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Let us look at the specific variation of the Gaussian elimination method. This is called 

the Gauss-Jordan elimination method. And in this particular method, we continue with 

the elimination of the variable phi 1, phi 2, phi 3, phi 4. All these things, not only in 

those rows which are below the diagonal, but in those rows which are above the 

diagonal. And what we get therefore is, in the first elimination, we have not eliminated 

anything; in the second equation, we have eliminated phi 1; in the third equation, we 

have eliminated phi 1, phi 2; in the fourth equation, we would have eliminated phi 1, phi 

2, phi 3 and so on. 

In the nth equation, we would have eliminated phi 1, phi 2, and phi 3 all the way up to 

phi n plus 1 so that for the lower triangular elimination matrix and we have an upper 

triangular elimination method in the Gaussian matrix. 

So, in the Gauss-Jordan matrix when we eliminate phi 1 from the second equation and 

phi 2 from the third equation and so on, we also continue with the elimination of these 

things from the first equation, second equation onwards so that the variables that are 

eliminated get eliminated also from the first equation. 

So, when we eliminate phi 2 from the third equation, we simultaneously eliminate phi 2 

from the first equation. So, now, at the end of the step three when we eliminate phi 1 and 

phi 2 from the third row, we would have eliminated phi 2 also from the first equation. 

So, at that point, the first equation will have a 1 1 phi 1 plus a 1 3 and so on, it would not 

have phi 2. 



When we go to the fourth row by then we eliminate phi 1, phi 2 and phi 3 from the first 

equation and we also eliminate from the second equation. So, when we do this, when we 

by the time we go to the last row, we would have eliminated all the variables from the 

first equation, except phi 1 1, and in the second equation we would have eliminated all 

the variables, except phi 2 and so on. So, in each row will have only one non-zero 

coefficient that is a diagonal element. 
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 So, the matrix structure, A phi equal to b, we have a1 a 12 and so on and a 21 a22 a 23 

and so on like this. If we eliminate phi 2 variable from this, then this becomes 0 and this 

becomes 0 0 and we have a 3 prime type of thing. So, when we do this, when we have 

eliminated phi 2 from this equation, we also eliminate from the first equation so that this 

becomes 0. 

When we come to the fourth equation, we would have eliminated this and this we will 

have a prime 4 4. So, at the same point, we also eliminate phi 3 from this equation and 

from this equation and this equation. So, at the end what we will have is zeroes on this 

side and zeroes on this side and we will have just the diagonal elements here. 

So, a 1 1 prime a 2 2 prime a 3 3 prime a 4 4 prime all those things as non- zero; all the 

others as zero. So, now, this is equal to b prime. So, we have made this in to diagonal 

matrix and the solution is, this is equal to this and this is equal to this and in order to phi 



n, we say that this is equal to b prime n divided by a prime n n and phi i is b prime i that 

is the i th row divided by a i i prime like this. 

So, the back substitution is very simple; each evaluation of each variable will involve 

only one variable like this and we will essentially this will be A inverse. So, this method, 

where we not only eliminate this element variable phi 1, phi 2 and phi 3 in the variation 

below, but also in the rows above is called Gauss Jordan elimination and as a byproduct 

of this, we not only get this, but we also get A inverse here. 

So, this is one method for finding the inverse of the matrix; a very efficient method of 

finding the inverse of a matrix. And obviously, doing this row elimination elimination of 

row variables above and below will be costlier; it will involve more number of 

operations than in the simple Gaussian elimination process, where we are simply 

eliminating these things. 

So, there are more number of operations that we have to do here, but the total number of 

operations still varies as n cubed; it is more than what we have for Gaussian elimination, 

but as a byproduct we are finding the inverse.  

And the back substitution is simpler in this; this is only n number of operations, whereas 

we had only n square number of operations for the back substitution in the case of 

Gaussian elimination. But the elimination of these things will include n number of 

operations here. So, the overall cost of computation using Gauss-Jordan elimination is 

more than the cost using Gaussian elimination. 

So, if we are solving a single method A phi equal to b, then this method is not more 

efficient than Gaussian elimination, but if we have a number of these equations to be 

solved, then we can use this, because as a result of this, we have A inverse.  
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So, if we have a situation, where you have A phi 1 is equal to b 1; A phi 2 is equal to b 2; 

A phi 3 is equal to b 3 like this, then we can write this as phi 2 equal to A inverse b.  

