point is 2 comma 2. So, the objective of the grid 

generation is to identify all the interior points in the physical plane given the interior 

points in the computational plane and given the boundaries of the physical plane to map 

with the boundaries of the computational plane. So, that is… And, we have a number 

grid generation methods by which we calculation find all the interior points. And, one 

can even use the condition of smoothness in order to derive these interior points, so that 

we can cross out these terms here. 

(Refer Slide Time: 34:19) 

 



And, based on that, we will be able to find all the interior points. So, once we know the 

interior points, we can evaluate this x eta. For example, x eta for this point here is dou x 

by dou eta. So, it means that this is x of this point minus x of this point divided by this 

distance. So, that is, we can write this as at constant i here, this is i equal to 1, 2, 3, 4, 5. 

And, this is j equal to 1, 2, 3, 4, 5. So, we are writing x eta at 2, 4. So, this is 2, 4. And, 

we can write this as x 2 comma 5 minus x 2 comma 3 divided by 2 delta eta. And, delta 

eta is what we are getting from computational plane. And, x 2 5 and x 3 5 are known 

from the grid generation. So, from that… because we know all the x y of the interior 

points. So, once we know the interior points, we can evaluate the derivatives in this way. 

And, we put those things here. 
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So, after the grid generation stage once we have found all the interior points and once we 

have numerically evaluated all these derivatives for the general case, then we will have 

an equation with coefficients based on the grid generation and all that. So, these 

coefficients will be constants. And, we have a second order equation with constant 

coefficients, which we can then discretize as per the usual second order accuracy or 

fourth order accuracy as we wish. And then, we can convert this into an equation like A 

T equal to b. And, this A T equal to b can then be solved for T at psi and eta. And, using 

those values, we can then come back to T at this point. So, the approach in the 

computational plane is to first identify the mapping between the physical plane and the 

computational plane. The computational plane is such that it is rectangular in case of 



two-dimensions. And, in the case of third dimension, the zeta dimension will also vary 

between… It is like a cube going from 0 to 1 and 0 to 1 and 0 to 1 in the three directions. 
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And, within this, we can have uniform spacing of coordinates of lines of constant psi, 

constant eta, constant zeta, so that you have small cubes of delta psi and delta eta and 

delta zeta depending on the number of grid points we have in this direction, in this 

direction. And, what we then say is that this line A prime B prime maps onto the physical 

plane – in the physical plane, the line or the curve AB. And, we have as many number of 

points here as number of points here. Then, we try to identify where we want to have 

these 5 points here and then we fix the points on this side and this side. This is already 

fixed. And, based on our consideration of where we want to have the grid points, we can 

fix these points here. Similarly, the points on these things are fixed and points on these 

are fixed, points on these are fixed. 

Now, once we identify the boundary points, then we have to get the interior points such 

that we have a smooth grid. And then, these lines here (Refer Slide Time: 38:45) map on 

to the constant psi and constant eta lines here. Based on that, we derive all the interior 

points; that is, we find at every i j, what is psi i eta j and what is x i y j, so that for a given 

point i j in the computational plane and the physical plane, we get psi i eta j in the 

computational plane and x i y j in the physical plane. 
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Based on that, we can derive the metrics either like this or in this way. And, once the 

metrics are derived, we can substitute them into the transformed governing equations to 

come up with governing equations with coefficients, which depend on the metrics of the 

transformation, these kind of transformations. So, at that point, we have an equation of 

this kind and j, the determinant of the transformation is also evaluated as we have 

already seen in terms of the metrics, so that we now have an equation, which has 

derivatives of the variable in terms of psi and eta and zeta. And, for each of these 

derivatives, we make finite difference approximations and then this equation is converted 

into a discretized form. 

And, for good measure, because we are getting extra terms in this, we will have to do a 

stability analysis to see that their discretization scheme that we have got is reasonable. 

And, we also have to derive the stability conditions for this particular scheme with these 

coefficients that are coming here for a given transformation. And then, based on that, we 

finally select the suitable discretization scheme. And then, using the discretization 

scheme, we convert the transformed equations into A T equal to b. And, depending on 

the structure of this A metrics, we may choose to use either a Gauss-Seidel method. If for 

example, the diagonal dominance is preserved, if it is not there, then we have to choose 

something else, some other method or we have to treat this term as a deferred correction. 



We finally use a particular method and then we solve this to get (Refer Slide Time: 

41:29) T as a function of at i, j. And, T at an i, j is also T at psi i, eta j; and, it is also 

equal to T at x i, y j. So, this is the computational plane and this is the physical plane. So, 

this is how we can get a solution in this approach, which calls for a fairly complicated 

approach for a complicated geometry. So, that means that we have to first generate the 

grid knowing only the boundary transformation. And, from the generated grid points, the 

internal point and the boundary points, we evaluate the metrics of the transformation. 

