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We have seen how to check for the consistency of a given discretization scheme, which 

includes putting together of the finite difference approximations for all the derivatives 

that appear in the equation. We have also seen that although it seems trivial, there can be 

certain cases in which the consistency condition is not satisfied. And we have to be 

aware of that. We have also seen that mere satisfaction of the consistency condition does 

not guarantee us a good solution. We have seen specifically the FTBS, FTFS and FTCS 

schemes for the linear wave equation, all satisfy the consistency condition. But they do 

not lead as to the satisfactory solution at the end. 

So, we have to consider not just the consistency, but also the stability of a given 

discretized equation. So, before we look at it, we have to define what we mean by 

stability. We have said in loose terms that stability means that particular scheme does not 

allow the amplification of errors. And errors we have said can be from rounding of 

mathematical operations done on a computer with finite machine accuracy or the round 

of errors that appear at the discretization stage itself. We have seen that in a first order 

term, you have a number of errors that appear a number of additional terms which are 

neglected as part of the truncation error. So, there can be errors which may be cropping 

up for any reason. And in a typical initial value problem, we go from one time step to 

another time step and then further time steps. The system evolution with time is 

computed in a series of sequential steps.  



So, if during some stage of the computation, and error from any of the sources becomes 

significant. Is it likely to be amplified further or is it likely to be attenuated. If it is 

attenuated there is no problem towards the long term solution, but if it gets amplified 

then very soon we will find that the error becomes so large compared to the true solution. 

That the computed solution becomes irrelevant as far as giving us any useful information 

is concerned. 

So, we have to understand under what conditions this amplification of error takes place. 

And this also makes us possible to define what we mean by stability in a quantitative 

way. So, now we are saying that we have an exact solution and we have a computed 

solution. And we know that the computed solution is discrete that is it is defined only at 

certain space increments and certain time increments.  
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So, if you say that N x i, t n which in our standard definition is N i n is the numerical 

solution; numerical solution at a particular space location at a particular time instant, and 

if you say that D x i, t n is the exact solution at the same spatial location and at the same 

time location. So, this is a exact solution. Then we are saying that the numerical solution 

that we have is the exact solution plus some error. So, we have an error at each space and 

time location. So, we have an error at a particular space location, at a particular time. 

And if you look at the next time step at the same point; so that is N i n plus 1 is D i n plus 



1, the exact solution plus an error at that nth time n plus 1th time step at the same 

location. 

So, when we say error is not amplified, we are saying that the error at n plus 1 is not very 

much larger than error at n. And we can form a ratio of n plus 1 by error at n, and we 

take the modulus of this. So, the absolute value of this should be less than or equal to 1 

for error not to be amplified. Therefore, we are saying that for stability, the error at n 

plus 1th time at a particular location divided by error at nth time at the same location 

must be less than or equal to 1, and this must be true at all points - at all spatial points for 

this error not to be magnified. 

Now, we must note that at any particular time step at any particular time step, there is a 

certain there may be certain error. And when we talk about the amplification of error, we 

are talking about the long term stability of the scheme, that is we are talking about as n 

tending to infinity for large time steps, error is not amplified; error is damped for a stable 

scheme and this is what we are looking at. We are not specifically saying that if this 

condition is satisfied that error at any time step is going to be small, we are not actually 

saying that; that if there is an error which is created at a particular point of time, then that 

error is going to be eventually damped out by using this particular criterion. So, we are 

talking about a long time damping of error, and it is in that restricted sense we are 

looking at the stability of a particular scheme. 

So, we say that if a particular scheme, by which we are computing the numerical 

solution, has an error damping property as given by this. Then we say that the scheme is 

stable. Stable means a stable scheme means that the error associated with this is reduced. 

A key question is, how do we find the error how do we find the error? So, that we can 

find out the error at n plus 1th time and nth time, and then take the ratio. 

If we are able to estimate the error somehow, then we can investigate this. And we must 

estimate the error even before we do the computation. Then we know that we can try to 

avoid those kind of discretization schemes which are going to give us problems, and we 

can only incorporate those discretization or finite difference approximations which give 

us satisfactory solution. So, in that sense, the key thing is to be able to determine this 

error damping property of a scheme even before we do the computation. And that is very 

key question.  