So, in the since this A inverse is made a diagonal thing, the computation of this is very 

simple. So, for this for the solution of this, we use more number of operations than the 

Gaussian elimination, but for the subsequent elimination of phi 2, phi 3 and all the other 

variables, then the computation of the solution of this equation with the same A is made 

very easy with this. 

So, in that sense, the Gauss-Jordan method would would work, but otherwise this 

method is this method is not specially useful in the context of finding a solution to A phi 

is equal to b. As long as A phi equal to b is a single equation, there is no need to go for 

Gauss - Jordan method, but this is a general purpose method for the finding of A inverse 

in an efficient way. 

So, this is Gauss method Gaussian elimination method and Gauss-Jordan method, they 

follow essentially the same type of approach, a different approach is what is known as L 

u decomposition. 
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Let us discuss the basic idea. We have A phi equal to b and in the case of Gaussian 

elimination, we are converting this in to u phi equal to b prime, and then, we solve this 

by back substitution. So, this by the forward elimination, we convert A phi into u phi 

equal to b prime, then we solve this by back substitution to get phi. In the L u 

decomposition method, A is decomposed into L, the product of a lower triangular matrix 

and an upper triangular matrix. 

Now, what is the advantage of this? If we now substitute this here, then this equation 

becomes L u phi equal to b. So, now, we can each of this is, this is a lower triangular 

matrix and this is an upper triangular matrix. So, we can put u phi equal to y; if we do 

that, then if we substitute, this becomes L y equal to b and u phi equal to y. 

So, the problem of finding A phi equal to b is now decomposed in to the problem of 

finding two equations u phi equal to y and L y equal to b. So, now, the question is what 

is the advantage in this? Now, the advantage is, we know if we come to this process f in 

the Gaussian elimination, this forward elimination takes n cubed number of operations 

and the back substitution takes n square number of operations. So, the back substitution 

is easy. So, each of this this is a lower triangular matrix L here and this is an upper 

triangular matrix. 



So, this particular thing u will be like this; all these are zero and here we will have like 

this. So, we can solve this using forward substitution and this will give you y and we 

make use of this y here and solve this using backward substitution to get phi. 

So, the solution of A phi in to b is now rendered into two steps, first a forward 

substitution to get y in which b and L are known and once we know y here, then a 

backward substitution to get phi from this. What is the advantage? We know that 

backward substitution takes n square number of operations and this also takes n square 

number of operations, because the basic idea is the same; this you get one multiplication 

and this is one multiplication plus one more multiplication, two operations and three 

operations like that, this also n square number of operations. 

So, we are getting a solution of A phi equal to b in 2 n square operations, not n cube 

operations, because here this is n cube number of operations. So, the method would work 

efficiently would be much better than Gaussian method if we restrict ourselves to these 

two steps, but there is a catch in this. How do you get? How do you do this 

decomposition? How do you make it into L and u? If obviously, what we are writing 

here is a matrix here a i j and this we are saying as the product of l i j, where we have 

these as nonzero times product of u i j. So and a i j, a particular component here is given 

as the product of l i k with u k j. 
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So, the product of l i k and the u i j is given is equal to this a i j. So, you have a i j is 

equal to l i k u u k j. So, from matrix multiplication, we have this kind of relation and 

here we have, if you say that if we have n rows and n columns, then there are if you have 

a total of n variables, then this is n by n matrix. So, there are n square number of a i j’s. 

So, we have n square points here and here we have n square by two number here and n 

square by two number, when you add these two, your diagonal is added twice. 

So, the total number of unknowns in this so, the unknowns in this are n square plus n 

number of unknown. So, each of this has n square by 2 and this has n square by 2 plus n 

type of thing, one can see that when you superimpose this, you have all these things as 

unknown and all these things as unknown and this is already included in this. So, you are 

over counting this and there are exactly n diagonal elements. So, the total number of 

unknowns l i j and u k j to be determined n square plus i and the total number of 

elements that are known here as part of the specification of a is n square. 

