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Let us see, how we can bring in implicitness into the solution. If we take a A phi equal to 

b, we know one way of introducing implicitness, we break it as L u phi equal to b, and 

then we go through the solution as u phi equal to y, and L L y equal to b type for a 

approach. This is a fully implicit solution, but we know that the decomposition of A into 

L u itself is time consuming process, it consumes too many operations. So, we want to 

write this as say M phi equal to N phi plus b, which is the standard way of the iterative 

procedure, and we put this as k plus 1, and k here; and we for good convergence, we 



would like this M here to resemble A as much as possible. So, and that is since, M is 

being evaluated k plus 1; that means that this M represents the degree of implicitness in 

this iterative solution, and if M is equal to A, then N must be equal to 0, and we have 

fully implicit method. So, we cannot afford a fully implicit method, because the best 

methods have N cubed number of operations, for the general case.  

So, we want to make M to closely resemble A, but at the same time not take up as much 

time for computation. So, the basis for this is that we we put A equal to some L u plus 

say N, where Lu here is M; and therefore, write this as this equation as L u phi N plus 1 

phi k plus 1 equal to N phi k plus b. Now the advantage of this approach is that we know 

that the solution of this is easy that is to go from k to k plus 1 is efficient, because the 

solution of Lu decomposition kind of method is relatively easy, and it requires the only 

the back substitution and forward substitution.  

And if we further impose this condition that in the matrix that we are looking at, the L 

has non-zero values only taking a two-dimensional case, we have five diagonals. So, A 

has a five diagonal structure, corresponding to point p, this is point p, we have east, west, 

north and south. So, this is the p diagonal, and this is the west, and this is the east, west, 

south and north. So, there are five diagonals here. And therefore, we say that the Lu 

decomposition here must have only this, and wherever we have the west and south, and 

similarly the upper triangular matrix of this must only contain three diagonals here; this 

is the p diagonal, and east, and north. So, and the advantage of this is and rest are 0’s.  

The advantage is that even the Lu decomposition back substitution will not require N 

square number of operation, because this one has only one variable, and this one has only 

two non-zero variables. So, the back substitution is also not very costly, and the forward 

substitution is also not… This is a forward substitution and back substitution here sorry 

this is the back substitution and forward substitution here. So, the typically for a common 

Lu type of phi equal to Lu phi equal to b type of problem will require N square number 

for the solution of u phi equal to y, and N square number of operations for Ly equal to b, 

that is the case, when u is filled up and L is filled up. But by imposing the condition that 

u and L have non-zero values, only in the along the diagonals, where we have these non-

zero things here; we are reducing the number of mathematical operations that are 

required here, so that the solution of this is even faster and it requires much less number 

of back substitutions.  



So, the key to making something like this, this kind of approach will work provided we 

have an easy way of determining this L and u; the components of this L and these 

diagonals here and these diagonals here; and provided L u is as close to A as possible or 

provided N as 0 values, so that the rate of convergence is also faster. And and provided 

the solution of this L u equal to L u equal to this whole thing is evaluated fast. So, we are 

taking care of the fast process of forward substitution, back substitution by requiring 

these to be only very few diagonals, just as those diagonals in this A here. And by taking 

advantage of the sparsity and the structure of this, it is possible to arrive at efficient ways 

of evaluating the components of both L and u matrix like this. And if you if you want to 

put this, if you now evaluate the product of L u here, then you not only have these three 

diagonals, these five diagonals, but you also have a diagonal here and the diagonal here. 

So, this corresponds to south west and north east. So, this is p, east, north and west and 

south. So this, so the true product of the L and u that we have, that we can find out from 

in this decomposition will have not five diagonals, but will have seven diagonals. So, the 

way of writing this thing in in this way is to say that these five diagonals here constitute 

M, and this extra diagonals constitute N. So, the N contains the M of S W, and M of N E, 

and the rest of the five are what are actually there in this. So, if we do it like this, then we 

can come up with an iterative scheme, but that type of approach where you break the 

break up the A into N M plus like this. 

