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The mixing length model proposed by Prandtl is very effective. Let us just write down 

the equations. We are talking about fully developed steady flow between two parallel 

plates.  
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We have said that under these conditions, the governing momentum equation is under 

steady time average equation, will have dou by dou x of nu dou u bar by dou y minus 

dou by dou y, dou by dou y here of u prime v prime bar. 

And as per Prandtl’s hypothesis, minus u prime v prime bar is expressed in terms of nu t 

dou u by dou y where nu t - the terminate viscosity is mixing length square, which we are 

denoting by l m subscript m times - the modules of the gradient here. This is constant 

denoted by C which is given and everything u a function of y alone. So, all the partial 



derivatives can be substituted with this and we can write a governing equation as d by d 

y of nu plus nu t equal to C. And now if we substitute here where l m - the mixing length 

is given by kappa times y where kappa has a value of around 0.38, 0.4, 0.36 - it is of that 

order. 

So, using this equation, once we substitute this here, we have an equation where C is 

specified, nu is known and l m is known and the only variable is u bar as a function of y 

and one could integrate this and get velocity profile. 

So from this, one could get u bar as a function of y and it turns out that this variation then 

plotted between y equal to 0 to y equal to h, twist the typical turbulent flow profile like a 

D as shown and not the peaked profile that we have in a laminar flow. So, from that 

point of view this model here works well.  

Of course, there is some sort of fine tuning of the model constant so that it does work 

well and it predicts not only the correct kind of pressure gradient for a given a volumetric 

flow rate, but also the correct velocity profile. And we see that, that is achieved by 

making nu t as a function of y both in terms of d u by d y which itself is a function of y 

and also the mixing length which is directly proportional to the distance from the wall. 

 This has been developed essentially for one dimensional flow. What you have seen here 

is flow between ducts and some modifications have been made to derive the 

correspondence mixing length for fully developed flow in a circular pipe so that you can 

get the corresponding velocity of profile. 

Also for boundary layer flow or a flat plate very similar expressions have been 

developed for the mixing length. Even for two layers which are mixing together - one 

layer having low velocity and another having high velocity. Even in such case ,you have 

a flow development which is pictorially very evocative. Even for this sort of turbulent 

flow we have prescriptions for the mixing length. So, in that sense one could tackle a 

range of turbulent flows using this simple model for the turbulent stresses that are 

coming here. 

Now, the difficulty that one can readily see is that in this model we are specifying a 

velocity gradient and in a general three dimensional flow we have number of velocity 

gradients, which velocity gradient we should put? And again in a general three 



dimensional flow we have different distances from different walls. So, which distance 

should we take? 

So, those kinds of things appear and we have different kind of stresses like this. So, that 

question of extending this model to three dimensions is a bit of difficulty. But one could 

readily counter that argument-wise by writing u i prime u j prime in general minus of this 

as u t dou u i bar by dou x j plus dou u j bar by dou x i. 

So, in this form the immediate question of whether we can express all the turbulent 

stresses in this form is answered. Even though we can mathematically write it like this, 

the question of specifying the mixing length here is always going to be a question. So, 

that is one of the disadvantages of the mixing length model. 

There is another fundamental disadvantage to the mixing length model that is this one 

that the presence of turbulence stress here is entirely related to the local velocity gradient 

here. This is at a particular point x y z and this is also at the same particular point. So, 

that means, that this model tries to account for turbulence in terms of whatever velocity 

gradients that are present.  

There are many cases where this attribution of turbulence to local production or local 

causes is not quite correct. The simplest case perhaps is, if you imagine mesh, a wire 

mesh and then flow is coming flowing through this mesh and as it flows over this small 

cylindrical wires you get lot of vertices and then you have some turbulence generation at 

this location and if you go further downstream and measure it, there is a turbulence 

which is non-zero here. Keep it as the flow comes with uniform velocity here and then 

after the mesh it goes with uniform velocity. When the velocity is uniform the gradients 

are 0. As per this model turbulence should be 0 here, but measurements will show that it 

is not 0 in the immediate vicinity, it is non-zero. 

So, if then you force the model to attribute the presence of the turbulence here to local 

velocity gradients then you would be quite wrong. 

So, this model in its present form is unable to take account of the possibility that 

turbulence is generated elsewhere and then it is convicted here or diffused here. 