So, we have a system which is over specified. So, what people do is that, you either 

assume that all these diagonal elements of the lower triangular matrix as being equal to 

one. So, these are not determined; so they are already known. So, that like extra things 

known or you can also make these as unknowns or you can make all these things as 

known. So, you will specify that the diagonal values of either the lower triangular matrix 

or the upper triangular matrix you can specify all these things also; conventionally 



specify either these things or these things to be 1 and that determines that leaves us with 

n square number of unknowns and n square number of equations to be determined and 

therefore, there is a certain possibility of determining l i j and u k j the elements of all the 

elements of lower triangular matrix and upper triangular matrix from the knowledge of a 

i j. So, in that sense, the decomposition of a into l u is unique provided, you specify n 

number of elements in this; by convention we specify the diagonal elements of either l or 

u. So, there is a possibility of determining the l i j and u k j from a j a i j itself, but at 

what cost? 

Special easy to use algorithms e and easy to program algorithms have been programmed 

for this. (Refer Slide Time: 18:29) there is a Crouts algorithm is there in which you 

sequentially determine l i j, these elements and these elements and these elements and 

these elements like that; so through some process and this process enables us to 

sequentially find the sequentially and alternately find the elements of l and the elements 

of u as per this algorithm. 

So, finding l i j and u k j is not difficult and there is a certain method and once you find 

that, then you can substitute, you know now the l elements here and the d here are 

anyway known put the y here and u is known from this. So, you solve for phi. The 

difficulty is that the determination of l i j and u i j given value of a i j itself takes n cube 

number of n cube by 3 number of computations. 

So, the decomposition of a in to L u itself is almost as if equivalent to the forward 

elimination process of the Gaussian elimination method and that is where we find that 

the L u decomposition, although it seems to be advantageous in this, this is advantageous 

only if we know L and u, but if we start with the matrix a here and you have to determine 

L and u as part of the solution, then it is no more advantageous than Gaussian 

elimination method 

In fact, slightly more expensive, because you are solving two back or forward 

substitution, we are solving an extra forward substitution here, but in fact, there is a 

relation between the Gaussian elimination and the this decomposition; the elements of 

these things are none, but the coefficients that we have used to multiply the pivot 

equation. 



So, there is some relation between the some of the multiplicative elements that we used 

in the forward elimination process are also elements of these things. So, the two are not 

very different, except that it is going to cost as much as the L u decomposition. So, the L 

u decomposition, if you have a single A phi equal to b type of equation, it is not any 

more advantageous, but if you have a situation, where you have a number of equations to 

solve with the same a with the same coefficient matrix, then this advantage is superior to 

Gaussian elimination. 
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Because same way as before, you have A phi 1 equal to b 1; A phi 2 equal to b 2 and A 

phi 3 equal to b 3 and so on; it is the same matrix here. So, you use this n cube here by 3 

number of operations to decompose A into L u and this decomposition is unique once 

you specify the n values that are superfluous that are extra, that you can fix and once you 

fix them to be once here, then this decomposition is unique. So, we can use this same L 

and u elements in this and L and u elements here. So, although the solution of this will 

take n cube by 3 numbers of mathematical operations, this will take only 2 n square and 

this will take only 2 n square number of operations. 

So, in that sense, this is more advantageous when you have a number of equations to be 

solved with the same coefficient matrix, but the right hand side matrix- the b matrix - is 

different. And in terms of Gauss-Jordan method also, this method is superior, because we 

are not spending the extra n cube number of operation to do the additional eliminations 



which are not really necessary. So, the Gauss-Jordan method which results in the A 

inverse, although the back substitution is easier, the forward elimination process to 

eliminate not only these, but also these will require another n cube by 3 number of 

mathematical operations. 

So, we are substituting the n cube by 3 number of operations here for the elimination of 

the elements above this with two back substitutions. So, if you had a system of A phi, 

these type of equations to be solved with the same coefficient matrix and with different 

b’ s here, then the L u decomposition method is better than the Gauss-Jordan method 

which itself is better than the Gaussian elimination method. 

So, in that sense, you have to do it three times with the Gaussian elimination method, 

whereas we need to do only once, and then, we have the inverse of the matrix and we can 

proceed much faster with the Gauss-Jordan method. Here we do once the L u 

decomposition method and then we can use this. So, this method is complete once we 

specify how to determine the L and u. 
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For this we have what is known as a Crout’s algorithm; this is the case where we have 

assumed that L i i is equal to 1. So, that is the case, where we have identified we have 

specified that all the diagonal elements of the lower triangular matrix to be 1. So that we 

have n square number or extra unknowns belonging to n square by 2 minus n number of 



variables here, and then, n square by 2 plus n number of variables here and we have n 

square here and n square number of things and in such a case we have Crou’ts algorithm 

and in the case where you specify the upper triangular matrix diagonals to be all 1, then 

we have another algorithm called do little’s algorithm or do little’s composition. So, you 

set for k equal to 1, 2 up to n, and then, for each j equal to 1, 2 up to n, solve for u i j 

equal to a i j minus sum over k equal to 1 k equal to 1 2 i minus 1 l i k u k j for i equal to 

2, 3 u k up to j. So, we use this step to do this summation here, and then, l i j is evaluated 

as 1 by u j j for i equal to j plus 1, j plus 2 up to n. So, this is Crout’s algorithm. 