So, this is our M, and this is our N, this contains the south west and north east, and this 

contains the main diagonals; and this is further broken up into L here and u here, so that 

we can now come up link with this. This is known as Incomplete L u decomposition - I L 

u incomplete L u decomposition. And this the rate of convergence of this particular 

method is not very great, because we are still having significant number of these things 

and that information is being added only at the k eth iteration, and not at the k plus 1th 

iteration. So, there is a significant amount of explicitness in in decomposing A into M 

plus N in this way, the five diagonal A is being made into a five diagonal, which is 

decomposed into a three diagonal L and u, and the two additional diagonals like this. 

This incomplete Lu L u decomposition method although it is implicit, there is more 

implicitness into the overall iterative solution here, it is not implicit enough that the rate 

of convergence is significantly enhanced to give you overall number of reduced number 

of mathematical operations. 



So, it is in this context stone, I think in 1964 proposed 1968 proposed a reallocation of 

this A influence into M and N; what his idea was that just putting only the true elements 

here, and putting all the other five elements is is too straight forward, and its obviously, 

not not leading to this. Is it possible to convert to select further elements? To bring in 

more elements into the N, in exactly the same points as were A also has these non-zero 

elements; so, that is the elements, the structure looks similar. So, the coefficients of these 

diagonal values are chosen such that the overall contribution of N becomes negligible. 

So, the so what the variation that stone has brought into it into the incomplete Lu 

decomposition is to not only make N have those extra two diagonals, but also have the 

full extra five diagonals. So, N is in fact, more populated is less sparse than either A or 

N. But the values of these are chosen in such a way that the overall contribution of N is 

is made to be 0; and we can understand it by taking this thing here.  
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So we can since this has these components we have…  

(No audio from 12:06 to 12:43) 

So, we let us say that some discretization involving all the seven elements can be written 

like this, we have the p east, west, north, south, and then these these things here. So, this 

is what is effectively being done in in this particular way, because this Lu product will 

actually have seven diagonal; so we are recognizing these things. And this is what the 



contribution of N phi is, and this is the contribution of M phi, and we can see that in the 

N phi contribution, we have these things. So, what stone has suggested is that we bring in 

contribution from not only from the N E, but also from the other components here, which 

we can put as N E star. And similarly the contribution of M SW phi SW, which is 

coming from the fact that we are decomposing into L and U; and the contribution from 

the rest of the components here phi star such that this whole thing is equal to 0.  

In the regular, in the incomplete Lu method, N contribution is this, what stone has 

suggested is that the contribution of N should be this, such that this whole thing is almost 

equal to 0. And if you say that this is equal to… So, we can put this here, and now what 

is this NE star and SW star, if these are expressed in terms of phi P, phi N and phi E; and 

this is expressed in terms of phi P, and phi west, and phi s. Then we will have we will 

have certain values here, certain coefficients. So, those coefficients will constitute the 

extended N n diagonals.  

So, the way that is solved, this is the way that we are solving in ILu; in the way the way 

that we are solving in the stones method is this, M N phi N plus M West phi West plus M 

East phi East plus M S phi South plus M NE phi N E plus M NE phi phi P plus M NE 

double dash phi East plus M NE triple dash phi North plus we have M South West phi 

South West plus M South West prime phi p plus M prime double prime South West phi 

W plus m triple prime South West phi South is equal to b. So, what we have is that the 

essential equation, the discredited equation in the case of stones method is this, where 

this is M, and this is N, and these things are used to determine the L and u components.  

So, the overall solution to go from k to k plus 1 will involve two… One forward and 

backward substitution, which are rendered East. But instead of having these N phi being 

equal to this, we now have we are enabling N phi to be given by this whole thing, all the 

way up to this. And we choose the values of M M prime, M double prime and M triple 

prime NE; and M prime M triple double prime and M triple prime of SW in such a way 

that this whole thing is equal to 0.  