And for a linear problem that is when we have a governing equation which is linear, and 

if you are talking about a problem with periodic boundary conditions. That is where the 

boundary conditions are are repeating over a certain space interval. In such a case, there 

is a method by which we can apriori determine whether or not the particular scheme has 

this error damping property. So, that particular scheme is called von Neumann analysis. 

This has a some history of having being developed in the Second World War. And it was 

actually kept as a military secret, and it was published in the open literature only in 

1950s - early beginning of 1950s. So, in that sense as a historical significance also. 
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Now, when you have when you do not have the luxury of a linear initial value problem. 

So that is if you are considering a problem which is non-linear, which is typically the 

case with our conservation equations - the momentum conservation equation is 

inherently non-linear. In such a case, we do not have the luxury of the von Neumann 

type of analysis which tells us apriori, what is going to be the problem, whether the 

particular scheme is going to be stable. We can only talk about the stability in the case of 

linearized part of linearized form of the governing equation. So, we have to linearized 

the non-linear equation at several points, and then at each of those points of interest, we 

can check for stability using this kind of method. And then, so, we can talk only in such a 

case about local stability of the particular discretization scheme. 



Now, when you talk about boundary conditions other than the periodic boundary 

conditions, again we have a restriction in terms of the applicability of the von Neumann 

method. In such a case, if you have a non periodic boundary condition like a Dirichlet 

boundary condition and Neumann boundary condition on the other side. Then in such a 

case, this method will not work. But what has been found is that usually the boundary 

conditions do not play such a big role in terms of determining the stability. And if one is 

so particular about it, then one could use other methods like the matrix method for the 

stability analysis. We will not look into the matrix method as part of this course; we will 

look only at the von Neumann stability analysis to illustrate the concepts involved in in 

the discretization. 

So, now let us see, what we can do about describing a method for checking the stability 

of a particular scheme. So, we are talking about a linear initial value problem, and we 

can take continue with the example that we have already done. This is a linear 

convection equation or the wave equation - linear, because u is constant and we have the 

first derivatives appearing without any nonlinearity term. So, we have looked at, for 

example, the FTBS scheme - the forward in time and backward in space, phi i n plus 1 

minus phi i n by delta t plus u times phi i n minus phi i minus 1 n by delta x equal to 0. 

This is what the forward in time and backward in space scheme is, and we have seen this 

has an interesting property that it gave us reasonable non-blowing up results under 

courant number when sigma was less than 1. 
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When sigma was less than equal to 1, it gave us okay kind of results. Because we saw 

that it had something like a wave like thing which is going at the right in the right 

direction at the right speed. Although, there was some sort of smearing for values of 

sigma other than 1, it it was okay kind of solution for sigma less than 1. But when sigma 

was greater than 1 we got results which are clearly non not okay. 

So, in that sense, this exhibits conditional stability type of behavior. So, there are some 

conditions in which it seems to be okay and some other conditions where it is not okay. 

So, it is a good case for us to investigate, and see whether or not we can predict this kind 

of behavior from this. So, this is the solution, this is the equation that we are getting, and 

there is no hint of any error in this. In the sense that there is no hint of what the error can 

be. So, what we try to do here is that; let us say that this is the equation that we are 

solving, and we have used this to get a numerical solution computed solution at N i n. 

And we also have the exact solution and the numerical solution is the exact solution plus 

some error here. 
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So, let us substitute this here. So, we can say that the numerical solution that we are 

getting will satisfy this equation, because this is actually how we got the solution. So, the 

condition of N the computed solution is that this would satisfy this equation. So, since 

that satisfies the equation, then at a particular i and n, and n plus 1. This is we know that 

the computed solution satisfies this at least to machine accuracy for for this equation. 



Now, we know that this has some exact component and an error component. So, we can 

substitute wherever we have N i n plus 1, we can substitute D i n plus epsilon n plus 1 

like this. And so, we can say that this is also equal to D i n plus 1 minus error at n plus 1 

minus the same thing here, D i n we have plus here. So, this is plus plus, error at n 

divided by delta t plus u times D i n plus error at n minus D i minus 1 n plus error at i 

minus 1 divided by delta x is equal to 0. 