We are setting all the diagonal elements to be 1 in the first process, and then, we 

sequentially evaluate u i j upto elements up to i equal to j and after that, we switch over 

to l i j evaluation, from i equal to j plus 1 to n like that. 

So, although it looks a bit complicated, the beauty of this algorithm is that the values of 

L and u as required to be substituted here are obtained in a sequential way provided that 

we follow these limits. So, this method is known to work and unfortunately this will take 

n cube by 3 number of operation it looks simple, but it takes that much and… So, the 

resulting, these explicit way of evaluation of at the value of l i j and u i j without having 

to do this multiplication here to solve n square number of simultaneous is avoided by 

using the brute force method. So, the algorithm is evaluated at u i j and l i j in an explicit 

way for given a i j like this. So, using this, we can find l i j, u i j then we can go for back 

substitution. 

So, this is the method that can be used using the L u decomposition. So, this is a direct 

method which is almost as expensive as the Gaussian elimination method for the solution 

of a single equation, but for a sequence of iterations for the sequence of computations 

using the same coefficient it is better, but still it is n cube. 

So, we have to keep in mind that it is a generic method; it is as widely applicable as the 

Gaussian elimination method, that is, the decomposition of A in to L and u, the product 

of L and u is can be done for any non singular matrix. Now, one difficulty with respect to 

the Gaussian elimination is with respect to pivoting strategy, in a Gaussian elimination 

we can do more number of pivoting strategies than what is possible with a L u 

decomposition. 



So, in a L u decomposition typically since we are doing in a certain sequential way, we 

can really do partial pivoting, whereas full pivoting can be done in a Gaussian 

elimination. 

So, when we are faced with a problem, where the round off errors accumulation of round 

off errors is a problem, then one can say that Gaussian elimination is superior to the L u 

decomposition method. But as mentioned earlier, for problems with A phi equal to b type 

of things arising in c f d computations in c f d interest, we do not have we have sparse 

matrices. So, because of the sparseness, we do not have to do so many multiplications. 

So, in such a case, we do not usually have round off errors and we can safely use this. 

But we should keep in mind that the using L u decomposition is still not the best way, 

because it goes as n cube and we have mentioned that, there are iterative methods which 

go as n square. 

So, in that sense, L u decomposition in not generally used in c f d applications by itself, it 

is used in certain cases, where for example, a simple iterative method like Gauss Seidel 

method cannot be used; what kind of application, what kind of a scenario, where a is not 

diagonally dominant in such a case, we said that Gauss Seidel method cannot be used; so 

in such a case, we can use L u decomposition method and when can a b be not diagonally 

dominant? 

If you have an equation which is not posed in orthogonal coordinates this typical scalar 

transport equation is not posed in orthogonal coordinates if a typical scalar equation is 

not done in orthogonal coordinates, then we have cross derivatives influence of cross 

derivatives makes the overall structure of a to be not diagonally dominant. 

So, in such a case, we can use L u method, but even there L u method is not used in 

itself; it is usually clubbed in some form of iterative method in the process of incomplete 

L u decomposition kind of methods, in that context L u decomposition is used. So, 

typically in large c f d problems neither L u decomposition method nor Gauss 

elimination method is used, it is only the iterative methods are used, but the influence of 

these methods in the development of coupled or combined methods, where we take 

elements of the direct method and elements of the iterative method and put together and 

get newer methods. So, in that context, we need to understand how L u decomposition 

starts. So, that is why we have spent time on this. 
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 Before we close the discussion on the direct methods, let us look at a special method for 

the banded matrices. Banded matrices are matrices in which non-zero coefficients in the 

coefficient matrix A occurs along certain diagonals. 
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So, if you are looking at the matrix A be like this, then typically you have the diagonal 

elements are non-zero and you have those immediately adjacent to the diagonal also non- 

zero then. So, this is one the simplest form of the banded matrix and this is a tri diagonal 

matrix and we can see where it occurs. 



