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And especially the eddy diffusivity or the extramomentum flux, that isarising out of 

turbulent fluctuations, and these two parameters are obtainedat every point within 

theflow domain. So, these are two parameters, these will be a functionof x y z and t, and 

these are evaluatedby their ownpartial differential equations, which represents the 

conservation of these quantities, these scalar quantities. We have already seen, one such 

additional equation for the turbulent kinetic energy, and we look at the similar kind of 

derivation for the other quantity. Now, what quantities are these that wouldreflect 

properly, accurately and well enough the effect ofturbulent fluctuations on the overall 

turbulent flux. It cannot be that everythingcan, any two parameterswill work. It should be 

that, they have some relevance to the turbulenceprocess that is taking place. 

And, in the previous lecture, we have derived the equation for k, theturbulent kinetic 

energy, and we have seen that thesquare root of the turbulent kinetic energy can be a 

measure of the velocity of the eddies, and these could be related, these could be 

analogous to the velocity of the molecules, gas molecules which interact with each other 

and produce a enigmatic viscosity. 

So,therefore, the turbulent flux is characterized by theeffective turbulent viscosity, which 

has a velocity parameter, which we have derived from theturbulentkinetic energy, and it 

also requires a length parameter, and it is in the length parameter that we found 

deficiencies in the one equation module, because we had to resort to the only the length 

scale that we have, which is the mix in length measure, which is typically taken as assert 

and distance fromthewall, and so, that is nota very good prescription for a length scale, in 

general case, where you may be quite far from the wall or it may be that you havea 



significantinfluence from several wallsand so on. So, the idea is to derive alength scale, 

which is independentof the geometry, and if you wereto have that then you couldwritean 

expression for the turbulent viscosity. 
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Turbulent viscosity has been proportional to constant, timessquare root of k, times the 

length scale, which is analogous to u times l times aconstant C prime, which is a 

characteristic of themolecular viscosity as per the kinetic fluid gases. Now, what can be 

the length scale here. The point that, we have to keep in mind is, this is a measure of the 

turbulentquantities, a measure of theturbulent fluxes, and it should be therefore 

representing a length scale associated with the turbulent fluctuations, and this is where 

we also. Notice that, we in the derivation of the equation of k, we have come across the 

turbulent dissipation rate, and this turbulent dissipation rate, is the rate at which the 

turbulent energy isgettingdestroyed, is beingtaken out of the system and that is avery 

important quantity in turbulent flow, we have seen a typical spectrum in terms of the 

wave number k.Let us, notconfused this with the turbulent kinetic energy and the energy, 

and wehave seen that typically goes like this. This is where energy is beingput into the 

system, this is the large eddies and this is where we have a smallest eddies. 

Turbulent energy is generated by large eddies as a result of destabilization flow, in 

regions of large velocity gradients, andthis is where one can say turbulent energy is 

produced, and ascharacteristic of the mean flow parameters, and this energy is casketed 



down, the eddy sizes, as you go from here towards this, the eddy size becomessmall and 

smaller, and thiscascading process happens without much of dissipation of turbulence. 

So, this is almost like a frictionless transfer ofthe energy that is createdat the large eddy 

sizes, and this energy is finally dissipatedhere, at a rate which is given by the 

turbulentenergydissipation rate, sothis dissipation rate is happening, around this smallest 

eddies and this smallesteddiesare so small, that effectively there is noinfluence of the 

geometric parameters associated with the system. 

So, this isour key feature of turbulence modeling, especially that the turbulentenergy 

dissipation happens at thissmallest eddies of the length scale associated with the 

turbulence, and theseare so small, that they do not know whether the turbulence is 

createdin a flow in a pipe, in a circular pipe or in a boundary layer or in somemixing 

region or anything like that. So, because those scales associated with thecircular pipe or 

boundary layer or with pressure gradient and all those things, are very large compare to 

this small eddy scales that are happening, and this isindependent to the geometry. 

Therefore, the length scale that appears here, characterizing the turbulent viscosity is not 

dependent on the overall features of the flow, but it depends only purely on the turbulent 

quantities. And wehave seen that we have here, two quantities k, which is defined as half 

mu I prime mu primebar, sum of all the turbulentvelocity fluctuations, and epsilon which 

is defined as 2 nu dau I prime by daux k over bar. So, this again is a positive 

quantitiessquare ofthesethings, these are the parameters which depend only on the 

fluctuating quantities.  