Now, we can this is a this is, we can separate all the D i and all the epsilons, and we can 

write this as D i n plus 1 minus D i n by delta t plus u times D i n minus D i minus 1 n 

divided by delta x minus of epsilon i n plus 1 minus epsilon i by delta t plus u times 

epsilon i n minus epsilon i minus 1 n by delta x equal to 0. So far, we have not made any 

advance except substitute the definition of N and D, and epsilon. 

Now, we say that D i n is the exact equation - exact solution. So, this whole thing is 

equal to 0. So, this whole thing is equal to 0 and therefore, the error this is also equal to 

0. So, from this we can say that error at n plus 1 minus error at N divided by delta t plus 

u times error at i n minus error at i minus 1 n by delta x equal to 0. Now, what is this? 

This tells us exactly how the error at n plus 1 is going to be in terms of errors at previous 

times step and other locations. So, this gives us the way that the error evolves. So, this is 

error evolution equation. So, this has the information that we are actually seeking. It says 

whether or not error is likely to grow. So, if we are able to… So, this captures even 

though we cannot say exactly what the error is, we will still be able to say how the error 

would go, because it would be satisfying this equation. 
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So, from this error evolution equation, we want to get. So, this let us call this as error 

evolution. And from this we would like to know, what this value is, and we say that the 

absolute value of this is G which is the amplification factor. And if the amplification 

factor is less than or equal to 1 then we have a stable scheme. So, we have to deduce 

from here, what is the amplification factor associated with this.  

Now, how to do this? It is an evolution equation, and the method which is finally 

developed by von Neumann. It is based on a Fourier decomposition of the error 

distribution at at different times. So, what we are saying is that error at any time is 

spatially distributed, and that spatial distribution can be divided into decomposed into 

Fourier components. And so, the overall sum of error - the error at at a particular x can 

be expressed as sum of some a m sin omega, sin lambda, m x and cosines like that. So, it 

can be decomposed into those Fourier components. And this is at a particular time t. And 

at a different time if you have if the if you have a domain which has a length of an 

example L, and if the domain has periodic boundary conditions, then that decomposition 

of the error function at as a function of x at time t can be will have a finite number of 

components. 

So, this is where the the condition - the limitation of the analysis being applicable to 

periodic boundary condition comes. So, the periodic boundary condition helps us in a 

certain way by saying that for a for a domain of length L and spacing of delta x, you 



have a finite number of components which appear in the Fourier decomposition. And 

each of, so, you can write the error as an amplitude times the the Fourier component of 

that. 

Now, what you want to say is that is the amplitude when when you look at the error 

distribution at the n plus 1th time step, and then if you decompose that also into these 

finite number of Fourier components. And then, if you look at the amplitude of each of 

these Fourier components here. And see, if any of these Fourier components has an 

amplitude which is likely to grow with time. And if it is likely to grow with time, then 

that is going to be a problematic case, because eventually the error that particular wave 

component will have an amplifying error and for example, now it may be 24 minus 3 

times 24 minus 3, and then next time it may be of the amplification factor is 2 it may be 

6 times 24 minus 3, next time it is 12 times 24 minus 3, 24, 48, 96, 192 and then 400, 

800, and then it becomes very soon after a finite number of time steps, the errors which 

was originally very small will soon become so large that compared to the exact solution, 

the error at that particular point here will be so large that - the total computed solution 

will consist primarily of error and not of the real solution. 

The true solution and the error at n plus i plus 1 and i minus 1 may be different, it may be 

growing at a, it may be differently distributed. So that means that - the solution is going 

to be completely masked by the error, if even a single component of these finite number 

of wave components that appear in the periodic composition blows up. So, this is the 

basis for the von Neumann analysis. That is we decompose the spatial distribution of 

error at any time into a finite number of Fourier components. And since the error is both 

the function of space and time, we say that each of these wave components has an 

amplitude which varies with time. And we try to seek a solution for the variation with 

time in terms of an exponential function. For example, we say that it is that particular 

magnitude of the Fourier component is exponential of a t and that the constant a if it is 

positive, then that means, that the amplitude will grow with time, and that can be a 

potential potential trouble maker. 