So, that is the kind of additional mechanism which is absent in this model. So, this model 

in that sense is called a Zero-dimension model Zero-equation model because in this 

model we are not solving for any partial differential equation which has the property that 

the turbulent quantities can be convicted and diffused. So, that kind of partial differential 

equation is not being solved. We have an algebraic expression for the turbulence stresses. 

Although this is very useful and it has proved to be very useful for boundary layers and 

even for predicting flow separations and so on. It is essentially useful for one 

dimensional flows and extension to three dimensions is not feasible with this. And also 

taking account of the convection and diffusion effects advection and diffusion effects is 

the not possible with this. 

So, we need to in order to bring in that advection and diffusion associated with typical 

fluid flows, it is necessary to have to solve partial differential equation, which 

characterizes turbulence, which in the process of characterizing it also enables turbulence 

which is produced elsewhere to be convicted to be brought along with the flow in to the 

control volume at a particular point. 

And similarly, for diffusion of the turbulent characterizing quantity from wherever it is 

high in to the control volume if the control volume quantity is less or from the control 

volume out. 

So, if you have that that kind of feasibility, then you can account for the presence of 

turbulence even in areas where there is no velocity gradient. So, this flow over a mesh is 

one example where turbulence is present even when there are no mean velocity 

gradients, whereas, that is not compatible with the mixing length model. So, we have to 

look beyond this 0 equation model to bring in the capability to deal with this kind of 

things. 



Now, how is it possible to do that? 
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It is possible to generate an equation - a conservation equation for one of the important 

characteristics of turbulence which is known as the turbulence kinetic energy, usually 

denoted by small k and this is nothing, but half of u prime square plus v prime square 

plus w prime square and this; obviously, has the units of meter square per second square. 

So, it is therefore, a specific quantity. And we can generate an equation for k and we can 

immediately see that this k is composed of the fluctuating quantities and therefore, this 

is; obviously, a good measure reasonable measure for of turbulence at a particular point. 

If k is high, we can say that there is a lot of turbulence and where, for example, if it is not 

turbulent flow at all then k will be 0 because the flow velocities flow parameters will not 

exhibit any fluctuations. So, if we are able to derive an equation for k then it may be 

possible to characterize and to bring in that convection and diffusion effects in to this. 

And there is also another reason for bringing kinetic energy here. We normally are 

looking at turbulent viscosity here as arising out of interaction. Term viscosity is a means 

or a measure of a momentum flux and as per kinetic theory of gases it is a individual 

molecules which collide with each other and in the process they exchange momentum 

with a resulting net momentum flux from higher momentum zone to a lower momentum 

zone. So similarly, the role of the individual molecules of the gas species in a gaseous 



medium is being played considered to be played by the eddies that are present in 

turbulent flow. 

So, it is interaction between the individual eddies which is supposed to be giving rise to 

the notion of turbulence viscosity in turbulent flow. 

Now, according to kinetic theory gases the viscosity is proportional to the velocity of the 

molecules and the mean free path between the molecules the mean free path between the 

collisions. 

So, there is a velocity measure and there is a characteristic distance and the product of 

these two quantities is the quantity which represent the kinematics viscosity in case of 

molecular kinetic theory of gases. So, if you were to try to draw the same analogy - in 

turbulent flow nu t should be proportional to in somewhere to the velocity of the eddy 

and this is what we can say is the u prime and l is again the characteristic size of the eddy 

or something the interaction distance between the eddy. And this is where one can 

immediately see that you have a possibility of introducing turbulent kinetic energy 

because we can replace this with square root of k. 

So, if we have the turbulent kinetic energy at any particular point, then we could 

potentially write this as square root of k and the mixing length which is already 

characterized for some of the flows. So, we could represent we could say that nu t is 

equal to some constant times square root of k times l m here. 

And this l m, the mixing length, it can be given by formulas like this which are 

appropriate for the flow and k is a quantity which can change from location to location, 

and which can be given by a partial differential equation expressing the conservation of 

turbulence kinetic energy. 

So, that is a argument for developing an extra partial differential equation representing 

the conservation of turbulent kinetic energy, from which we can get a measure of the 

velocity characteristic fluctuating velocity which is leading to the creation of the 

turbulent viscosity. 



So, now if you were to do like this then our turbulence model becomes different from a 

the mixed length model here in terms of what nu t is - it is expressed in this way where k 

has to be derived from an extra equation. 

Now, how can we derive k? It is possible to derive an exact equation for the conservation 

of turbulent kinetic energy which is expressed in this way. We will just briefly outline 

how it is to be done. We can start with the conservation equation for the x momentum i 

th momentum and we can write it like this dou by dou x k of u k u i, dou u i by dou x k. 