And it is possible to come up with those kind of approximations, assuming that the 

distribution the phi itself is a smooth function, which is what is we have for a typically 

elliptic type equations; elliptic equations is by definition or nature, it is a smooth 

solution. So, if it is smooth solution we can express the value at a particular point NE, in 



terms of the neighboring points P NE; and similarly is the expression this phi star SW 

can be expressed in terms of P, W and S. There can be any number of approximations; 

Stone has proposed some approximations by which these can be related to that. And so 

that overall you have you have a means of evaluating each of these coefficients and not 

only that, the evaluated coefficients are are evaluated subject to the condition that the 

contribution of all these things is equal to 0. 
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So, in the revised stones method, this is what is going into M phi, and this is being 

evaluated at k plus1; and this is what is going into N phi, this is being evaluated at k; and 

what we have on the right hand side is is there. And now what we see here? The same 

right hand side has a contribution from at k plus 1 coming from this, and the rest of the 

contribution is made almost equal to 0, in choosing this primed coefficients. So, that 

means that the contribution if you were to write the overall method as N phi k plus b like 

this, the contribution of this is 0, almost 0 and so, most of the contribution is coming 

from this. So, this is made more strongly implicit, because the contribution is being 

evaluated k plus1. So, the So, the most of the contribution is coming only from the M 

components; the N components are designed, so that they are roughly equal to 0.  

Making use of the property of the elliptic equations that you have a smooth variation of 

phi, if you have a hyperbolic equation and if you have a shock, then you can have a very 

strong variation there; and for those kind of things, this approximation of representing 



this phi and star in terms of the local values here is will not be valid, but for electric 

equations, it is valid; you take advantage of that to rewrite this, and then we can come up 

with formulas for evaluating this. 
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So, in this method, we are enabling a stronger linkage between M phi to with this and 

this; by making M to much closely resemble the value of the A, the contribution of A, 

because we are making N to be the contribution of N phi k to be almost equal to 0. So, 

and the resulting equation is also posed in terms of the resulting… So, this this thing can 

be written now as M phi equal to b prime, this is now being solved using a direct 

method, using the Lu method; and L u also have only sparse matrices, so the forward 

substitution backward substitution is will will not involve much computational time.  

So, it goes from k to k plus 1 will involve only forward and backward substitutions of 

two upper or lower triangular matrices involving a few diagonals. So, that computational 

effort is less; and the overall solution, the iterative solution going from k to k plus 1 to k 

plus 2 k plus 3 is rendered faster, the convergence is faster, because we are making it 

more implicit by making the contribution of N phi equal to 0. We cannot look at all the 

details of how to evaluate this, those are available in in books and research papers, but 

this method has proved to be a very good method in its own right for the solution 

especially, of the Laplace or Poisson type equations, where we can expect a smooth 



solution. And especially this is useful in solving the pressure correction equation, which 

is the Poisson type equation.  

So, this is one example of a fairly complicated thinking that goes into improving the rate 

of convergence of an iterative method by bringing in more implicitness, and bringing in a 

direct method in the as part of the overall iteration. So, this this solution of going from k 

to k plus 1 is direct, but by having to go to k to k plus 1, and then k plus 2, k plus 3 like 

that, you are enforcing iteration. So, this is one successful example of a an advance 

method; we look at two new methods, two new ideas for the same solution of A phi 

equal to b, these are totally different from the approaches that we have looked at so far. 

These are also iterative methods, and one of them, the first of these is the conjugate 

gradient method; conjugate gradient method is it has an entirely different philosophy for 

the solution of A phi equal to b.  
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The problem is not forced as A phi equal to b, but a minimization of a function F in order 

to solve A phi equal to b, we would like to minimize function F, which is created from 

this is defined as half phi transpose A phi minus phi transpose b. So, this is a function, 

which is created and one can show that the point at which F is minimum corresponds to 

the solution A phi equal to b. And so the problem is now transformed into solution of 

search for the minimum of this function F. So, we are not solving any any methods like 



the simultaneous equations, but you may have a F here, and you want to find that point 

of minimum, at which this is.  