So, in the Fourier analysis - in the von Neumann analysis, we decompose a error into all 

into the finite number of possible wave components. And then we try to find out, what is 

the amplitude of each of the wave components, and we see if there are any conditions 



under which the amplitude can become possibly exponentially growing in the positive 

sense, and that will form the basis for the stability analysis. 
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Now, this Fourier decomposition, and looking at the corresponding wave numbers and 

amplitudes also brings in the condition of linearity. Because we are say, we are looking, 

if we have a linear system then the error distribution at any particular time can be 

expressed as a as a superposition of the contributions coming from this finite number of 

wave components. So, it is and at any time it can be expressed in terms of this finite 

number of things. And the superposition principle applies as well as long as we are 

dealing with an with a linear equation representing the error propagation. So, if this is 

linear, then we can always look at a superposition of all the finite number of wave 

components, and then look at the actual variation amplification of error at a particular 

location from n to n plus 1 as a sum of the amplification of each of those wave 

components. 

So, this analysis has a restriction of boundary conditions as being periodic, because that 

enables us to express the spatial distribution of error in terms of finite number of wave 

components. And it has the limitation of linearity of the governing equation, because 

only for a linear equation, we can talk of superposition of the different wave 

components. So, when when we can do this, then we can come up with an analytical 

method for determining the amplification factor. And we will see that the amplification 



factor depends on the parameters like delta t, delta x and u which are part of the 

governing equation, which are carried forward from the discretized equation into the 

error equation. So, it is a combination of these parameters which will influence the value 

of the amplification factor. And we will see that under some cases, we may find that the 

amplification factor becomes too large, and some other cases it may be positive, and in 

some other cases it will be it will be negative or it may be even 0 like that. So, this is the 

basis for it. And let us go through the idea here. 
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So, let us try to draw pictorially. This is the spatial variation of error and at a particular 

time t n. For example, the error may be distributed like this between x equal to 0 to x 

equal to L. And what we have is discretization of this. So, we have error here, here, here 

and so on. These are the epsilon i ns where i is this particular spatial location, i varies 

from there, and this is all at the same t n. Now, we say that error at x of t n is represented 

as sum of b m n, m representing the time sense, and exponential of j x j lambda m x 

where lambda m is is wavelength and b m is the is the amplitude of that particular wave 

here, and j is square root of minus 1. 

So, this essentially sin lambda x plus cosine lambda x type of variation. And so, and this 

function here is a function of t - the amplitude is a function of t. And this is summed over 

all possible values of m, and when you have periodic boundary conditions, then you have 

m varies from 0 to capital M, where capital M is L by delta x, where L is the total 



domain line divided by delta x, where delta x is this. So, this M here this M here 

represents wave components, and the smallest of which has a wavelength of 2 delta x 

like this, and the largest of which has a wavelength of this. 

So, for a for a discrete domain going from 0 to L in steps of delta x, like this. The wave’s 

components which appear in this start with 2 lambda equal to 2 delta x, 2 lambda equal 

to 2 L. So, you will have this component and then twice this component. So, that is this 

thing here, and then we will have may be more twice this and thrice this and and so on 

like this. And the error here - the variation of error here that we have plotted is a linear 

combination of this variation, times this amplitude of this, that is given by this, and so, 

this is one particular wave, for example, b may be b 1 and this is b 2 and then b 3, b 4, b 

5 all the way up to capital M. And each of them has an amplitude, and a certain spatial 

distribution given by the sine cosine functions here.  
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And this amplitude here is the function of time, may be at this particular time this wave 

varies like this. This particular at t n, at a subsequent time step the amplitude may 

actually increase. So, like that. So, if the amplitude at corresponding to this particular 

wavelength at t n plus 1 is greater than the amplitude at this time, then the next time it is 

going to be even higher, and even higher, and even higher, and then eventually it may 

come up to be something like this and that is really problematic. So, the error is going to 

even if a single component of this wave something with the smallest wavelength of 2 



delta x and the largest wavelength of 2 L, even a single one of them has an amplitude 

increasing increasing amplitude with time, then eventually as we go to n to n plus 1 to n 

plus 2 like that the amplitude will increase 

So that means, that the error at this particular point of time is so much, and if the exact 

solution is this, let us say that this 100 and the exact solution is 5, then the numerical 

solution will be 5 plus 100. So, that is 105. And at this point the error is going to be let us 

say minus 85. So, at the next point the error is minus 85 and this may be 6 i plus 1 this is 