If we take the case of one-dimensional fully developed flow u d square u by d y square 

equal to a pressure gradient equal to d p by d x, which is constant; so in such a case, if 

you use central differencing for this, then we can write this as mu times; we can take the 

mu here and so we can take this here and write this as 1 by mu. So, this is a constant and 

we can write this as u i minus 1 minus 2 u i plus u i plus 1 by delta x square delta y 

square is a constant and this constant... So, we can write this as (Refer Slide Time: 

35:37) and this is our b side and we can see that in this difference equation, we have i 

here and i minus 1 and i plus 1. 

 And we have to write this in order to determine the u i value, you need to know both the 

neighboring values. So, in such a case, it is not possible to march forward from i equal 1 

to i equal to n; you have to solve all of these simultaneously and we also note that, this is 

our y and you are starting at y equal to 0 to y equal to let us say h here and you have this 

is i here and so this value is given by the two neighboring values and this value will be 

given by the two neighboring values and so on. So, at any point is given by only the two 

neighboring values and the coefficient of all the other variables will be 0 in this. So, 

when you put this together, we get this kind of banded matrix and with the Dirichlet 

boundary condition, it will be like this kind of thing. 

So, these coefficients here correspond to i and these coefficients will correspond to i plus 

1 and these coefficients correspond to i minus 1. So, in in this particular way, we can 

envisage a structure of A resulting in a tri diagonal matrix. 

If you take again a different case, for example, dou u by dou t equal to some nu dou 

square u by dou y square, this is known as the stokes first problem and this is the case of 

an equation which represents the variation of velocity in the y direction, when a plate 

that is set in this infinite expanse of fluid is suddenly made to move at a constant 

velocity. So, if we were to do this using explicit differencing implicit differencing, we 

can write this as u i n plus 1 minus u i n divided by delta t equal to nu times u i minus 1 n 

plus 1 minus 2 u i n plus 1 plus u i plus 1 n plus 1 divided by delta y square. 

Again you have i plus 1. So, this whole thing simplified here, will give you 1 by u by 

delta y square u i minus 1 n plus 1 with the minus sign and 1 by delta t plus 2 nu by delta 

y square times u i n plus 1 and minus nu by delta with a minus sign and 1 by delta t plus 

2 nu by delta y square times nu by n plus 1 and minus nu by delta 1 square 2 i plus 1 n 



plus 1 is equal to we take this to the other side; so we take u i n by delta. So, we have 

coefficient of i minus 1 coefficient of i here and coefficient of i plus 1 coming here. 

So, this is also of a similar form and this represents the time dependent one-dimensional 

diffusional equation and done in an implicit way; if it is done in a explicit way of course, 

we have we have no need to solve this kind of matrix equation, but if it is done in an 

implicit way which gives us improved stability, then we have to solve a matrix type of 

equation and this matrix will be of this tri diagonal form. So, in cases like this, when we 

apply the standard Gaussian elimination, then we convert this A matrix into an upper 

triangular matrix, but we can take advantage of the fact that we have zeroes all around 

here and convert this into convert A phi equal to b in to u phi equal to b prime, where u 

here has only the diagonal and then the upper diagonal till here. 

So, we have only two diagonals. So, from three diagonals when we convert to upper 

triangular matrix and we have two diagonals and the solution of this we have becomes 

very simple. And the overall procedure we have in doing this is what is known as 

Thomas algorithm which is which is published in 1949 and this is a special form of 

Gaussian elimination which is used without any pivoting strategy only to deal with the 

three rows here and convert them in two rows here. So, we do not do any kind of 

multiplications or other things and additions involving these zero elements. 

So, the resulting algorithm is something that we can derive and we can derive it like this. 

So, if we say that all these coefficients are A coefficients. So, this is coefficients of a i 

and this is bi and these coefficients are c i. So, if we take… So, what we mean by b i, c i 

is that, if we take the i th equation, then c i represents this coefficient corresponding to 

the i minus 1th row and a represents the coefficient corresponds to phi i and b i 

represents the coefficients corresponds to this. So, we can write the general equation as c 

i phi minus 1 plus a i phi i plus b i phi i plus 1 is equal to and let us say that the right 

hand side is (Refer Slide Time: 43:06) let us put this as d here equal to b i and let us say 

that this is the coefficient e i and we have taken all these things to be 1. 
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So, this is converted into phi i plus e i phi i plus 1 equal to b prime phi i. So, the process 

of elimination goes from tri diagonal matrix in which an equation is written like this with 

c i, a i, d i and b i known from the equations here is converted into something like this. 