Now, what is the advantage that we gain by this; what is a what is the difference 

between… What is the character of this particular thing? Now, when we want to find the 

minimum of a function of a function like this, we normally make use of a method, which 

is known as method of steepest descent, that is this F is a multi dimensional surface, 

because you have n number of equations. So, the function F here is an n dimensional 

surface, and we want to find out that in that n dimensional surface, what is the minimum 

value of F? It can be shown that when you have the matrix A as a symmetric positive 

definite matrix, then it is possible to come up with with a very efficient search algorithm, 

in which we look for the minimum of this F, in those in n projections of this n 

dimensional surface as it were.  

Trying to minimize the value of F in each projection, and then if if we do so, it can be 

shown that at the end of n such projections, n such looking at trying to find the minimum 

value, we will get the exact solution. So, if you have, but the that guarantee of reaching 

the exact solution in n number of solutions is possible only if the search directions are 

mutually orthogonal. So, the that is the basic idea of this particular method, that is the 

problem of A phi equal to b is converted into finding the minimum of the function F, 

which is created from A phi and b in this particular way. And so we would like to use the 

for example, the application of the steepest descent method to find in each direction, 

what is the minimum value? For example, if you are here at this particular point, this is a 

slope, and slope is pointing in this direction.  

So, you say that looking at this, this seems to be the minimum point. So, you can make 

use of the slope information at this location to see, what is likely to be the minimum 

value of this, at which F is minimum here. So, it is not always that you will get the 

minimum like a drawn here, but based on the slope, you know if you are trying to find 

out the minimum value of this, whether you want to go in this direction or in this 

direction. So, that depends on the slope value here, and that slope in an n dimensional 

surface, which gives you the minimum the steepest descent is the direction, in which you 

would go at that particular point of time.  



Now in that particular projection, now you choose another projection, which is 

orthogonal to it; and then you try to minimize in that projection where you should what 

you should should be on next step. And then you go to another direction, which is 

orthogonal to not only the previous direction that you have taken, but also to all the 

previous directions. So, the problem is is the minimization problem is reduced to one of 

constructing a series of search directions, which are mutually orthogonal; each new 

direction is perpendicular to every other search direction. And if you go through like this, 

then you you will reach the minimum point in exactly n number of steps, n number of 

steps.  

Each minimization in each direction has a certain number of mathematical operations. 

And you know that you you will get this to the solution at the end of n steps; so, that 

makes this a direct method; in the sense that the solution is found out at the end of n 

number of n at an finitely calculable numbers of mathematical operations, because we 

know that in each step we know, how many mathematical operations are needed to go to 

the next step; and we also know how many steps are involved in this. Now this is a case, 

only when we have infinite machine accuracy, infinite precision of mathematical 

operations. So, because infinite precision is not really there, in theory the conjugate 

gradient method is an is a direct method.  

And this is how it is proposed in 1952 by Hastens and Magnus and Stifle, they proposed 

this in 1952, and it created ripple at that time in the mathematics community, but the 

ripples soon died down, because each step will have large number of mathematical 

operations, we have to do so many steps; and this method is applicable only for 

symmetric and positive definite positive definite matrix A. It was a revived, not as a 

direct method, but as an iterative method in 1970 by Reed, who who suggested that this 

method can be used to find an approximate solution for A phi equal to b, because this has 

the characteristic of of of reducing the residual of this iterative solution of a A phi equal 

to b very drastically, very rapidly.  