6 minus 85. So, that is minus 79. So, the computed solution varies so drastically from 

100 to minus 79, where as the true solution varies only from 5 to 6. So, that is the kind of 

difficulty that we will have when the error becomes so large. When the error becomes so 

large that it (( )) it dominates the variation of the computed solution, then the solution the 

computed solution no longer follows the exact solution. And that is where the difficulty 

arises with with that. 

So, what we want to know is that we have decomposed the error at a particular time step 

into contribution from so many number of wave components of different amplitudes - 

different wavelengths, and is the amplitude of each of these finite number of components 

is it going to increase or is amplitude of any one of these things is going to increase. So, 

that is why because we have a linear equation, because this equation is linear. At any 

time we can do the summation here, and we can get the value of i n plus 1 here by 

putting n plus 1 here, and i minus 1 here by putting the corresponding x location here, 

and then we can examine the contribution arising from each of the wave components and 

then we can do that. 
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So, it is sufficient for us to examine the contribution coming at from a particular wave 

component. So, what we what we look at is that, the error at n coming from the mth 

component, we write as b m i delta x where x i is x i delta x. So, this is the error at ith 

location at nth time. So, this is nth time and lambda m is the wavelength corresponding 

to the mth wave component, and i delta x is the spatial location here. So, this is a 

contribution arising from the mth wave component and the total variation is sum overall 

the wave components. So, that is how we are looking at. But because of the linearity we 

can examine each wave component separately and we can write like this. So, and 

because our interest is in terms of seeing whether or not this amplitude is going to 

increase with time, we say that we we are seeking a solution for b as a function of time 

which is a function of time here as exponential of a n delta t times exponential of j 

lambda m i delta x, and the advantage is that - if a is positive, then error will grow, 

amplification is… So, the error is amplified. And if a is negative, then the error will be 

attenuated. So, we are seeking a solution of epsilon i n in this particular form here. 

Now, we substitute this form in the error evolution equation. That will give us an 

expression for the amplification factor. We have made a small mistake here, this lambda 

m is a wavelength we have said it should be lambda m to the inverse and normally we 

write it as k m where k is the wave number which is one by lambda, if you put lambda 

here it is not dimensionally consistent. So, we will just replace the lambda by k. So, we 

express epsilon i n arising from the mth component in in this way, and we will substitute 



this in the error equation. And see how the error arising out of error evolution from the 

mth wave component. 
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So, we are saying that it is given by u times i m minus i minus 1 m divided by delta x 

equal to 0, where i m n is expressed in terms of a n delta t j k m i delta x, where k m is 

the wave number. Essentially, this is the number of waves per unit length. So, that is 

proportional to 1 by lambda m - inversely proportional to the wavelength of that 

particular wave component. 

So, we can substitute this expression here and we get exponential of a n delta t j k m i 

delta x, this is n plus 1 here, that is this term, minus a n delta t j k m i delta x by delta t, 

plus u times, again the same thing a n delta t j k m i delta x minus a n delta t exponential 

of j m j times i minus 1 k m delta x divided by delta x is equal to 0. So, this is the error 

evolution arising out of the mth wave component, and the total error is the summation of 

errors coming from all the m components, and because this is a linear equation, we can 

look at each wave component separately and then sum it up. 