We can leave out the body force term and we can keep it like this. This is the 

conservation of the i th momentum equation in terms of the i th directional velocity 

instantaneous velocity. 

So, if we do the time averaging then we know that we get an equation in terms of the 

time average quantities plus nu dou by dou x k of dou u i bar by dou x k. And we 

obviously, have the Reynold stresses - minus dou by dou x k of u k prime u i prime bar. 

So, this is the time average equation of this. Now if you subtract this from this then what 

we would have is dou by dou t of u i minus u bar i like this and u minus u bar i is nothing 

but the fluctuating quantity. So, you have this one here and we can expand this as u k 

equal to u bar k plus u prime k and u i equal to u i bar plus u prime like this and then we 

can multiply and then subtract this. In the process this two will go away and one can see 

that the terms that will be left with are u k u i bar plus u i u k prime plus u k prime u i 

prime. So, this is what is left after we subtract this and of course, we can bring this here 

and then we can also subtract this quantity. So, this is brought here and subtracts it from 

this. So, this is what we have from these two and from here we get dou by dou x i of p 

minus p bar. So, that will be fluctuating quantity dou by dou x i of p prime and then here 

we get from nu dou by dou x k of dou u i prime by dou x k. 

So, what we now have we can just derive an equation for the u i prime that is the 

fluctuating component of the i th velocity component. So, we can similarly write down 

the fluctuating component for the j th thing because what we want to do is that we want 

to get an equation in terms of dou by dou t of k. 

So, that is dou by dou t of u i square plus v i u i u prime square v prime square and w 

prime square. So, that is why we are trying to get these things and then we can we will 

see whereever we have i we put j here. So, that is u j bar u k prime. We should note that 



this is a time average quantity and this is an instantaneous quantity, so, we cannot cross 

out these two terms. And that is equal to minus one by rho dou p prime by dou x j plus 

nu dou by dou x k of dou u prime j by dou x k. 

And now we do some further operations. So, we multiply this by u j prime and we 

multiply this whole equation by u i prime and then you get u i prime and u j prime and 

then you get u i prime and u j prime. 

And then we add the two and then we take the time average of these terms. So, if we do 

that for example, if we take these two terms here. So, this will become u j prime times 

dou by dou t of u i prime plus u i prime dou by dou t of u j prime. So, this thing will be 

dou by dou t of u i prime u j prime and upon time averaging the sum we get time average 

of this quantity. So, that becomes dou by dou t of u i prime u j prime bar. 

So, one can see the development of a conservation equation for the Reynolds stresses 

here. So essentially, what we are doing is we have not made any assumptions so far. We 

are only doing algebraic manipulations. 

We start with the instantaneous i th momentum equation and then we time average it and 

we subtract the time average component form of the instantaneous i th momentum 

equation from the instantaneous one so as to get an equation in terms of the u i prime that 

is the instantaneous fluctuating velocity component and we write the j th component of 

this. So, we have two equations - we multiply the first one by u j prime and the second 

one by u i prime, you add the two and then you do the time average and then you do 

further manipulations. So, in the process what we have written is what we are getting as 

a result of multiplying each term of this equation by u j prime and each term of this 

equation by this and then adding the two like that. So, the first two terms here will give 

us dou by dou t of u i prime u j prime bar. If you can also look at these things - let us first 

look at what we have here :- 
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So, we are looking at minus one by rho u j prime dou by dou x i of p i prime plus u i 

prime dou p prime by dou x j - this is what we are getting here. And then we can time 

average this and that is what we get from these two terms. And here we get nu dou by 

dou x k, we have u j prime u by dou x dou by dou x k of plus u i prime dou by dou x k of 

a nu here. So, we can write this as nu dou by dou x k. This will be a bit more difficult. I 

think I will stop here for today and then I will go through this. What is the time Nick? 

(( )) 

This time (( )) what is the actual time? 