So, if it is in the right ballpark area, then it can reduce the error by even an order of 

magnitude in a single step. So, the what we are looking at is that we have phi 0, that is 

initial guess, and we get phi 1, and then phi 2, and phi 3 and so on up to phi n; and phi n 

is the true solution. This is and so each of the solution is obtained by going through a 

search direction to minimize the value of F in that particular direction, and that step 



procedure is known to us; although we will not discuss it. So, we are generating a series 

of solutions, and what makes it a good iterative method is that at each point we can 

calculate the residual. So, if you substitute the value of phi, then A phi for example, k 

should be ideally equal to b, if it is the exact solution, but this is only going to be equal to 

b k. So, the difference between b and b k is called the residual. So, you can compute the 

residual at each each step rho 1, rho 2 and rho 3 like this.  

(Refer Slide Time: 23:21) 

 

So now, you can put that as the norm of this residual, like we do for any iterative scheme 

verses k; in the case of usual iterative methods, then it goes to something, and then it 

reaches a study value on a log plot, and that gives you the rate of conversions. But in a 

case of gauss seidel in a case of conjugate gradient method, it may be that the residual 

changes like this, suddenly it comes comes drastically reduces, and then it goes through 

the bottom in a way. 

So, it is this attraction instead of going through large number of iterations to reduce the 

residual slowly from this level to this level to this level like this; in a few iterations, you 

can reduce the errors by large amount. And then may be it may take further number of 

reductions like this; and it is this characteristic coupled with the fact that in a typical 

CFD solution, we do not want to we do not need to reduce the residual to 0. So, why is 

that the residual is sufficiently small? It is the solution is good enough.  



So, it is this nature, this requirement in a CFD that we can deal with an approximate 

solution not necessarily the exact solution is good enough for us, enables this conjugate 

gradient method used as an incomplete iterative method. So, its incomplete in the sense 

that we would not be taking all the n steps, we will be taking only a small number of 

steps, and hopefully within those large small number of steps, we the we come to the 

point of drastic reduction in the in the residual. And so, in that sense, it was revived, and 

there been lot of studies and lot of improvements of this, which have improved the 

method in various aspects; for example the general conjugate gradient method, you can 

have an residual, which may be even increasing, before it starts decreasing. At some 

point, it has to decrease, and it may be increasing and so there have been some 

modifications to make sure that in each step, it is decreasing.  

And this condition of symmetric and positive definite A is severely restricting case for 

CFD solution, that is possible only when you have Laplace equation on a uniform grid 

with constant coefficients. But when you have for example, convective diffusion 

equation typically which is what we have in CFD type of things, and since we want to 

use some sort of upwind differencing for the advection term or the convection term, in 

terms of stability and all that. So, in such a case we will not have a symmetric matrix. So, 

they have been variants of this called bi-conjugate gradient method gradient method, and 

then further stabilizations, and squared methods, and all these things proposed in 80’s 

and 90’s, which have made it really an attractive method for the CFD type of 

applications; attractive, because it can it has the potential to reduce the error very 

drastically, very fast.  

And secondly, because it is not necessary to have the Scarborough type of condition in 

order to apply this method. So, it is not necessary to have diagonal dominance in A phi 

equal to b, in order to apply the conjugate gradient method. So, it can be used even when 

the diagonal dominance, its condition is not there. So, if you are looking at a solution in a 

non orthogonal grid, in which case you may not have diagonal dominance; in such cases 

or when you have severe difficulties arising from source terms, in such cases this 

conjugate gradient method is very useful. And some of the properties of this residual 

reduction and all those things can be improved by preconditioning. 

So, instead of the as usual the convergence of this method the residual reduction of this 

method depends on the Eigen values of A here and if the Eigen values are spread out 



over a large interval. So, that is if the ratio of the maximum Eigen value to the minimum 

Eigen value is large, then it can show erratic behavior, and it can it may not be very 

useful. So, preconditioning is done to reduce that ratio of the maximum to minimum 

Eigen value and that is known as the condition number. So, and one of those 

preconditioning methods is essentially, you have C inverse is the is multiplied one can 

multiply by preconditioning matrix, and to reduce the spread of these Eigen values, and 

one such preconditioning method is something that we have already seen, which is 

incomplete Lu decomposition of of the matrix A. 