So, for the mth wave component we have this, and we can divide this whole thing by this 

this thing here. If we do that then this will cancel out, and out of this we will have a n 

delta t cancelling out. So, this term that will give us a delta t minus this divided by this is 

equal to 1 by delta t plus u times this is 1 u by delta x times 1 minus and this is this 



cancels out with this and this is minus equal to 0. So, this is the how the simplification of 

this. 
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And we have already said that G is error at n plus 1 divided by the error at n. And if we 

put on definition here, a n plus 1 delta t j k m i delta x divided by a n delta t exponential j 

k m i delta x, this is nothing but exponential of a delta t. So, what we have here is G. So, 

we can write the amplification factor minus 1 plus a delta t by delta x of 1 minus equal to 

0 or G is equal to 1 minus this is nothing but a courant number. So, the amplification 

factor is given by this. So, if there are conditions in which the amplification factor is 

greater than 1, then we can we will have we will have a instability here. So, we can write 

k m delta x as phi, and we can look at how this thing comes and we can write this as 1 

minus sigma plus sigma times e minus j phi. So, now we will… So, we can simplify it 

further, we can write e minus j phi as cosine phi minus j sin phi. And then if we 

substitute this here we get G equal to 1 minus sigma plus sigma cosine phi minus sigma j 

sigma sin phi. 

Now, what this shows is that G is a complex number, because j is is square root of minus 

1, and it has a real component which is given by this, and an an imaginary component 

given by this. And we have to multiply it by the complex conjugate, in order to get the 

magnitude of this, and if the magnitude of G is greater than 1 for any conditions of 

sigma, then we will have possible instability. 



So, typically we can make a plot of G as a function of phi phi here, for a given value of 

lambda and we can see what shape it is. And if G lies within the unit circle on the real 

imaginary plane, then we can have stability. If there are conditions of lambda in which 

this is this is not satisfied, then for those conditions we will have instability. 

So, we will now look and what we should notice is that phi here is k m times delta, and 

we know that m varies as from 0 to capital M, where 0 and capital M is L by delta x. So, 

that gives you the maximum amplitude here or the minimum wave number. So, the 

maximum wave number is given by L by delta x. So, if L is 1 and we had in the previous 

computation delta x was 0.05, so that means we will have capital M is 20. So, we will 

have wave number of maximum of 20, minimum of 0. And as you go through different 

wave numbers from m equal to 0 to m equal to capital M, this phi takes value from 0 to 

phi. So, we can substitute in order to investigate the component of contribution of 

different wave components, we can substitute values of phi phi going from 0 to pi here, 

and then see how G changes. And this is typically done on a on a real imaginary axis and 

we look at how that varies. 
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So, the von Neumann stability analysis is summarized in this slide here. Here the error at 

any space location and time location is a function of both x and t, and it is a spatially 

varying. And the spatial variation is expressed in terms of Fourier components given by 

this, where the b m is the amplitude of each wave component which is a function of time. 



And k m is the wave number and it is given by small m times pi by L, where small m 

takes the values from 0 to all the capital M, where capital M is capital L by delta x. 

So, this is this is the finite number of wave components into which the the spatial 

variation of error is divided into at a particular given time. And we substitute this since 

the error equation is linear, you can investigate the behavior of each component and get 

the overall solution by superposition. So, we seek a solution of the form that the mth 

component of error variation is expressed as b m exponential of j k m delta x, and that is 

expressed in terms of a times t and t itself is n times delta t. So, we write the error 

component arising out of the mth wave component at ith space location and nth time step 

as exponential of a times n delta t, and exponential of j times k m times i delta x.  
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We substitute this in the error equation, and finally we get this equation which we have 

now just derived, where lambda here is u times delta t by delta x, where u is put here as a 

and u times delta t by delta x, and the amplification factor is given by this. So, the 

amplification factor finally has this form, and phi of k m delta x, where k m takes the 

values from 0 to capital M. And in the process, we get phi varying from 0 to pi, and if 

you plot, therefore the variation of G with respect to phi here at a given value of sigma, 

then you get typically variation like this. 

So, this dark line is the variation of G for different values of phi, going from phi equal to 

0 to phi equal to phi equal to phi. Now, this is for a particular value of sigma, and you 



can see that what we have is a circle with a radius of 1 minus sigma. So, if sigma is 

greater than 1, then this value lies outside the unit circle. The unit circle is shown with in 

the light colored the thin line here. So, that is a unit circle on the real imaginary plane. As 

long as the variation of G lies within the unit circle, it is amplitude at any point of phi 

cannot be greater than 1. If even a small value of G lies beyond the unit circle, then that 

particular wave component can have a magnitude amplification factor greater than 1, and 

that amplitude will actually blow up and it will soon (( )) the error the exact solution. 