These are the quantities which are purely turbulencedependent, and one could therefore, 

argue thatthe characteristic length of turbulent flow depends only on k and epsilon, 

becausethis is also a turbulent thing, this is alsoturbulent and this is alsoturbulent, and 

over most of the spectrum involving the wave numbers and especially in the regions, 

where towards a higher scales, these characteristics do not depend onthegeometry of this. 

So, if one wereto do like this, based on dimensionarguments, because k has dimensions 

of meter square plus second square, and epsilon has dimensions of meter square 

andsecond cube. 

One can say that, the length here is in constant times k to the power 3 by 2by epsilon, so 

this iswhat we can use in order toget an expression for epsilon, we can write this as 



epsilon equal to some constant times, and this is the expression that we usefor 

theturbulent kinetic energy equation, in the one equation model. So, we say that, we 

replace this with the mixedlengthmodel, and therefore, we say that this is for example, 

equal to point 4 times y, where y is normaldistance, and this constant is adjustedfor best 

fit with the data and then we have anoverall model, and we know that in this way we 

have problem with specification ofthe mixing length, and we make use of this very factor 

here. To invert this relationand say thatepsilon is given by, not here,it is already inverted 

here. 

We make use of this relationto substitute this into this, andsay that nu t is some constant 

times square root of k,times k to power 3 by 2 by epsilon, and therefore, constant 

let’scall this as say mu, times k square by epsilon. 

Now, the turbulent viscosity is given by in terms of constant to be determined, and k and 

epsilon which are defined as per, in terms of theturbulent flowfluctuating quantities, 

velocity fluctuations and their derivatives. So, the idea of coming up with ageneral 

model, a generic model which can account for length scale, which is not dependent on 1 

dimension prescription, is toexpress turbulent viscosity in terms of two quantities k and 

epsilon, for which we can derive the conservationequations, from 

thefundamentalmomentum equations and their manipulations, and if youdo that then we 

canevaluate k at every x y z t from itsconservation equations like this, and we can 

evaluate epsilon at every x y z t, using an equation need to bedevelopedlike this, and 

from these things we can define nu t at x y z t as constant it to be determined, times k 

square by epsilon. 

And from these we can write u i primeu j primewhich appears inthe momentum equation, 

as nu t times d u i bar by d x j plus d u j bar by dx i. So, in the two equation model, we 

developed an equation for k, and then an equation for epsilonby solving these in the 

usual c f d way, we can get theinstantaneous and localturbulent kinetic energy and it is 

dissipation rate 

From these we get theturbulent viscosity at alocal point and using these, we can evaluate 

the Reynolds stresses different Reynolds stresses at every x y z t, and this equation here 

which is in terms of nu t, which is given by k and epsilon which are being evaluated 

using these equations, and in terms of the time average velocity gradients, is such that, 



there won’t be any newterms appearing in thetime average momentum equations, thenwe 

can writetime average equations, in terms of known variables that isu bar v bar w bar and 

t bar, and in terms of two more time average variables k and epsilon, we noticeall thatwe 

have not put time average here, by definition they are time average quantities. 

So, we have 6 equations and 6 unknowns here, and by putting up all these things 

together, we can get the description for turbulent flow, whichenables us to calculate each 

of these quantities, as a function of x y z t without having to give prescribe any arbitrary 

values, and in this modeling we still have certain constants we determined, like C mu and 

other constants which we will see, and those constants are basedfound from some 

experiments and somesemi theoretical arguments. 

But, essentially people have been able to come upwith a set of almost universal 

constants, which can go into theequations, which describe each of these, so that this 

model will be a generic model which can be used for 3-dimensional time dependent 

flows, without having toprescribead-hoc kind of courierense for the quantities which are 

involved. 

Solet’sjustsee how we derive these equations, and so that we have a good understanding 

ofthe model itself, and when we will discuss some of thelimitations of this model and 

how this can be overcome, how these are overcome in higher level of models. 

Now, the essence ofthe two equation model is to be able to derive a conservation 

equationfor k, and aconservationequation of epsilon, and so that these equations can be 

solved to get k and epsilon at everyx y zeta t, and we would like this equations to be in 

the form the generic scalar transport equation, for which we know how to do the 

discretization, and thenconverting them into a phiequal to b, and thenefficientsolutions, 

all that template is already fixed, and if we like equations which go into the template 

which describe theseturbulent parameters, so that from which we canget kind of epsilon 

and then the turbulent viscosity and then this. 

