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We have come a long way from the early days, when we were deriving the equations. 

We have looked at the equations - the conservation equations - to be followed to be 

obeyed by any fluid motion and out of these equations representing the mass 

conservation and momentum conservation, we formulated the generic scalar transport 

equation. And then, we looked at how to discretize the generic scalar transport equation, 

in terms of writing finite difference approximations for the each of the derivatives. And 

then, we also saw that simple application - simplistic application - of the finite difference 

approximation, may not give us a proper solution; that is, in some cases we may get 

instability; some cases, we may get inconsistency, and so on.  

And then, we formulated therefore the method of analysis of the discretized equation in 

terms of three properties, which is consistencies, stability and convergence. And having 

looked at these things, then we came up with a template for the solution of transient 

scalar transport equation, which would give satisfactory solution under usual 

circumstances. And then, we looked at what is how we can apply this template for the 

solution of the coupled equations, representing the continuity equation and the three 

momentum equations; and there we found that, for incompressible flows which is of 

main interest in this particular course, the coupling is not so straightforward; in the sense, 

that the pressure could not be easily derived from the continuity equation, where 

therefore looked at several methods, several approaches, to coupling all the four 

equations together, so that we would get an overall calculation procedure. 



And then, we said at this calculation procedure would involve the solution of matrix 

equations; each matrix equation representing the conversion of an original conservation 

equation in the form of partial differential equation into the same conservation equation 

in discretized form, applied to all the grid points for which we need to have the solution 

variables.  

So, this A phi equal to b is a type of linearized algebraic equations, that we had to solve 

repeatedly; and therefore, we looked at several methods at, which would, which could be 

used for the solution of these things. And then, we looked at a variety of methods, some 

direct methods like, the gaussian elimination method and L u decomposition method, and 

basic iterative methods like, the Jacobi method and Gauss seidel method and successive 

over relaxation methods, which could be used for the solution of this. And then, we also 

looked at some specialized methods, which would combine the advantages of both the 

direct methods and the iterative methods to come up with improved efficiency of the 

solution of A phi equal to b. 

So, therefore, now, we can say that, we know how to do CFD for a general case, and 

what is the what is the way that we do it. We write down the governing equations, we 

write down the continuity equation and the Navier stokes equations. We have so far 

considered Cartesian and coordinate frame, and let us stick to that. So, once we write 

down the governing equations, then we take, we discretized the domain and identify the 

points at which we would like to get the solution. 

So, these are the grid points at which the variables are to be evaluated. Now, at where 

these grid points lie, depends on the way that we do the discretization. We have looked at 

the specific case of uniform discretization in the x direction and y direction or x direction 

and t direction. And at each of these grid points where the equation, the variable has to 

be evaluated, we make use of the corresponding conservation equation; and we substitute 

for all the derivatives that appear in the corresponding conservation equation, finite 

difference approximations of a desired accuracy, and come up with a discretized form of 

the governing equation. And then, we analyze the discretized form of the governing 

equation to check for stability and consistency. 

So, once we are satisfied that consistency and stability conditions are being met for this 

particular discretization scheme, then we will have an equation of the form A phi equal 



to b solved, in case we are using an implicit method or in case we are dealing with a 

steady state equation. So, then, we can choose from the suite of methods that we have 

described, to choose one particular method which we would like to apply for this, A phi 

equal to b and then we would solve it. 

Now, in a typical case, we have four equations to solve for the u, v, w and p; therefore, 

we have an overall algorithm, which can be briefly put up like this.  
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So, we have the continuity equation from which, for example, we solve the for the 

pressure correction in the case of the simple method, and we have the x momentum 

equation, which we solved, which we used to solve u, the y momentum equation for v 

and z momentum equation for w. Now, we have the corresponding form of conservation 

equation, which will give us the pressure correction and u and v and w, at the appropriate 

points. And we note that, we made use of the staggered grid approach and the form of the 

pressure correction, that we have already described. So, each of these can be put in the 

form of A p phi p equal to b p, and this A u phi u equal to b u, this as A v phi v equal to b 

v, A w phi w equal to b w. 

We also make the point, that in deriving these equations, we make use of the boundary 

conditions and we treat the boundary conditions in the appropriate way; for example, if 

we have a Neumann boundary condition, we make use of the Neumann boundary 



condition to derive the equation for the particular variable, at that particular point. If it is 

a interior point, we make use of the conservation equation, but if it is a boundary point, 

we make use of the corresponding boundary condition to derive the equation; and 

thereby, we derive the discretized equation like this. Now, each of these can be solved to 

give us, p, p prime, and u, v, w, but we know that, the coefficients that are coming here 

involve the values of the variables of the other things, and therefore, we do it in an 

iterative way. 
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We start by having guess values, for example, p star, u star, v star, w star. So, these plus 

all the other information which is required for like, delta x, delta y, delta t, all that is 

known for us. And we use this to solve A u phi u equal to b u using an iterative method, 

for example, the gauss seidel method, for a certain number of iterations to reduce the 

residual to a reasonably low value; for example, by three decades, by three decimal 

places, something like that. So, we solve this to get u star or u new, at all the grid points. 