So, those kind of methods are brought into play here to to manipulate the Eigen values of 

the matrix A, so that the convergence of this conjugate gradient method is improved. So, 

they have been lot of implements of this method, and this method is also used for 

example, in the nuclear industry, when we are dealing with three-dimensional solutions 

of the thermal hydraulics of a nuclear reactor. There you typically do not have large 

number of points, but because of the constitutive equations, and additional equations that 

come into picture; and the source terms, you almost never have the condition of… It is 

almost impossible to have diagonal dominance.  

So, in such a case, the conjugate gradient method has been used very successfully, where 

the number of iterations is usually of the order of 10 or 20 or even 5 instead of the 100 or 

1000 or 10000 that we normally used with Gauss-Seidel method. So, the number of 

iterations is reduced, but we must note that in each iteration, what we mean by iteration, 

is that successive minimization of this function here; is the number of these things is 

reduced, but each computation, each reduction here will involve matrix computations 

and vector matrix multiplications like that.  

So, the each step will have large number of multiplications, but overall when you 

compare overall bi-conjugate gradient method applied for a convection diffusion 

equation, with the corresponding thing from a simple solver will be much better with the 

bi conjugate gradient method, but it requires lot of prior preparation and intelligent 

programming in order to get the best out of this. So, this is one approach, where we have 

converted the solution of A phi b is equal to b into a minimization of a function.  
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Another very different approach is is the multigrid approach; this method depends on an 

entirely different philosophy; and the philosophy is that there are some methods we have 

seen the Jacobi method, and we have seen the Gauss-Seidel method, and SOR method, 

strongly implicit method. So, these all these methods have different ways in which they 

are trying to reduce a residual; these are all iterative methods, and in each iteration, you 

have a residual, and we want to the objective of these methods is reduce that residual to a 

reasonably small value. And what you mean by residual - is the degree of dissatisfaction 

of the current estimate of phi, when applied in to that A phi equal to b.  

So, residual reflex by how much the current estimate of phi fails to satisfy A phi equal to 

b, the original equation that we try to solve. So, the way that the residual is reduced, and 

the error is reduced depends on the specific methods. And there are some methods which 

damp out high frequency errors, and some damp out low frequency error first. So, if you 

say that we have already come across the idea of the spatial variation of error in looking 

at the Von Neumann stability analysis; and we have a variation of error as a function of 

x, which is the space dimension at a particular time say n is like this.  

So, this this varies from x equal to 0 to x equal to l in this particular, and this can be 

decomposed into as we have said earlier into low frequency variation like this, and high 

frequency variations like this. So, the overall contribution of the low frequency, and the 

high frequency terms will depend on the particular shape of the error function at that 



particular time. So now, if you are looking at an iterative method; and the idea of the 

iterative method is to reduce this error and bring it down to very small value. And in the 

process it has to damp out the high frequency error, and it has to damp out the low 

frequency error.  

Jacobi method and Gauss-Seidel method are two contrasted methods, which damp out 

the high frequency errors in a different way. Jacobi method is not very good at damping 

out the high frequency areas whereas, Gauss-Seidel method is a good smoother, so that 

means, that it will damp out these things, and if you consider if we take just these two 

errors, and then come up with something like this. If you add these two, it may be that 

we have a variation like this. And we can see a low frequency component and high 

frequency component; so if you start with this as the initial guess, and then you apply on 

this the the Jacobi method and Gauss-Seidel method.  