So, if we can find out what this e i and b i prime are, we can call this b i prime we will 

keep it like this. So, we can if we know these things, then we can solve it easily by 

substitution back substitution involving only one product each. 

So, this is the form of the equation. So, we can write this as phi i equal to b i prime 

minus e i phi i plus 1, this is an equation which is valid for all the points. So, from this 

we can also write phi i minus 1 equal to b prime i minus 1 is e i minus 1 phi i. 

 So, we can now substitute this in to this. So, that gives us this c i b i minus 1 prime plus 

c i e i minus 1 phi i plus a i phi i plus d i phi i plus 1 equal to b i . So, we can take this on 

to this side, this is a constant and we can club these two things. So, that gives us this as 

we have a minus. So, this is that gives us a i minus c i e minus 1 times phi i b i minus c i 

b i minus 1 prime. 

So, we have this equation here and we have this equation, which is of the desired form. 

So, this equation has phi i and phi i, and i plus 1 i plus 1 like this. So, we can compare 

the coefficients, and then, we can also divide by this. So that we can put this as phi i plus 



d i by a i minus c i e i minus 1 times phi i plus 1 equal to b i minus t i d i minus 1 by 

(Refer Slide Time: 47:25). 

So, if we compare, this coefficient must be equal to e i and b i must be equal to this. So, 

we can get a relation which is b i is equal to b i by a i minus c I e I minus 1 and b i prime 

is equal to c i b i minus 1 divided by a i minus c i e i minus 1. So, if we examine this, this 

gives us the coefficient in terms of e i minus 1 and a b c and what are a c d? These are 

known coefficients here. 

So, the value of i is expressed in terms of the value of i minus 1 and other known 

coefficients. Similarly, b i prime is unknown and this is expressed in terms of b i, which 

is known, a i which is known, c i which is known and e i prime i minus 1 prime i minus 1 

is something that we expect to know from this, because we are dealing with the i th and 

this is again e i minus 1. So, if we are going through a sequential solution from i equal to 

1 to i equal to n from i equal to 1 to i equal to n, then when we come to i here, we already 

would know i minus 1 here, and i minus 1 here. So, in that sense the value of i is 

expressed explicitly in terms of i minus 1. So, this gives us the possibility of doing this, 

provided we can start and when we look at the actual structure of this, which when we 

look at the first 1, we do not have c i. 

So, for the first one this c i is 0, because the first element the first equation will have only 

two constants here. So, this is not known. So, we can find out that this particular one will 

not give us any problem and in that way, we can start this equation start this process. 

(Refer Slide Time: 50:01) 

So, the overall solution method is like this. So, we have e 1 is d 1 by a 1 and b 1 prime is 

b 1 by a 1 and we know d a, and b a and so the solution of this is straightforward and for 

i equal to 1 to n minus 1, you can say that e i plus 1 is equal to you can make use of this 

d i sorry and we can use d prime i plus 1 is equal to b i minus c i i plus one. So, we 

have… 

So, we can there are total of n equations. So, the first ones are given by these 

expressions, so e 1 and b i prime. So, e 1 and b i prime are the things that that are to be 

determined so that we convert this into two diagonal matrix. So, the first ones are 



determined by these simplified equations specifically for this case, and then, 

subsequently from i equal to 1 so this becomes e 2 which is divided by d 2 which is 

known divided by a 2 known minus c 2 known and e 1 which is already known here. 

Similarly, b i 2 is given by b 2 known here c 1 c this is c i plus 1 known c i plus 1 is 

known and b 1 which is already known and this is already known e 1 is known and 

then... So, from ones we go to twos and from twos, we again go to threes involving these 

values which are already here. So, we can go through this process, and then, find out all 

the elements of the upper bi diagonal matrix, only having the element which is here and 

once we have this, then last equation will have only this one, and then, we can solve this. 

