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Illustration of the CFD approach through a worked out example 
 

We have seen how the CFD method works in principle for the case of finding out the 

laminar flow steady, fully developed flow through a duct of rectangular cross-section. As 

we have seen the method, let us now try to work it out and get to know it better how the 

CFD solution works. So, we are going to take again the case of a rectangular cross 

section.  We will solve the corresponding Gaussian equation for it with actual numbers to 

see how the solution works using the CFD approach. 
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So, what we are looking at is steady fully developed laminar flow through a straight duct 

of rectangular cross section. So, we take the geometry to be like this. The equation that 

we are interested in is dou square w by dou x square plus dou square w by dou y square, 

equal to d p by d z times 1 by mu. When we want to work out, we have to put some 

numbers to this. So, we will put this whole thing to be equal to 1. This is the equation 



that we want to solve subject to this domain and we will put some numbers to this very 

soon and subject to the condition that w is equal to 0 on all walls. 

So, the first step of the CFD solution is that we have a governing equation and we have 

the boundary condition.  We have a flow domain with actual dimensions of this flow 

domain yet to be specified and we should put here this as being equal to minus 1 because 

mu here is the dynamic viscosity which is constant, and pressure gradient is negative in 

the positive flow direction. So, if you want w to be positive then we should put a 

negative sign so, we will just put for the nominal case of this value on the right hand side 

being minus 1. 

The second step of the CFD solution is to discretize the flow domain and identify the 

grid points at which we want to evaluate the solution. This is a hand calculation. So, in 

order to make this possible, we will take small number of grids. We will divide this into 

four parts, four equal parts and this into three equal parts, just to show the unequal thing.  

We say that, this is where we measure; we want to find out the velocities. As per the 

boundary condition that w is equal to 0 on all walls; these are the wall and points; this is 

where the velocity is 0. 

So, in this we would like to know the velocities at these six interior points subject to the 

condition that w is equal to 0 at all the other grid points, and that the resulting w 

distribution within this at these grid points satisfies this relation approximately. So, we 

have to put some number here.  So, we will put i here in the x equal to constant planes to 

be 0 1 2 3 4 and j equal to 0 1 2 3. 

So, in this problem the unknowns can now be listed. These are the value of w at these six 

points and we can identify them with the i index and the j index. So, these are w i comma 

j and since both i and j are in single digits we can write this as w i j.  Specifically, we are 

interested in this point which becomes w 1 1, this is w 2 1, this is w 3 1, this is w 1 2, this 

is w 2 2 and this w 3 2. So, there are six unknowns and these are the values that we want 

to find subject to the w distribution satisfying this condition, and also this equation where 

the right hand side is given as minus 1.So, the pressure gradient divided by viscosity for 

this fully developed flow within this rectangular duct is this. 

Now, here we are also taking the case of delta x being constant and let us put this as one 

unit. At this stage, we do not have to specify what that unit is, may be meters or 



millimeters and so on. It depends on the actual problem. For the sake of the numerical 

example, we will take delta x to be 1 and delta y to be 1. We will do later on an 

assignment where these numbers are different. So, under these conditions, now 

everything is specified here for us to launch our third part of the CFD problem. 

So, we have taken the equations, we have discretized the points and we have located the 

unknowns here. So, this is step one, step two, and third step is to write down the 

approximate form of this equation which is going to be valid at each point, and as we 

have said, we will approximate dou square w by dou x square, at the location i comma j.  

As w i plus 1 j,  minus 2 w i j, plus w i minus 1 j, divided by delta x square,  and dou 

square w by dou y square at i comma j is approximated as w i j plus 1, minus 2 w i j plus 

w i j minus 1 by delta y square. So, this equation is going to be discretized. Using these 

approximations as;   this plus this is equal to minus 1 at a point i j. 
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So, we have finally the discretized equation. We can also take a note of the fact, that 

delta x is equal to 1 and delta y is equal to 1. So, we can take a note of this. So, the 

denominator is equal to 1 here and is also equal to 1 here. So, we can directly substitute 

this. As the discretized equation at point i comma j is given by this,  plus this  equal to 

minus 1, i comma j plus,  w i minus 1 j plus, w i j plus 1 minus, 2 w i j plus, w i j minus 1 

is equal to minus 1. So, this formula we apply at each of the points at which we want to 

have the solution. So, for example we take this recurrence, this formula  here.  We apply 

at this point, this point, this point and that’ll give us six equations that we can get from 



this. So, for this point we can say that point 1 comma 1 is this one where it is 1 in this 

direction, 1 in this direction. So, this means that i is equal to 1, j is equal to 1. So, we 

substitute this. Here we get, w 2 1 minus, 2 w 1 1 plus, w 0 1 1 plus, w 1 2  minus, 2 w 1 