So, how do we derive the equation fork and epsilon, we have already seen thebasic idea 

for the derivation of k, we notice that k consists of the product of u i primeand u j prime, 

and therefore we have written earlier. 
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The instantaneous xmomentum equation i thmomentum equation like this.Let us, call 

this as equation 1, and then we hadderived equation 2, which is the time average of 

equation 1, and this we can write down as dauui bar bydaut plus dauby ddau x m of u m 

bar, u i bar plus u m prime, u i prime equal to minus 1 by rhodaup bar dau x i plus nu 

dausquare nu i bar by daux m daux n. 

And by subtracting this fromthis, we are able to get an equation for u i prime, which was 

of the formdau u i primeby daut plus, dauby daux m ofthis expanded and subtracted in all 

that thing, equal to minus 1 by rhodau p primeby dau x i plus u dausquare u i primeby 

dau x mdau x n, so there are terms that are coming here, and this is for the i 

thcomponent, and what we need is i thcomponent and i th component, and summed over 

all the 3.Therefore, the kis to, write an equation which is similar for u j primeessentially, 

wherever you have i here, we place it with j, and then we have an equation for this, in the 

form of dau u j prime by dau t plus dau by dau x m, of a big (()) is equal to minus 1 by 

rho dau p prime by dau x j plus nu dau square u j prime by dau x m and dau x n, and now 

what we do is we multiply 3 by u j prime, and add to thatthe multiplication of every term 

inthe 4th equation by u i prime, and then take the time average, and then we have to do 

lots and lots of manipulations. 

But, this gives usequation 5 which can be written down like this, after doing these things, 

and thendoing the time averaging, we get an equation 5, which is of this form,we can see 



that this is the beginning of anequation for the Reynold stresesisdau by dau x mof u m 

bar, that is the meanquantity here,Reynold streses, and here we have attempt which looks 

really humongous, u mprime, u i prime, u j prime,it is a simultaneous correlation, time 

average of theof all the three fluctuating quantities, and terms involving pressureand 

velocity fluctuations. 

So, here we have dau bydau x i of u prime j by dprime, here we have dau by dau x j of u 

prime ahp primecorrelation like this. And, then we have minis u i prime, u mprime of, 

here we have u i prime u m prime do u j, so this is I here and this is j; this is the main 

quantity and this is a fluctuating quantity, and similarly here we have j here, and then of 

course, this is the fluctuating quantity, and here we have mean derivative 

So, this mean derivative, mean velocityderivativeand this again isthe mean 

velocityderivative, multiply a turbulent stresscomponent here. So, these terms will 

appear, plus another special term which is return out separately, because this is 

something that wouldnot finally, appear inthe turbulentcontinent j equation. 

So, this is the resulting equation upon manipulation, which we can get, and it looks 

permeable, it has been derived by many of graduate student all over the world. So, this 

has the assurance that it can be derived, but one has tobe patient, it has been put 

togetherin this form. 

So as to give somespecific meaning here, so we can see that this is ofform similar to the 

standardgeneric scalar transport question, and the scalarthat we referringto here, is this 

phi, and off course this has anindex phi j, this is a stresshere, and this is the advection 

term, this is being adverted by the mean flow, that is the mean velocity here, and gradient 

that is coming here, so thedivergence operator. 

And we are missing, I think we are missing this, so if missing a term which is in the 

generic scalar transport equation we have an advection term, anddiffusion termand then 

we have a source term here, and so we have all these rest of the term here, which 

constitute all the unknown kind of things, these are in a way, there are some terms which 

are known, but this do not fit into the standard diffusion term. 

For example, here this is another scalar phi i m, and this is another component of this 

particular scalar, so in that sense one could say that if there are 6 suchscalars, 



theseareknownterm and this is also known. So, from that point of to these two terms 

here, or in a way one can say these are known or movable, when we write all these term 

see together, but these are triplecorrelationsof 3 different velocitycomponents, and these 

are not to be known, within context of solution of these equations, these 6 equations 

along with moment equations and the continent equations. 