(( )) 

(No audio from 28:42 to 29:13) 

There is a lot of further manipulation that needs to be done here, but since what we are 

going to get is an equation of this particular form dou by dou t by u i prime u j prime plus 

so much term equal to, what we have for the pressure gradient involving u j prime dou 

by dou x i of dou p prime and all these things with time average quantities plus the 

viscous terms here. And at this stage, what we are interested in is u prime square and v 

prime square and w prime square. So, we contract the indices; that is we put i equal to j 

in this equation or we can see that this is an equation, there are six terms like this. So, we 

can write, we can put i equal to 1 and j equal to 1 and write an equation for u prime 



square. And then we can write an equation for we put i equal 2 j equal to 2, and then we 

can write an equation to v prime square; and then putting i equal to 3 j equal to 3, we can 

write an equation for w prime square, equal to something. And then we can add this three 

and divide by 2. So that, finally we get dou by dou t of half of u prime square plus v 

prime square plus w prime square equal to this. And this is precisely our dou by dou t of 

k. 

So, in this way we can derive an equation for k and that equation is fairly complicated, 

but the derivation is given in a several books. And we can show that, that is of this 

particular form dou by dou t dou k by dou t plus dou by dou x m of u m k. So, this is u 

bar. So, this is the average thing equal to… When we do the contraction of indices then 

the pressure terms will go away, that is one of the important things of this. And we will 

have a fairly complicated thing here. 

We will have, for example, u prime j here and coming up with this u j prime here 

multiplying with this. So, you get a triple correlation. So, whereas, here we have a 

double correlation, we have a triple correlation term coming here, and again a triple 

correlation term coming here. So, we may have something like terms like this. And we 

will have this viscous term here is quite complicated and we can show that, it will be 

something like… We can first of all write the diffusion term. so, that is dou by dou x m. 

So, there should be a diffusion term like this, which is nu dou square k by dou x m and 

then we have finally, the viscous dissipation term which is that that is not there. 

(No audio from 33:44 to 34:01) 

We have a term like this. So, yes we do have a nu here. So, the form of this equation is 

such that we have dou k by dou t plus the advection term here and we have essentially 

diffusion term here coming from molecular viscosity and this term here can be seen to be 

something like a turbulent diffusion. 

 And the reason that we have that is it is not exactly equal to turbulent diffusion in our 

original equation here dou by dou y of u prime v prime here is seen as turbulent diffusion 

of momentum in the x direction. So, this y derivative and the corresponding velocity 

fluctuation here is bringing fluid molecules in the vertical direction by the eddies and 

that is leading to actual momentum diffusion. So, in the same way when we consider this 

term here, this is dou by dou x m and this is u prime m. So, these two terms this two this 



m th velocity component and the x m special direction here distance here will mean that 

this particular quantity here - this is u i prime u i prime here is being diffused. And this u 

i prime u i prime is a measure of the turbulent kinetic energy. It is not exactly this is not 

the same as u i prime u i prime bar times, this is not exactly that, but one can see the 

elements of turbulent diffusion of a kinetic energy like component. So, that is what is 

done here.  

And this is the instantaneous velocity gradients. There is quite a lot of derivation and 

manipulation that is needed to take these terms here and then add them and then time 

average them and manipulate them to finally, come up to this particular form after the 

contraction of indices and so on. So, there is quite lot of work that needs to be done 

which is described in books. But ultimately we have this particular form and what we see 

here is that this is a same gradient all the time. So, that is this is dou u i prime by dou x k 

and dou u i prime by dou x k and there are repeated index - index k is repeated and index 

i is repeated. So that means, that you take it sums over three i s and three k s. So, there 

are nine components here but for any value of i and k this derivative and this derivate is 

the same. So, it is essentially square of this and nu is the molecular viscosity. So, that is 

positive and this is squared quantities. So, this is always positive. So, this quantity is 

always positive or at most it can be 0 in laminar flows and this is coming up with a 

minus sign here. So, this is considered as a sink as a term which is trying to reduce the 

turbulent kinetic energy.  

So, this is what is known as the turbulent kinetic energy dissipation rate epsilon turbulent 

kinetic energy dissipation rate. We do not know what it is. We do not have a measure of 

this and we do not have a measure of this, but otherwise the overall equation for k 

consist of, for example, five times and in which case in the case of the k equation 

pressure term will cancel out. So, you have only five terms that are coming here out of 

which three terms involved k directly and the other two terms do not involve k and one 

of them involves k-like quantity which we are calling as, so, it is model as turbulent 

diffusion of k. And the last quantity is sum is always positive and it’s coming as a sink 

term. So, this is called as the rate of dissipation of turbulent kinetic energy because if 

everything else is zero we have dou k by dou t is minus epsilon so; that means, that 

epsilon is positive means that k is decreasing and this therefore, represent the rate at 

which the turbulent kinetic energy is decreasing or being dissipated. So, this is an overall 