And, we substitute the values of the metrics of the transformation corresponding to each 

grid point and then get a transformed equation in the computational plane. And then, we 

choose a discretization and then come up with A T equal to b and then we solve this and 

then finally get the solution. This kind of solution can be applied to any arbitrarily 

complicated geometry. 

If it is completely a two-dimensional problem, then it may be possible to generate a grid, 

which is orthogonal. For example, if one uses a conformable map techniques, then one 

can come up with an orthogonal transformation, which will mean that the cross 

derivatives will not appear if the cross derivatives are not there in the original equation. 

But, for a general three-dimensional case, it is not possible to ensure an orthogonal 

transformation. And so, in such a case, the cross derivative terms will appear and we 

have to deal with them. And, it would be the grid generation and transformation would 

be very easy if we had an (Refer Slide Time: 44:00) analytical expression for the 

transformation; that is, analytical expression for psi in terms of x, y, z or x in terms of 

psi, eta, zeta like that. In the general case, it is not possible. 
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For example, if you are considering a case where even a rectangular domain with three 

tubes and you have flow going in the outer things like this and if you have another thing, 

which is smaller. So, in the general case like this, may not possible to have an orthogonal 

thing, but it is still possible to come up with a corresponding non-orthogonal body-fitted 

grid. And, this non-orthogonal body-fitted grid is such that this is also a structured grid. 

A structured grid in the sense that the structured grid has the grid points here or at 

intersections of constant coordinate lines. For example, this may be a constant eta line, 

this may be a constant psi line like this. So, all the grid points are located along 

intersections of constant psi and eta lines. That is what is known as structured grid. 



(Refer Slide Time: 45:54) 

 

And for example, every point here is at an intersection of constant psi line and constant 

eta line. This is also constant… So, we are looking at this transformed line here. So, the 

corresponding point between this and this is along this constant eta line and this constant 

psi line. So, the grid points here are intersections of the family of lines of constant 

coordinate directions. And, in such a case, a cell here will have four phases in two 

dimensions. And, in the case of three dimensions, it will have six phases. And, not only 

that, if you know that this is i comma j, you know that immediate left neighbor, that is, i 

minus 1 j and right neighbor – i plus 1 j and also the top one, which is i j plus 1 and the 

bottom, which is i j minus 1 and also the front and back. So, in this particular case in a 

structured grid, you know where you are with respect to the neighboring points. And, 

that kind of structure is inherent in this. And, this structured grid will preserve, for 

example, the diagonal structure of the A metrics in that we get for elliptic equations and 

so on. So, the resulting A T equal to b based on the transformed equation will still remain 

diagonal although we have expected terms coming here. 
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So, structured grid is useful from the point of view of knowing the neighbors, which is 

important when we want to deal with higher order accurate approximations for the 

derivatives. If you want to have a third order accurate one sided difference, you need to 

have four neighboring points. So, that means that you must have i minus 1, i minus 2, i 

minus 3. And, that kind of information is readily available in the case of structured grid. 

But, in unstructured grid, that information is not available, because these points are not at 

the intersection of these coordinate lines. So, in terms of knowing the neighbors, that is 

an important aspect. 

 (Refer Slide Time: 48:35) 

 



And, this also has possibility of structured coefficient metrics A. And, we know that if 

we have a structured coefficient metrics, then the application of the specialized methods 

like Gauss-Seidel method or the TDMA and the strong LPC procedure. These kind of 

methods are much easier with a structured coefficient metrics and there is an advantage 

with this. And, there are also modeling advantages in the case of a structured grid. 
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For example, if you are looking at a flow domain like this and the flow is developing, 

then the velocity profile may be like this here and then it may be finally going towards 

this. And, this dimension may be typically some 5 centimeters and this dimension may 

be something like 5 meters. So, you have a very long and thin pipe. In a structured 

metrics, it is possible to make it into grids such that the aspect ratio – it is delta x by delta 

y can be large without affecting the overall accuracy of the solution too much. But, if 

you have an unstructured grid and if you have a large aspect ratio, then the accuracy of 

the solution is going to be compromised. So, there are certain advantages for a structured 

grid. 

And, that structured grid is actually carried forward, is used in this case of non-

orthogonal body-fitted grid approach to the solution of the governing equations in which 

all the computations are done in the computational plane and then the information is sent 

back to the physical plane. But, this approach requires us to have a smooth grid; and 

then, the fairly complicated transformations of the equations happens; and then, addition 



of new terms of the cross derivatives is a possibility. So, there are certain things – 

advantages and disadvantages. But, this approach is a generic three-dimensional 

approach, which has proved to be very successful in dealing with fairly complicated 

geometries. So, in the next lecture, we will look at an alternative view point, alternative 

approach to the solution of equations again on a physically complicated geometry. 

 