1 plus, w 1 0 is equal to minus 1.  
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So, these points with zeros are the boundary values. For example, w 0 1 is this point and 

w 1 0 is this point and w 0 1 is this point. and we know from the boundary condition that 

at all these point; w is equal to 0. So, where we know the boundary value, here we can 



substitute this so, this is equal to 0 and this is equal to 0, and we have minus 2 w 1 minus 

4 w 1 1. So, we can write this as minus, 4 w 1 1 plus w 2 1, plus w 1 2 equal to minus 1.  

We take this thing to the other side, so, we can get w 1 1. We take it here and then we 

divide by minus 4. So that’ll be, 1 plus w 2 1 plus w 1 2 divided by 4. This is the formula 

for w 1 1. 

We will do the same thing for the next point which is this one. So, that is point 2 1. This 

implies that i is equal to 2 and j equal to 1. So, we substitute these values again in this 

equation.  We should be getting w 3 1 minus 2 w 2 1, plus w 1 1, plus w 2 2, minus 2 w 2 

1, plus w 2 3. This is 2 3 and this is 2 1 and this whole thing is equal to minus 1. Here,   

there are no boundary points, so, we can write this as minus 4 w 2 1 is equal to, we can 

take all the other things onto the right hand side minus w 3 1, minus w 1 1,minus w 2 3. 

So, this is 2 0, this is j is equal to 1, so this is 0 here and 2 0 is this one and this is 0 here. 

So there is a wall point. So this is like this and so from this we can get w 2 1 is equal to 1 

plus w 3 1, plus w 1 1, plus w 2 3 divided by 4. We can do the same for this point; that is 

3 1 this implies i is equal to 3 and j is equal to 1.So, let us see, if we can do without 

mistake. So, w 4 3 almost so, w 4 1, minus 2 w 3 1, plus w 2 1, plus w 3 2, minus 2 w 3 1 

and this is w 3 0. 
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So again w 3 0 is the point at this value, and w 4 1 is this point. This is 0 and this value is 

0.So, this is 0 here and this is 0. If these values are different, we can substitute those 

values, and then take them to the right hand side. So, if the boundary condition is known, 

then that goes onto the right hand side, it would not appear on the left hand side as the 

equation. So, we can rewrite this equation, as minus 4 3 1, plus w 2 1 plus w 3 2 equal to 

minus 1. So, this gives us, w 3 1 as 1 plus w 2 1. So, this is the equation for w 3 1 and we 

can similarly do for point 1 2. Here, this implies i is equal to 1 and j is equal to 2. So, this 

is w 2 2 minus, 2 w 1 2, plus w 0 2, plus w 1 3, minus 2 w 1 2, plus w 1 1 is equal to 

minus 1. We are looking at this, so we have 0 2 is 0 here and we should be getting 1 3 

here. So, we should be getting 2 wall values here, so this is 0 and this is 0.  So, 1 3 is 0 

and 0 2 is 0, so both are wall values. 
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So, from this we get the expression for w 1 2 1 plus w 2 2 by 4. So, this is the expression 

for w 1 2.  So, we have to do these two expressions and if we want, we can look at a 

pattern that is developing. So, the value at this particular thing is given as the right hand 

side here, plus the neighboring points this plus this, plus this, plus this, these two are 0 

divided by 4, we can go through that. So, for example, 1 plus w 2 1, plus w 3 2 by 4, so 

we can do it like this or we can do it the hard way. Let us continue the hard way, so this 

is 2 2 1 is equal to 2 and j is equal to 2. Substitution of this expression  into this, w 3 2, 