And after this, we solve A v phi v equal to b v; and then, from this, we get v new; then, 

we solve A w phi w equal to b w; from this, we get w new. And finally, we solve A p phi 

p prime equal to b p, from which we get b prime new. 

We evaluate the residuals for each of these, and based on these things, we update v star 

w star and p prime star; and with these things, we reevaluate, A u, A v, A w, A p and 

again the b i's, that is, b u, b v, b w and b p, and from this, we go back. And we go 



through this loop several times and we use under relaxation here. So, we under relax in 

evaluating from the new values - the updated values - here and then we go back, we go 

through this loop several times; and then, we monitor, we go until the residuals of each 

of these equations. So, we can call them as, delta u, delta v, delta w, delta p, become very 

small.  

So, in this we way, we go through this loop several times, and it is for this reason that we 

have to solve these things several times like this. We make use of an iterative method, 

because these are evaluated with assumed values of these things; therefore, it is there, 

there is no point in evaluating this exactly right in the beginning itself. So, we go through 

this loop several times using an efficient solve, for a discretization scheme here, which is 

based on, which is known to give us astable and consistent solution.  
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So, it is we first start with the equations and then we convert them into the discretized 

equations in the form of matrix, by substitution using finite difference approximations 

for all the derivatives, and any linearization that is needed for this plus analysis of the 

discretized equations for stability and consistency; to arrive finally at these equations, 

this form of this. So, this is the overall process for us to get a solution for a given 

problem. And we know all this process, we have looked at every stage of this process to 

say that, yes, we can go ahead and confidently do this. Although we can say this at this 



stage, there is much more that needs to be done, because what we have done is subject to 

severe restrictions, which we can list down here. 
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What little we know: the first thing that you should say is that, we have done equations 

only for lamina flow conditions, because we are solving the continuity and the 

momentum equations, which are specifically the lamina flow. And we all know that, 

when the Reynolds number increases, then the lamina flow solution is no longer 

applicable, why? Because if we are dealing with, for example, a steady flow condition, 

then we may not have delta t in our calculation method; we may have just the time 

independent form of equation, but turbulent flow is never steady and nor is it one-

dimensional or two-dimensional. Here, we have put only the two-dimensional part of it; 

of course, since we have put w, also this is w, z delta z will also come into picture.  

So, this calculation procedure is adaptable to steady flows, in which case we do not have 

to worry about the time term; and two-dimensional or one-dimensional in which case we 

can drop out, for example, delta z and delta y, but those kind of assumption of steady 

flow or one-dimensional flow or two-dimensional flow are not possible for turbulent 

flow. So, that is why this solution method is restricted only to lamina flow in the way 

that we see, we will see how we can do calculations for turbulent flow; so, but this is one 

of the limitations. 
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The second limitation that we have here is that, this is true only for isothermal flows, 

because we have not included in the calculation, the energy equation. So, that means, 

that we can only deal with isothermal flows. And there is no provision in what we have 

done so far for any mass transfer; for example, if you are looking at air conditioning type 

of application or a drying kind of process in a chemical or a process industry, there is 

definitely mass flow; if there is dissolution, there is absorption, all the cases there cannot 

be treated, because we do not have a mass transfer, we do not have the capability to deal 

with mass transfer in our governing equation and we have neglected chemical reactions.  

If you are looking at some sort of chemical reaction, for example, some gasification or 

combustion or something like that, in such a case, these equations do not contain any 

such information. So, these are also practical cases, so which we can extend the 

equations; and right now, these kinds of problems cannot be tackled in the methods that 

we have done here. 

Another severe restriction that we have is, that we have taken a simple grid, a simple grid 

which can be easily represented in x, y, z coordinates, where the overall flow domain - 

the boundaries of the flow domain, for example, this may be the flow domain, the 

boundaries of this flow domain here are represented as part of constant x line here and 

constant y line here. 
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So, in that sense, this is restricted only to, for example, the rectangular kind of flow 

domains. If you have a flow domain in which this is there and inside that you have a 

chalk piece, and you want to find the flow over the chalk piece and look at what is the 

drag force acting on this; then, we cannot use this method, because we cannot represent 

this chalk piece in terms of simple Cartesian and coordinates. We have certain lines here, 

the surface here, which cannot represented as constant x or constant y or constant z, like 

that. So, in that sense, this is whatever method that we have used, that we have 

developed here is applicable only for the case of simple grid. Typically, when we are 

looking at a realistic flow conditions, then we have more than a simple grid, that is, as a 

requirement. So, in that sense, simple grid assumption is very severe assumption that we 

have.  