Again, the simultaneous fluctuation of p and u prime again is not known, this termhere is 

the simultaneousfluctuation of the pressurefluctuation and the velocity gradient 

fluctuations is not known, and this is also not known. So, there are so many terms that 

are not known here, and thesehavebeen given an interpretation. Now, we havesaid in 

thepreviouslecture, and also right in the beginning, that turbulence is produced in the 

regionwhereyouhave large mean velocity gradients, and the mean velocity gradient are 

coming in thisoverall equations right here, so this is a mean velocity gradient and this is 

another mean velocity gradient, and this is like a Reynold stress term, and we have put it 

here in this particular way. 

So, and we have put it in the way that minus u i prime u j prime here is nu ttimes d yby d 

x j like this, and in thespecific case of 1 dimensionalflow this thing will become nut du 

bar by dy, and that is equal to minis u prime vprime bar, and so minis u prime v prime 

bar is the positive quantity here. So, one could say that, this along with the minis is 

apositive quantity, and also this along with a minus is typicallypositive quantity, and 

when this is positive, this is positive and soon. So, this whole thing is a positive quantity, 

and this is a positive quantity, in which the mean velocity gradients arecoming into 

picture, and this is therefore, treated as a term production of the turbulent kinetic energy. 

And similarly, this term here is when we put i equals j, this becomesapositive quantity, 

so this becomes a negative term, sotogether one call this as epsilon, and in the present 

format it will beepsilon i j, but once we in ordertoderivefrom this, the expression for k 

we have to put i equal to 1 and j equals 1 here, and then writein equationfortheu 

primesquare, and then youput i equal to 2 and j equal to 2 here, and then to the 

corresponding thing, so essentially whenwe put i equal toj equal 1 2 and 3 we get the 

three normal spaces, and we add together to get the overall k equation. 



So, essentially as faras, the turbulent kinetic energy equation isconcerned, i isequal to j, 

so in that sense we go away, and then we have a epsilon here, and at that point this is a 

positive quantity, this is the rate of dissipations of turbulent kinetic energy. 

So, this is simply like a sink term, so this is a source term, and this is a sink term for 

this.This term is suchthat, although this is not known, once you put i equal to j and this 

thing goes to 0, because thisbecomes, we get dou by dou x i become dau u i primeby dau 

x primed u i prime, and that becomes equal to 0, because are instantaneous 

continuityequation is dau x i by dau x, dui by daux, i equal to 0, that time average form 

of the continuity equation isdau u i bar by dau x i equal to 0. 

So, if you subtract this from this, you get dau by dau x i of u i minus u i bar equal to 0 

and this is nothing, but, dauu i prime bydau x i is equal to 0. So, that means that value 

put i equal toj here, in order toget the normal stresses, and then this term is identically 0, 

this 1 is identically 0, so this would not come in to picture,that is why we want to 

decompose this in to this form. 

So, of all the terms that are referring here, these two terms together, cross should the 

production term, as of source positive source term, and this term here, cross woods a sink 

term which is trying to reduce the amount ofterm kinetic energy, and this is the term 

these two terms are essentially not known very well, andwhatpeople have try to show is 

that, this term isbeing neglected in the case of, is canceling of in the case of k term, this 

is very important in the relative magnitude of the various normal stresses, so in that sense 

very important term, andbecause of the(( )) between this u prime m and fluctuation and 

dau x mgradient, that is coming here in this, and if one worth treat this has a scalar that 

were the dealing with, the scalar is the time average quantity of this,where as this is the 

instantaneous that quantity of that kind of thing. 

So,it is not exact, but in one word to say that, this is phi here and this isdau bydau x m of 

u prime m o bar, then it become very similar to this, and this representsthe turbulent 

diffusion of x momentum, so, by the same token, thiswe considered as turbulentdiffusion 

of this quantity, which is the k like whom quantity here. 

So, this time is not very essay to deal with, so together these termsare brought under the 

umbrella of turbulent diffusionofk. So, this equation ofthe Reynolds stress when we 



contract the enosis, that is when you make i equals j here, and then right in a equation for 

dau by daut of halfof u i prime u i prime, which is nothing but k here. 
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Finally, takes aform like this, this is the turbulent diffusion, and we have turbulent 

diffusion of momentum, and this can be consider as an equivalent of the frantlenumber 

of the k, so frantlenumberis the ratio ofmomentum diffusivity to thermaldiffusivity, and 

that comes into picture when we arelooking at temperaturegradient in the corresponding 

thermaldiffusivity. Here we are looking at diffusion of k, so this sigma k can becalled as 

the equine of frantlenumber or the Schmidt number for k, and this is essentiallyby the 

turbulent mechanism, sowe can put it like this. 