minus 2 w 2 2,plus w 1 2,this w 2 3, minus 2 w 2 2,   plus w 2 1 is equal to minus 1. So, 

we are looking at this point here, so we have w 2 3 is a wall value. So, this is equal to 0, 

so it will be 1 plus this, plus this, plus this, divided by 4. 
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So, from this we can write w 2 2 is equal to 1,plus w 3 2,plus w 1 2,and the last point is 

w point 3 2  and here i is equal to 3,and j is equal to 2. So, substituting this, here we get  

w 4 2 minus 2 w 3 2, plus w 2 2, plus w 3 3, minus 2 w 3 2,plus w 3 1 is equal to minus 

1. Here, we are considering this point, so this is an average of these four. So, there 

should be one boundary point here and one boundary point here, so, that is 4 2 and 3 3. 

So, this is 0 and 4 2 is 0. So, we can write from here, w 3 2 is equal to 1, plus w 2 2, plus 

w 3 1 divided by 4. So, by approximating at each of these discrete points at which we 

want to get the solution, by approximating that partial differentiation equation with finite 



difference formulas, and coming up with a template here after substitution of delta x and 

delta y and the constants like this, we can take this template and apply it to each point, at 

which we want to get a solution, and from that template we will be able to derive the 

corresponding algebraic equations which give us the values. We are expressing the value 

at w 1 1 here in terms of these points, these expressions like this. 
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So, we find that there are six equations, a, b, c, d, e, and f which can be solved. These are 

algebraic equations and these are such that we cannot solve any of these equations 

individually. So, that is, we cannot from this equation, find w 1 1 and this equation or 

from this equation w 2 1, like that. So, these are simultaneous algebraic equations and 

these are also equations with constant coefficients. All of them have a coefficient of one, 

or zero or something depending on what we have here, and we can see that we have a set 

of linear equations with a linear algebric equations with constant coefficients, which we 

get as a result of discretizing the governing partial differential equation at each point, at 

which the value or the variable is to be evaluated, so we have converted. If you put all 

these into a w equal to b form, then the matrix a here will have the coefficients of all the 

variables and we can write them down, and we can then invert the matrix. So, that is one 

way of doing it. But, in this example, typically in computational fluid dynamics, we do 

not directly invert the matrix for a solution of a w equal to b. It is because, we normally 

deal with very large matrices, so inversion of those matrices is very expensive 

computationally, so we use some iterative methods. So, we illustrate the application of 

the Gauss-Seidel iterative method.  It is a fairly basic iterative method for the solution of 

a of i equal to b. At this stage, we take it as granted that this method will work for this set 

of equations. We will take a minute to explain, what this, how this iterative method 

works and then we can actually look at the solution. 



So, we consider a set of three equations involving three variables, a 1 1 x 1, plus a 1 2 x 

2, plus a 1 3 x 3 is equal to b 1. a 2 1 x 1, plus a 2 2 x 2, plus a 3 3 x 3 is equal to b 2.  

And a 3 1 x 1, plus a 3 2 x 2, plus a 3 3 x 3 is equal to b 3. So, these are a system of three 

linear algebraic equations involving variables x 1, x 2, x 3 with constant coefficients a 1 

1 to a 3  given here, and also b 1, b 2, b 3 are given here, and we want to find out from 

this number x 1 x 2 x 3. 

(Refer Slide Time: 28:06) 

 

(Refer Slide Time: 28:25) 

 



There are many ways of doing this and what we have in our example here is the set of six 

equations involving six variables and we can write down all the six in the form of a 6 by 

6 equation like this, and in the Gauss-Seidel method we solve this iteratively by 

expressing taking in the first equation. We express x 1 in terms of x 2 and x 3, and we 

take this equation x 2 in terms of x 3 and x 1, and then x 3 in terms of x 1 and x 2 using 

the third equation and we start with some guess value. We proceed with the iterative 

update of x 1 x 2 x 3 from those given values until we reach a solution, which is not 

changing for everywhere. 