Gauss-Seidel method will soon give you a variation like this, in which this high 

frequency component is more or less damped out, whereas the Jacobi method may still 

retain a significant amount of this high frequency error. So, it is this property that there 

are some iterative methods, which will damp out the high frequency error very quickly, 

and convert this frequency distribution, which has the thing into something like this 

enables us to replace that high frequency curve, which which is something like this with 

a low frequency approximation. Now what is the difference between this one here, and 

this one here? If you want to represent this accurately, then you need to know the 

function at every small delta x, only then you can show that is increasing like this, 

decreasing like this, increasing like this. But if you have this kind of curve, a smooth 

kind of curve, and if you want to represent it, it is sufficient to have at this delta axis, so 

that I know this value, and I know this value, I can pass a smooth curve through this.  

So, if this is my function, which is varying rapidly, then if I want to represent it correctly, 

I need to have a delta x, which is very small. And in this, I can have much larger delta x. 

So, this enables us to solve for the error equation now which is here, with a larger grid 

spacing than in this particular case. And this is the idea of the multi grid approach that is 

you are trying to reduce the error. So, you do some computations with with for example, 

a smoothing kind of iterative method like Gauss-Seidel method, and reduce this this error 

distribution to something like this; now you have got a smooth error distribution, try to 

reduce the error in this, using a bigger grid.  



And then this error will be reduced to something like this; now you can use much bigger 

delta x here, because this become even smoother function, so that means that even larger 

delta x can be used. So, in that sense and we know that typically the computational time, 

number of mathematical operations varies as n square for Gauss-Seidel method or for a 

typical method that we are looking at. So, where n is the number of points, and here we 

have we require may be 100 points to represent something like this whereas, here we 

may require only 25 points to represent this to the same accuracy, because it is now 

smooth.  

So, here to do a computation on this on this on this function with a small delta x will 

require n square number, and here we need only n by 4 square numbers, so that is n 

square by 16 number of operations to reduce the error in this. So, in order to the 

computational time required to work on this fine grid is much more than the 

computational error required to do the on to work on this course grid. And not only that, 

we know that for example, for a typical Laplace type of equation, the larger the number 

of points the larger will be the the closer will be the largest Eigen value to 1. So, that 

mean this is spectral radius becomes even close to 1. So, that means, that the rate of 

convergence rate of reduction of error in with a fine grid is less than with a coarse grid.  

So, when you go from fine grid to coarse grid, you have two advantages; one is that the 

actual number of computations that are required will be reduced; and the rate of error 

reduction is also residual reduction is also increased. So, because of this, it is preferable 

to work with the coarse grid wherever possible. But if you have a coarse grid like this, 

then we cannot represent a fine variation, and we know that using the coarse grid will be 

will give us more inaccuracy.  

So, the in a multi grid what we do is that we solve A phi equal to b on a fine grid; for n 

number of steps using a smoothing iterative method like a Gauss-Seidel method. And 

from this, we can evolve the error equation some A prime e equal to some b prime, and 

this error equation in the form is in the form of residual, so residual. And then this is 

solved on a coarse grid, because now as a result of n number of smoothing operation on 

this the error is reduced. So, that we can solve for this on this coarse grid and then we 

can get after another m number of operations on this we get error at for example, if you 

say that if you say that this is small i represents the fine grid and capital I represents the 

course grid. So, we we get the value at a error at n plus m.  
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So, using this error, which is now reduced as compared with error at n, we make use of 

this estimate of error to guess the new value of phi I at n plus one n plus m. So, and we 

now work with this fine grid here, for another n number of equation steps iterations. So, 

now, we have got further reduction of the fine scale error in this, with this thing we come 

back on to the coarse grid, and then we have we try to reduce the error in this by doing 

further number of m operations on this.  

So, in that sense what we are doing is, we are going from a a fine grid solution for n 

number of steps here, and then we go for a coarse grid number of coarse grid for m 

number of steps, and then we go to fine grid, and then we do like this, n number, m 

number like that, we go through these kind of steps. And the advantage in the process is 

that these m steps on the coarse grid will take a small time, but they are reducing the 

error involved at these points first. So now, when you put this back into the coarse grid 

this coarse grid will now try to reduce the error in between these things on this, and then 

it can continue to smooth out, and then get to a faster rate of, overall rate of error 

reduction. 