So, this is overall effective diffusivityof k, and then we have the production term 

whenyou put i equal to j here, then this becomes 2 timesthis and 2 times u i primehere, 

andwe have to divideby half throughout, so ultimately we can get, and this quantity is 

expressedusing this expression here, so that once you put this into here, and then you do 

this, we get the overall production termnutdau u i bar bydau x j plusdauu.We are using m 

here throughout, so we can use m without any lossgenerality, so that is the production 

term which takes account to this, and this term is 0, and then we have minus epsilon, so 

this is overall equation for the for k which is derived from some kind of hand waving 

argument, with respect to the diffusion term, and especially with the triple correlation, 

but otherwise one can derive thisexactly. 



And in the process, we have introduced only one constant sigma k, and we have made 

use ofah the (( )) type of hypothesis to represent these things as nu t times dau i bar and d 

x j and all these, when we are dealing with production term. So, in this way we can 

derive equation for k, and the derivation of the epsilon is also similar, in the case of k 

equation we wrote an equation for u i prime, and then we wroteanequation for u j prime, 

and then we multiplied by u j primehere, and then u i prime here, and then added them, 

and then took time average to get anequation for this, and then we contracted the indices. 

Epsilon here hasdau u i prime by thedau x k,dau u i prime by dau x k time average. 

So, once we do this we have to take du bydau x k, we need to take the divergence of 

thisand that will give us the equation fordau u i prime bydau x k, and then we have to 

take again the divergenceof this whole equation to get dau u j prime by dau x k, and then 

we need toto multiply this by this, and this by this, and then add them together and them 

take the time average, and then we get horrendous expression involvingmany more 

correlations andmany moreunknowns, plussome term which we can readily identify. So, 

just as in this equation, in this exact equation without any assumptionshere, this is 

derived wholly from the navier strokesequations and continentequations, and in this we 

can identify this term and this term readily, and we can identify some elements of 

theseterms, but there are number of terms which are not identified. 

The number of terms which are not identifiedby the epsilon equation is much more, and 

all of them areswept under thesegenericterms, this will be exact, we have diffusion so 

one can say this is turbulent diffusion of k, production of k, and this is the dissipation of 

k. So, a very analogous relation is finally derived fromthe mess, that comes out of all 

these operations here, and then the final equation will be of this form, again a diffusive 

term, which is very loosely written and analogouslywrittenas nu tby epsilon, sigma 

epsilon,plus a production of epsilon, which is essentially this term multiplied byepsilon 

by k. 

So, C 1 epsilon,epsilon by k, times this term, and thisterm is also multiplied by another 

constant C 2 epsilon,epsilon by k multiplied with the epsilon by epsilon square by k. So, 

thisis the module equation for epsilon and that is the epsilon equation that we talking 

about. 



So this is only loosely and roughly derived fromthe exact navier stocksequations with a 

lot ofah approximations and simplifications, and when you look at the equations, the 

additional equations that we have to solve, you see that these are of the standard form 

generic scalar transport form withan accumulation term, advection term, a diffusion 

term, and production plus, source and symptoms put together. The only difficulty from a 

mathematical point of view is some of these terms are non-linear, and this term involves 

is a function of epsilon, thisterm is also function of epsilon, and in this, this is an 

unknown, so there iscoupling into just between this and this, and coupling introduce 

between these and these together to the k term, which is appearing here, and there 

iscoupling introduce between these two and the momentum equations, in the form of the 

expression for u i prime u j prime here, which is expressed in thisway, where nu t itself is 

expressed in the form k and epsilon. 

So, we have the overall set of equations, the 6 equations that we have for u bar v bar w 

bar p bar k and epsilon are very strongly coupledamong each other, through these 

algebraic expression, and through these expressions for k and epsilon, which not only are 

inter coupled through the dissipation rate and then the production rate, but also with the 

mean velocity gradients which are coming in the production term. 