So, this iterative procedure is very easy to implement, it will work only under certain 

conditions. We will look at the conditions, for convergence of this particular method. For 

the time being we just describe here, how the method works and how to implement it and 

to get a solution. From this, so from this we can write this as x 1 equal to b 1, minus a 1 2 

x 2, minus a 1 3 x 3 divided by a 1 1. x 2 is b 2, minus a 2 1 x 1,minus,this is a 2 3 a 2 3 

x 3 divided by a 2 2, and this is written as x 3 equal to b 3, minus a 3 1 x 1,minus a 3 2 x 

2 divided by a 3 3.  

So, we have written these expressions like this and we start with an initial guess which 

can in the case of a convergent method.  In cases where the Gauss-Seidel iterative 

method works, it does not matter what the initial guess is, the final iterative solution will 

work in all cases. So, we can start with an initial guess 0 0 0 for x 1 x 2 x 3 and we can 

get from this x 1 x 2 x 3 at the end of the first iteration. By successively substituting in 

this, and then from this we get again x 2 x 3 in the second iteration by again substituting. 

And then we go on x 1, x 2, x 3 for the kth iteration, until we reach successive values of 

x 1, x 2, x 3 which are not changing.  

So, the way that we evaluate this is that, x k plus 1. At the end of k iterations, we have 

the value of x 1, x 2, x 3. So, the new value of x k plus 1, is evaluated as x k plus 1is b 1 

minus a 1 2 x 2 k, and a 1 3 x 3 k and x 2 is evaluated as b 2 minus a 1 2 x 1. We already 

have the k plus oneth value. So, this is k plus 1 and this is k here. x 3 is evaluated as b 3 

minus a 3 1 x 1 k plus 1 and k plus 1 here. So, in   that way, given the kth values of x 1,x 

2, x 3, we can evaluate x 1 k plus oneth value of x 1 x 2 x 3 like this and in this way we 

generate from a starting guess. We can generate values and we can get the solutions 
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So, this is the method that we will use for the evaluation of this and we can therefore 

write these equations. Already, these are put in this Gauss-Seidel form, so we can say 

that w 1 1 k plus 1 is w 2 k. Here, this is k plus 1 is 1 plus k and we already have k plus 

1, so we can put k plus 1. Here this is k. Here 3 1 k plus 1 is w 2 1. We have k plus 1,   w 

3 2 we do not have yet.  So, this has k w 2 k plus 1 is 1 plus w 2 2 k w 1 k plus 1 w 2 2 k 

plus 1. 3 2 we do not yet have, so this is at kth value. This is what we already have this. 

So this is k plus 1 and this is also k plus 1. And finally the value of w 3 2 is obtained as, 

k plus 1, k plus 1. So, we have here the formula for evaluating w 1 1, w 2 1, w 3 1, w 1 2, 

w 2 2 and w 3 2, from known values of the same variables at the previous iteration.   So, 

we start with an initial guess, w i j equal to 0. And then, we generate solution at the end 

of the first iteration, the second iteration, third iteration, like that. Then, as we keep on 

going, we will see how we can get, how we will be getting converge solutions. 
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So, this iterative procedure is quite common and is best illustrated when we tabulate the 

results. So, we will try to tabulate the result, so as to get an understanding of how the 

solution evolves in this particular case with using this particular iterative method. 

(Refer Slide Time: 35:36) 

 



(Refer Slide Time: 36:05) 

 

In evaluating this point, we made a small mistake here. When j is equal to 1, so this is 2 i 

j plus 1, so this is w 2 2, and this 2 1, and this 2 0. So, this we put correctly, this we put 

correctly here we put as 2 3, so that has to be corrected here and also here. So, this is the 

formula. Now, we will try to do the solution of this using the Gauss-Seidel method in 

Excel because it is very easy to see and we can also see how the solution evolves. 
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So, we will take a look at this we will try to program the solution of these using the 

Gauss-Seidel method in Excel. So we would like to get back it 



Sir there is a mistake! 

There is a mistake. 

You want me to do now. Are they going to see that or...  

Only this sir, only problem. 