So, with all these limitations, whatever that we have come up with so far is not really 

sufficient and it is not up to the mark, it does not make us any kind of specialist in the 

computational fluid dynamics; it does not allow us to treat meaningful cases - realistic 

cases - using the methods that we have developed so far. So, we need to overcome these 

limitations, in order to make our CFD more widely useful, and for us to gain some 

respect in terms of what kind of problems that we can do. So, this is where we would like 

to spend the next ten to fifteen lectures on tackling some of these problems.  
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We will consider the case of turbulent flow, and we see what do, we need to do in order 

to able to represent turbulent flow. We will see that, that turbulence is been is considered 

as one of the unsolved problems of fluid mechanics. These days where we have direct 

numerical simulation, we do not really know to what extend it is unsolved; we do not 

really know, whether we have solved the problem of turbulence or not; definitely it is 

one of the challenging problems and definitely it has lot of difficulties associated with 

that; and especially when you couple turbulent flow with chemical reactions, then it 

becomes really a humongous problem, which cannot be addressed in it is entirety in all it 

is complexities that are typically found in practical applications using CFD.  

So, we need to make approximations and we need to bring in models. So, we need to see 

how we can deal with turbulent flow within the context of CFD. And we can easily get 

around this problem of isothermal flow by including the energy equation; and the mass 

transfer problem can also be readily overcome by including a species conservation 

equation; therefore, one can consider two constituents of the fluid medium, and then, we 

can see how they can go into each of other and so on. So, this is again we need to have 

extra equations for this; chemical reactions is again something that can be readily 

encountered, readily accommodated, through the species conservation equation, in which 

we can have a species generation term due to chemical reaction. So, we can take these 

things together and then extend this. So, these extensions are necessary for us to say that, 



and they are not only necessary, but these are in a way fairly straightforward in terms of 

incorporating them into the overall calculation method. 

We will see that each of these equations, that are, that are necessary tackle this real fluid 

situations can be put in the form of the typical scalar transport equation; and therefore, it 

can be readily converted into some A phi equal to b representing that particular, for 

example, the species conservation equation or the energy equation. And therefore, it can 

be readily incorporated into this; we may have another A s phi s equal to b s, where s is a 

species conservation equation.  

So, it is because of the facility with which we can tackle all these extra things, within this 

overall CFD solution method, that we need to understand how it can be done and then 

readily incorporate this. Now, when we want to buy overcome this simple grid 

assumption, it becomes a truly complicated problem; it is not something that, that can be 

done readily, and in fact, that development of the generation of non-orthogonal grids or 

body fitted grids in the early eighties, actually was considered one of the great one of the 

significant advances in the development of CFD, and it has really brought CFD into the 

regular day to day engineering calculations. And we need to do a significantly more to 

overcome the simple grid assumption, and what we do is, we look at the basic ideas of 

how we can do this; and we consider two approaches, one is where we transform the 

computation from the x, y, z, into an arbitrary coordinate system, and this coordinate 

system is designed in such a way, that it can tackle the real world complexity through the 

use of body fitted grids.  
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So, we no longer do the calculations in x, y, z, but in some other coordinates system and 

that coordinate system is such that, in that coordinate system, we can we can have some 

grid lines which wrap around this chalk piece within this flow domain. There are some 

other coordinate lines, which wrap around this geometry; so, in that way we can we can 

do that. So, that is a generic method which can using, which we can tackle complex 

geometry. And the other is the finite volume method, which fundamentally changes the 

way that we can go from the equations - from the partial differential equations - into the 

discretized equations ultimately. So, both this approach and this approach affect the way 

that we go from the partial differential equation into the algebraic equations.  

So, when we want to overcome the simple grid limitation, we have to make a significant 

effort to one of the major part of the CFD approach; that is, to go from that partial 

differential equation into algebraic equations, but once we come here, this procedure is 

more or less same, but some aspects of this calculation method will now be different in 

these two cases. For example, this is what is known as structured grid, and this is what is 

known as an unstructured grid. And the way that we solve an a phi equal to b type of 

thing for a structured grid, can be different from the way that we solve for an 

unstructured grid. In some ways, not only is this changed, but also the calculation of 

these things may also changed. And the other part that is changed in this is, we go from 

the staggered grid approach to a collocated grid approach, because when we deal with 



complicated geometries, we do not want to deal with four different grids for the four 

different variables and that may bring in special problems. 

(Refer Slide Time: 27:55) 

 

So, in such a case, we have to look at the coupling of these four equations. So, that 

coupling is also something that we have to look at.  

Pressure velocity coupling, for that we have adopted for the simple grid will now have to 

be reexamined and then re -tuned, so that it can work on these complicated grids. So, 

these are the aspects that we are going to look at in the next several lectures. We will 

start with the simple things first, because these affect only the equations, the rest of the 

thing does not change. And then, we will come to the grid part, where we want to tackle 

complex geometry and we look at each of these issues.  