At any row this will contain phi i plus e i and phi i plus 1 like this. So, we can use this 

this equation here to solve from the bottom of it. So, we have the last one is coming from 

the i plus 1 b prime here, and then, we can substitute that value here, and then, get this 

and this value here, and then, get this value here, and then, get this like that. So, the back 

substitution will involve only one multiplication. 
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So, the back substitution is done like this. So that is what we have phi i is equal to b i 

prime minus e i times minus i plus 1, this is for i equal to n minus 1 n minus 2 like this, 

whereas for phi n this is simply given by the right hand side. 



So, we can see that each back substitution involves 1 pro one multiplication; so there are 

n multiplications here or n minus one multiplication in the back substitution process and 

in the forward elimination process, we have one multiplication here and one division 

here, again one multiplication, two multiplications and one more. 
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So, this is two multiplications here two multiplications or divisions here, and then, three, 

four, five. So, there is phi n numbers of multiplications slash divisions for elimination for 

forward elimination and n minus 1 number of operations of multiplication for back 

substitution. 

So, the total number of operations here is about 6 n number. So, this varies as n raise to 

the power of 1. So, this algorithm essentially contend to solve c i, a i and d i is given here 

and this is known as the Thomas algorithm. So, the tri-diagonal matrix algorithm it is 

also known as TDMA- tri-diagonal matrix algorithm, this is very efficient, because this 

involves 6 n number of operations and scales linearly with increasing matrix size. But it 

can be used when you have a matrix of the tri-diagonal form, which is obtained only, for 

example, elliptic equations in one dimension or these kinds of parabolic equations again 

in one dimension involving the diffusion involving a diffusion term. 

So, the moment you make it like this in two dimensions, you do not have three; you have 

two more dimensions which will be somewhere here with zeroes here and zeroes here. 



So, when you have five diagonals which are separated by some zeroes here, then we 

cannot make use of the pentadiagonal matrix algorithm. You can do a similar kind of 

simplification of the Gaussian elimination process for a pentadiagonal matrix, where a 

matrix is like this; so five adjacent diagonals representing, for example, i minus 1 i minus 

2 i plus 1 and i plus 2. 
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So, five succeeding elements, five successive elements are coming in to the difference 

equation that is what we have when we have, for example, a term like this a 1 

dimensional term which is differenced using a fourth order accurate central differencing 

for the second derivative will give us five points centrally spaced like this. 

So, in such a case we have pentadiagonal matrix and this pentadiagonal matrix method 

can also result in this kind of explicit method like what we have here which is also very 

efficient, but we cannot make use of the pentadiagonal matrix algorithm for solving these 

five diagonals that appear when we do second order differencing for a two-dimensional 

diffusion equation. So, this diffusion equation will also have five non diagonals, but 

these diagonals are not adjacent diagonals, they need three adjacent diagonals which are 

coupled with this and this. 

So, for such cases we cannot make use of this. So, although this method the TDMA 

method is very efficient, it cannot be used for the general case, because for the general 



case we have more than one dimension, but still it is used as the basis for coming up with 

an iterative scheme which takes advantage of the fact that we have a 1 dimensional flow 

a one-dimensional algorithm which is very efficient. So, in such a case, for example, you 

can do some operative splitting kind of methods or alternating direction methods which 

are based on the efficacy of TDMA in solving one-dimensional diffusion equation very 

effectively. 

So, as a method in itself for the whole problem it does not come in handy, because we do 

not have those kind of specialized cases, but as a combination method, this definitely 

finds its use in the c f d (()). 

One last thing about the TDMA scheme is that, we have not made sure in any way that 

any of this division by error does not occur in this. Round off error is not a problem, but 

division by error is a possibility, but if we have matrix a here (01:02:00) the tri-diagonal 

matrix here which is diagonally dominant then we know that there would not be any 

division by zero like this. So, in such a case we use the Thomas algorithm. 

So, Thomas algorithm can be applied blindly to any tri-diagonal problem which has the 

diagonal dominance as the condition, otherwise we have to be careful in terms of doing 

this. And especially in c f d problems in which the diffusion problem is diffused using 

central diffusing in such a case, we do have diagonal dominance as almost as almost as a 

corollary for the differencing formula. 

So, in such a case we can make use of Thomas algorithm. So, with this, we have 

completed description of some relevant direct methods of use of relevance to the c f d 

type of problems. 

We will then describe some types of basic iterative methods, and then, we will look at 

what what kind of computation time is required for them, and then, we will look at 

combinational methods which will give us complete solution. Thank you.  