So, the source term linearization and their treatment of the source term is very important, 

especially when we talk about the turbulence model, but other than that the equations 

look very similar to what we have, and the things that are yet to bedetermined are the 

constants sigma k, sigma epsilon, C 1 epsilon, C 2 epsilon, and the constant which is 

coming here we have written it as C mu, which is appearing in nu t be equal to C mu k 

square by epsilon, these constants are determined partly from some estimates of what is 

expected, these are effectivelyprantle number for diffusivity of k and epsilon, and in 

realcase, when we talk about fluids, the prantlenumber of a fluids can be very different 

from 1,for example theprantle number for gases typically, so the order of point 7, but for 

water,it is the order of 7, and for some organic liquids it can bevery large, going into 

thousands, and for liquid metalsprantle number is very low of the order point 0 1, so they 

can be quite a lot of variations for real fluids. 

Similarly, for the diffusivity, are the Schmidt number which represents the ratio of 

thekinematic viscosity, and the diffusivity, the mass diffusivity, so that can also vary 



over a very wide range, when you look atthe typical fluids, and in those cases, the 

mechanism is by molecular interaction. 

But, in these case, the diffusion that is coming here, and the diffusivity that is causing the 

diffusion of k, and epsilon is essentially by the same mechanism which is also the 

causing the turbulent diffusion of momentum, and that is arising out of mixing of 

different fluid molecules, by thefact that we have turbulent fluctuations, and by the fact 

that we have these eddying structure. 

So, the rate of this mixing, and the rate of this effective flux that is generated is 

determined essentially by the intensity of turbulence, which is causing the eddies to be 

present, and also the size range of eddies that are presented. 

So, in that sense, themixing of k and epsilon, these are different scalar quantities is not 

govern by the intensive property of the k and epsilon, but it is govern by the rate of 

mixing, and it is the size of the eddies that represent. So, whether we talk about the 

momentum diffusivity, the turbulentmomentum diffusivity, orthe turbulent viscosity 

orthe turbulentprantle number, or the turbulentprantle number for k, that is the sigma k 

and sigma epsilon, all these are depend on the same quantity. 

Therefore the ratios ofthe turbulent momentum diffusivity to turbulentk diffusivity, 

which is what is represented by the sigma k, these should be of the order of one, and this 

is also of the order of one, and the precise values of these are adjusted bycomparing the 

overall results for velocity of profiles in turbulence levelsin experiments, but these two 

are expected to be of the order of one. 

Now, this quantity here is determined under conditions, where the k equation, the k 

evaluation and epsilon evaluation are determined wholly by the source terms. For 

example, when you are looking atcases very close to the wall, where under the study 

conditions, where u m is very close to 0, and the diffusion term can be neglected, and it 

is the rate of production of k and the rate of local dissipation of epsilon, these two factors 

dominate, so under those conditions one canshow that C muis minus u prime v prime 

square bar by k, whole square, and measurement show that very close to the wall at 

which point these equilibrium between the rate of production of k and the rate of 

dissipation, under those conditions, measurements show that, this ration is of the order of 



point 3, andso if you were to plot along the radial distance r by R, and these quantity 

minus u prime v prime by k, we note that k is alsoa turbulence quantity. 

So, we find typically,it is like this around point 3, and close to the wall, it goes down like 

this, over a large portion of this r by R is equal to 0 and 1, so over a large portion this has 

a value of point 3, based on that you put these here, you get C mu equal to point 0 9. 

Now, under the conditions of decay of grid generated turbulence that is you have a grid, 

you have a mesh, and you have flow going over it, and you have essentially uniform 

flow going over it without any significant velocity gradient. The fact that is flowing over 

the wires will produce some velocity gradients and turbulence, and some fluctuations of 

k and epsilon and as you go pass these grid, there is no more generation of turbulence, 

because at thispoint d u bar by d x n is going to be 0, because there is no mean velocity 

gradient, so this term will be 0.  

So,this is 0, this term is there, and so this term is usually a negligible, you have set in rate 

of decayof k with respect to distance, and based on that andwe can get thisvalue here, 

and so based on these considerations, you can fix the overall values for the constants 

these are vary from person to person C mu is point 0 9, C 1 epsilon is 1 point 4 4, C 2 

epsilon is 1.92, sigma k is 1.0 and sigma epsilon is 1.3. So, these are the typical values 

and one can see that these two are of the order of one here, and these are fix by the grid 

turbulence, and other measurements, and this is based on the velocity measurementsclose 

to the wall here. 