So, just we will go into this. Here we have the formulas for the six points w 1 1, 2 1, 3 1, 

1 2, 2 2, 3 2 which are written as per what we have derived. For example w 1 1 is 1 plus 

w 2 1 plus w 1 2 divided by 4. Like this, and here we are associating the six variables 

and this is the solution, at the initial guess. So, we are giving this as zero values, for each 

of this and the value here w 1 1 is coded as per this 1 plus w 2 1, is this one here. So, that 

is, b 2 plus w 1 2, is d 2 divided by 4. And if you, consider for example 1 2 is given as 1 

plus w 2 2, so that is this value plus w 1 1 and since we take the latest value it should be 

this. So it is, 1 plus e two plus a 3, divided by 4. So, that is how we have programmed. 

So this is, for w 1 1. This is w 2 1, which has w 3 1, plus w 1 1, plus w 2 2. 

So, these are coming up like this w 3 1. We have already seen that is w 2 1 for which we 

have the latest value and w 3 2 for which we have the previous value here. w 1 2, w 2 2 

has w 3 2 which is yet to be evaluated. So, that is F 2 w 1 2 which is already evaluated, 

so it becomes D 3. This one here and w 2 1 which is already evaluated which is this B 3 

divided by 4.And finally w 3 2, here is w 2 2 which is evaluated, so we put it as this 

value that is E 3 and w 3 1 which is already evaluated. So, that is E 3 by 4. So, we have 

put the formulas here and then let us just erase all this. 
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So, this is what the value is at the end of the first iteration and we can take this down. We 

can just click and the solution will evolve. So, we can see this is the iteration number, so 

we can put this as iteration number. This is equal to the first iteration that is the initial 

guess. This is the second iteration, so we can write this as 1 plus 1 plus, so second 

iteration. We have these values, third iteration, these are changing and we can see that as 

we go more and more iterations it is this particular w 1 1 has gone from 0.25 to 0.406, 

0.497, and 0.543. But, it is beginning to stabilize by the end of the sixteenth iteration. It 

has become stable up to the fifth decimal point. Here, similarly is these also have become 

stabilized, and we have got the final solution which is accurate up to the fifth decimal 

place as given by this. So, this is how, we have generated the solution for the six 

unknowns using the Gauss-Seidel method. Using an iterative scale, if you were to change 

the initial guess, for example, if you make this as 1, so if you change everything to 1 the 

solution is changing but the final solution will not change. The final converge solution 

will not change, I can even make this as 10 here, the solution is not changing. The 

converged solution will not change if I change my initial guess. So, that is one 

characteristic feature of a convergent iterative method. What will change of course, is the 

values as they go through the iterative process and the number of iterations which are 

needed to get to the converge solution may change but the final solution itself will not 

necessarily change. So, in this way we can get a solution to the overall scale. So, this in a 

sense, the CFD approach. What we have illustrated here is for the very simple case with 

just six points, and six points will not give us a very good solution. We have to do it for 



much larger number of points so that we have to do much more work, but it will be done.  

We are going to show the final solution that we get, when we increase the number of grid 

points and from what we have here, we have four divisions in this direction and three 

divisions in this direction. 

We can make it bigger like this; there are more number of grid points in this direction.  

More number of grid points and obviously even these values become unknown. Now, the 

unknowns are as many as this and we can make it even more. By putting further, 

subdividing in this way and in this way, so the more the number of grid points, the more 

accurate will be the solution. We will see how the solution changes when we put this. 

When we subdivide it further and further at some point we will notice that with further 

subdivision the solution will not change, and that is the point at which we have a grid 

independent solution. That is the ultimate solution to the governing equation that we 

have started out with. 
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We have seen that doing out by hand is very tedious, now we come to the computer.  

And then once we have a computer, we can easily program this and get a solution for 

large number of grids.  Here, we have a table which summarizes the solution for different 

grid sizes when you have a 6 by 6, 7 by 7, 10 by 10, and 50 by 50,100 by 100, like this.  