equation for k and this is modeled in a manner similar to the molecular diffusion of 

turbulence. 
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So, this is written as dou by dou x m of nu t dou k by dou x. So, we can write an overall 

equation for k in this form and one often uses a parameter sigma which is at order of one 

to account for the turbulent diffusion being different from turbulent diffusion of k may 

be different from turbulent diffusion of nu t, that is, the momentum. And for this reason 

small correction factor sigma k is used, but essentially we assume that all turbulent 

diffusion are very similar and therefore, sigma k has a value of around unity here. So, 

this is an equation for k and we can see that this contains the possibility of k to be present 

by advection and by diffusion in addition to being - we have left out one important 

source term - which is this term is also present in this. This is coming from these terms 

here - the dou u k by dou x k is giving rise to this term. So, there is in addition to 

diffusion and advection and the dissipation this is a production term which is actually 

producing turbulent kinetic energy from the mean velocity gradients.  

And why do we call this as production term if we take everything else to be zero and we 

consider only this then we will have dou k by dou t equal to minus u i prime u j prime 

something like this and this is the mean velocity gradient and we know that for example, 

this same thing is expressed in this way. So, this is nu t times dou u i by dou x j that is 



coming here and nu t is positive. And so, this if you consider in one dimension, this will 

be square of this velocity gradient. So, this everything is positive.  

So, right hand side is generally a positive quantity therefore, because of this k is 

increasing and this is therefore, this is a term which represents the production of k. Now 

what is also important about this particular term is the production of k is happening by 

the mean velocity gradients. So, where the mean velocity gradient is high that is very 

close to the wall then you have high production of k. And when you look at the turbulent 

kinetic energy which is being dissipated, the dissipation of k is happening with the 

gradients of the fluctuating components. So, and these gradients are highest in for the 

smallest eddies and this dissipation is happening at the lowest eddy size. 

So, from that point of view, there is in the overall turbulent flow equation here, let me 

just put this, there is a advection and effective diffusion of turbulence and the production 

dissipation and the production - one of which this is happening for the lowest eddies and 

this is happening for the largest eddies. So, in that sense there is an overall balance which 

is incorporated in this equation for k. And here you have in the process of determining 

this we are introducing extra variables extra quantities sigma which we said is of the 

order of unity and we have epsilon that is yet to be determined. And we have u i prime u 

j prime which bar which is typically written as minus u prime is equal to nu t dou u i by 

dou x j plus dou u j by dou x i in terms of mean quantities. So, once you substitute this 

into that, here the overall k equation has epsilon and nu t to be determined. And we will 

see that this nu t can be written as square root of k times l here. So, some constant times 

square root of k times mixing length and once we do this then this is already known, 

given by empirical formulas. 

For example, kappa times y, k is what we are solving for C is a constant to be 

determined. So, that leaves us only with what is epsilon and one can use dimensional 

arguments to say that epsilon is proportional to k square root of three by two by l and l 

we can now take as mixing length and we can say that epsilon is some constant C two 

times like this. So, once we specify the mixing length and k is already known, epsilon is 

known provided we had the constants.  

So, this is how we can make an overall model for the k equation overall equation for the 

k involving certain constants to be determined, constants were the kinetic the turbulent 



viscosity, the mixing length and the constant in the expression involving epsilon. So, 

together we can write an overall equation for k and by solving this k we can determine 

the turbulent viscosity and therefore, we can put this and this can go into the overall time 

average equation.  

So, this is the way that one can build and one equation model. So, this one equation 

model has the ability to cope up with turbulence not being produced at the local point. 

So, this is expressed in terms of the local quantities and the production is also expressed 

in local quantities, but that is possibility of diffusion of k from l square there is a 

possibility of advection of k, but the overall model still requires the specification of the 

mixing length. And we have seen that mixing length, the extension of mixing length 

general three dimensional case is not easy. Therefore, this one equation model is still 

suffers from some of the disadvantages of Zero-equation model and that is why we go 

for the two equation model in which we derive an additional transport equation which 

can be used to effectively determine the mixing length which is coming here and it is a 

measure of the length scale or the time scale and we can see that. 

 And once we have a two equation model, we can come up with a general scheme for the 

determination of two parameters to describe the turbulence and then the turbulent 

viscosity and using the definition then of turbulence viscosity we can get an expression 

for the Reynolds stresses and that completes a turbulence viscosity model. So, we will 

look at what constitutes the two equation model in the next lecture. 

 

 