So, once these values are specified, then in this equation we have only epsilon, which is 

the parameter of importance here, and this equation determines the value of epsilon at 

every x y z t, and similarly in this equation this value is known, and everything else is in 

terms of knownvariables, and therefore this can be used to calculate k. So, inthe two 

equation model, of which this is one particular form, in the two equation model, we are 

solving two equations, that turbulent kinetic energy conservation equation, the 

conservation equation for the rate of dissipation of turbulent kinetic energy, so big 

quantity, and these two equations are solved for the instantaneous local values of k and 

the epsilon. 
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And from these things we evaluate the instantaneous local value of the turbulent 

viscosity, using the constant of point 0 9 and k square by epsilon. And, using this 

instantaneous local value of the turbulent viscosity, we evaluate the Reynold stress 

component in terms of (( )), where you have themean velocity gradients that are coming 

here. 

So, this value, in each of the momentum equations there will be gradients, appropriate 

gradients of 3 of these fluxes, and these fluxes revaluated, and these come into as source 

terms, in thesource terms or effective diffusion term inthe momentum 

equation.Therefore, in the momentum equation we no longer have to write these u i 

prime u jprime, we need to only this, but in order evaluate this term we need to know 

this, and in order to evaluate this, we need to know these two, and these two are obtained 

only fromthese equations. 

So, whenwe talk about a turbulent flow calculation, using the two equation model, we 

have the continuityequations, which will be put in the form of A 1 p prime equal to b 1 in 

its discritized form, together pressure fluctuation, and pressure correction and from 

thiswe getthemean value of pressure. Please note that,this is not pressurefluctuation, this 

is a pressure correction, and then we have the discritization of the time average x 

momentum equation will give us A 2 u bar equal to b 2, and the discritization of the time 

average form of the y equation, will give us A 3 v bar equal to b 3, and similarly, the 

time averagez momentum equation, it will give us A 4 w bar equal to b 4, and the 



discritization of the k equation, right here, will give us A 5 k equal to b 5, and the 

discritization of theepsilon equation will give us A 6 epsilon equal to b 6. 

So, we have a big loop in which; we evaluate this, and thenwe evaluate this, and then we 

evaluate this, and then we evaluate this, and then wecan evaluate this, evaluate this. We 

get nu t, and using nu t and available estimate, we can evaluate the u i term and u jterm 

which will fill into these things, and then once we update all these things, along with the 

updates which is going into this, we come back and do one more iteration. 

So, we can do each of these things sequentially, that is one after the other, andupdate the 

values frequently with an under relaxation, andget an overallevaluation of the time 

average velocity, components and the pressure, and the local time average quantities 

represent in turbulence k and epsilon, from which we can determine the diffusivities and 

so on. 

So these is how two equation model of turbulence works, and what we notice is, that 

these conservation equationsdo not require specification of the mixing lengthor turbulent 

viscosity or anything like that these are self consistentcontained equations. 
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And there is no more, need to say anything other than the fluid properties, theflow 

domain, and these constants. The only thing that remains is the boundary conditions, 

there are certain boundary conditions very close to the wall, specifically for k and 



epsilon, and we have to give somespecial treatment at the wall, and that forms asubject 

of a large variety of turbulent models, the near wall turbulence thing, we don’t have that 

much time in this course to deal with the turbulence modeling approaches, butwe need to 

do something close to the wall, near walltreatment of the turbulence, I would refer you to 

standard books on turbulence modeling and advance fluidmechanics, butone approach, 

one simplistic approach is to usesome kind of wall functions, which roughly capture 

thevariation of k and epsilon and the velocities very close to the wall, and they give rise 

to algebraic prescriptions for what the u v w and k and epsilon wouldbe close to the wall, 

and that way we can overcome the special effects associated with near the wall, there 

aremuch more advance models like that. 

So, along with these, wall functions, wall prescriptions for this, we have complete 

description ofall the parameters that described fairly addictively and in a fairly general 

way a turbulent flow, and one wouldhave to solve these extra equations, in order to come 

up with the calculations for turbulent flows. 

So, in the next lecture, we will see how we can extend this, when we have, for example 

the calculationof the non-isothermal flows, that is what we can do forthe energy 

equation, and also for the typical scalar transport equation, where we are looking at mass 

transfer or flows with the with chemically reactions and so on, with that we will be able 

to say that, we would now have equations, which describe turbulent reacting non(()) 

thermal flows, and all of these are put together in the standard form, and they can be 

readily appendedto the method that already developed for a typical C f d calculation. 