So, in a typical multi grid approach you have for example, for the same domain here, you 

may have a very fine grid like this, may be even smaller. And you may have another 

grid, which is twice the grid size; and another grid, which is twice of this, another which 



is twice of this and so on. And then you you solve for phi on this A phi equal to b, on this 

and in each of these things you solve only for error in the form of residual. So, you solve 

it on this, and then you go to this, and then you go to this, now you have got the error 

estimation on this. So from this you go back here, and then you may from here you may 

go back to this, and then you may go back to this like this. So, you go you solve for 

sometime on this, and you solve for some more time on this, some more time on this, 

some more time on this. So, you reduce some error here, more error here, more error 

here, more error here; and then, but in the process since you are coarse grid, some of the 

error in between is not estimated, then you can go back in this way.  

So, you can go from fine grid to coarser grid to coarser grid, and then back to this and 

then back to this; so you can go through in these steps or you can start with this, we can 

go to this step, you can go to this step, come back to the coarser grid, go back to the fine 

grid, and then you can do like this. So, you can patterns in in different ways, the way that 

you see if it that so that you can have for example, a W type pattern or V type of pattern, 

which is repeating like that. So, if you look at the actual computation that is done, there 

is some computation, which is done on the finest grid, more computation on the coarser 

grid, more on even the coarser grid coarser speed like that. 

And we know that the number of iterations on the coarsest grid required for certain error 

reduction will be a small fraction of what is required for on the finest grid, so that the 

overall residual reduction is now made on coarser grids more of it is now made on 

coarser grid and only we depend only on a fraction of the total error reduction to be done 

on the finest grid. Therefore, the total number of mathematical computation that are 

required to reduce the reduction to reduce the residual by a certain factor is only partly 

reflective of the effort needed on the finest grid, most of it will be done here therefore, 

the overall mathematical operations required will be significantly less in the multi grid 

approach.  

If one were to express phi 0 to phi tilde the effort required from an initial guess to close 

to the exact solution in terms of n rise for p as n rise for p, we know that p is equal to 3 

for Gaussian elimination, and is 2 for Gauss-Seidel method, and 1.5 for SOR optimal, it 

is 1.25 for conjugate gradient, and it is almost 1 for multigrid method. So, in that sense as 

so you go to more and more sophisticated methods involving newer and fresher ideas, 

involving not the simple way of doing it, but more complicated way like this or in the 



conjugate gradient method, you can gain in terms of the efficiency by which you solve 

your A phi equal to b. 

So, the solution of A phi equal to b, which is necessary in the case of CFD solution, it is 

necessary, because we have do it for so many times, and because we have to do it for so, 

many equations. So, the the efficiency of the solution of A phi equal to b can be 

increased greatly if we go for more and more methods, there are some methods which 

are most suitable for certain cases than some other methods. There is always the most 

sophistication that you try to bring into your solution method the more efficient will be 

the method. But there is a lot of detail that has to be developed in trying to fully 

understand and implement methods like conjugate gradient and a strongly implicit 

method and multi grid method and all that.  
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So, if you want to drive the benefit from this, it is necessary to do lot more work than 

what can we done in a course like this; one has to take specialized courses or do lot of 

reading of advanced text books, and go through the literature to not only implement these 

things, but also to fully understand the theory behind all this; for example the the effect 

of the spectrum of Eigen values on the efficiency of of the conjugate gradient method, 

and how by doing certain manipulations one can ensure that in each step of this, the 

function f is minimized. 



So, the the thought process behind the development of this methods must be really 

understood and appreciated, before you can think of implementation. As far as the initial 

trials for cfd is concerned, it is better to stick to simple methods like the Gauss-Seidel 

method, which is good enough for many applications. So, in the next lecture we will now 

try to look at the complete template for the solution of the Navier Stokes equations that 

we have so far seen. 

 