We can see that as the grid size increases the matrix size also increases. For example, if 

you have 41 points by 41points then we have matrix size of 1600 by 1600. We have 

close to 1600 variables, in this, and in each case, we can use the Gauss-Seidel method 

and then get a converged solution.  Once we have the converged solution, we can find 

out the average velocity by taking an average of all the values. And that average values, 

what is put here in this column and we can see that for our 6 by 6 grid size. We have an 

average velocity of 0.7409, this is the average speed, and as the grid size increases to 10 

by 10 it has come down to 0.6722. For 25 by 25, it has come down to 6070 and as the 

grid size increases, it seems to be stabilizing. For example at 51 by 51, it is 5843,at 71 by 

71, it is 0.5765,so the changes becoming less and less, and 94 by 94 is 0.5742, so it is 

about 57 is the velocity that we are getting as the average velocity.  This is what we 

expect as average velocity and the same thing is plotted here. It is the mean velocity that 

is computed versus the grid size.  We can see that for small grid sizes, there is a rapid 

change here, but eventually it is coming down to about 0.57 and what is plotted in these 

three figures are the contours of the velocity. Within the cross section, we can see that at 

for a grid size of 15 by 15, we have high velocity at the center and otherwise we have 

almost like an elliptic type of things showing different velocity levels and at the four 



corners we have low velocity, as you increase the size here it is stabilizing to a particular 

pattern of the velocity. 

So, here you can see rough edges. Whereas here with the increased number of grid 

points, we have smooth contour lines which is again an indication that reaching a stable 

solution stable solution in the sense, a converged solution which is known as a grid 

independent solution, So, this illustrates, the power of computational fluid dynamics, that 

we can now get a velocity variation within the cross section by having large number of 

grid points spread throughout. We can use fairly simple methods which are very easy to 

program in the computer and which are therefore easy to solve and then get the velocity 

distribution for this fairly complicated shape under steady conditions. 

So, the methods that we have employed in this are I would say elementary and which 

requires only elementary knowledge of mathematics. It does not require much more than 

this. So, there lies the appeal of computational fluid mix that the underlying principles 

are something that can be understood fairly easily by an engineer, with a basic course in 

fluid mechanics and mathematics. 

So, what we have done in this lecture is to put in practice the CFD method of our 

solution. We have taken the partial differential equation which governs the flow and we 

have arrived at a template of an approximate form of the partial differential equation 

which is applicable for any grid point within the flow domain.  We have used this 

template to generate as many number of algebraic equations as there are unknown 

variables within representing the velocity at the interior points of that particular flow 

domain. 
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This gave us a matrix, a w equal to b. The size of the matrix depends on how many grid 

points that we take, and we have specifically used one method which is useful for 

solving large number of these equations which is the Gauss-Seidel method.  If you apply 

that, then go through the iterations preferably and almost invariably on a computer, and 

then we get a converged solution. The converged solution can be integrated or added up 

to compute the average velocity.  We can find out how the average velocity changes, 

with the increase in grid size, and ultimately get a grid independent average velocity, at 

which point we can plot the contours, like what we have shown here. This represents the 

variation of velocity within the interior, so this how a CFD method would work. But we 

have deliberately taken a very simple method and the governing equation is very simple. 

The geometry of the flow domain is very simple, the discretizing method is also very 

simple and the solution method is also very simple. 

CFD can do much more than what is shown in this simple example and this is what we 

are going to do in the next several classes. We will introduce complexity, in each of 

these and then come up with a method which can ultimately solve general three 

dimensional flow which is unsteady, which may be turbulent, which may be reacting and 

which may be three dimensional. So, in an arbitrarily complex geometry, we will try to 

come up with a solution method which is robust efficient and which can also consider the 

realistic geometries that are present in industrial equipment  and realistic flow conditions 

that are present in industrial equipment and using these techniques one should be able to 



look at a number of scenarios, like what is the optimal distribution of a mixing 

equipment within a reactor, so as to get a highest mixing efficiency at the lowest power 

consumption in a chemical reaction engineering application. Also, if you are looking at a 

boiler furnace, what kind of firing practice must be adopted for a given coal in order to 

minimize the formation of nox gases. 

So, if you are looking at those kinds of realistic scenarios, one has to be able to solve 

three dimensional unsteady reacting turbulent flows. The principle is that we have 

enunciated here in this will be extended to deal with those kinds of complexities in the 

coming lectures. 

So, in the next lecture we are going to start with an outline of the overall course having 

now known what CFD is, and then we will go into the each of the modules which 

represents complications on each of these things. 