So, for the condition, for stability of this particular error evolution equation which has a 

(( )) from the FTBS solution - that is forward in time backward in space solution, 

discretization for the wave equation is that sigma should be between 0 and 1. And we 

note of course, that as long as u is positive, then sigma is always positive for delta t like 

this. So, sigma should be between 0 and 1 for stability. 

Therefore, the sigma must be a times u times delta t by delta x, and as long as sigma is 

less than 1 we have a stable scheme which is actually what we got in in the computed 

solution. For sigma we have tried the value of sigma equal to 0.25, 0.5 and 1, and in all 

the cases we got a pulse which was moving at the correct speed of 1 meter per second in 

the positive x direction. We found that when sigma is equal to 1, we got exact square 

pulse propagation. But for other values of sigma, we actually found that there is some 

sort of smearing of of the pulse in some sort of diffusion like terms which has appeared, 

we will consider that separately. But as per as this stability is concerned, we found that 

any errors which have come about from the discretization or other sources, have not gone 

out of bounce, for sigma less than or equal to 1. And we found that when sigma was 

greater than 1 we tried 1.1111, 0.125. So, even for slightly higher values of sigma, we 

found that the value of phi was showing an variation which is totally atypical, it did not 

have that kind of positively moving pulse with a given velocity. So, that confirms that 

behavior is in accordance with our van Neumann stability analysis. And we have derived 

from this the conditional stability behavior of this this scheme. 

I am trying to look at the mouse, yes, the mouse has come. So, this shows that the 

scheme is stable only for certain limited values of courant number, as specifically 

courant number less than 1. This condition is known as CFL condition after Courant-

Friedrichlys-Lewy who published a paper in 1920s on this particular condition. 



So, we can say from this that the FTBS scheme is conditionally stable for the linear wave 

equation. For a different equation, it may be different, it may be stable or unstable or 

conditionally stable. But for this equation which had an error evolution equation given 

by this for the mth wave component, the condition for stability is that sigma should be 

less than 1. And therefore, we have for a given value of delta x and u, there is only 

certain values of delta t which will give us a stable solution, otherwise we have unstable 

solution. 
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Now, if you look at the FTCS scheme, the the same forward in time and centralized 

space scheme for which we had unstable solution. For this, this is the discretized 

equation, and the error propagation equation looks very similar here. And by substituting 

similarly for the mth wave component of error, we can show that the amplification factor 

G is given by 1 minus j sigma sin phi. So, the condition for stability is that the magnitude 

of the amplification factor must be less than 1. This is again an imaginary function, we 

can find out the square is amplitude modulus of G squared is given by G times G star, the 

complex conjugate. And that comes out to be 1 plus sigma square sin square phi. And we 

know that sigma square sine square phi is always greater than 1. So that means, at the 

modulus of the amplification factor is always going to be greater than 1, because it is 1 

plus sigma square sin square phi. No matter, what the value of phi is that is no matter, 

what the value of k m and delta x are for any non 0 values of sigma - that means, for any 

non 0 values of delta t you will have a magnitude which is greater than 1. 



So that means that this scheme will be unconditionally unstable. So, the FTCS scheme 

although it is second order accurate in space as compared to the backward scheme is 

unconditionally unstable, and this was reflected in our computed solution. Because we 

had for all values of sigma, we found an unstable solution. And we can also show by this 

kind of analysis that FTFS scheme is also unconditionally unstable. So, this kind of 

stability behavior is reflected in the case study that we did write in the beginning, and 

this approach is is a very useful approach for determining the stability of a numerical 

scheme - for discretization scheme, for a given partial differential equation provided the 

partial differential equation is linear. 

If it is non-linear, we have to linearize it at several points, and at each points we can 

investigate the stability of the discretized equation, and choose only those approximation 

which will give us stability at least conditional stability. If you have conditional stability, 

then we can restrict the value of delta t and delta x such that the stability condition is 

always met and from by doing so we can hope to get a solution which is stable. And if 

the solution scheme that is the discretization scheme or the set of finite difference 

approximations for the derivatives is such that it is also consistent, then we can have an 

overall calculation scheme which is consistent and stable, and therefore, it will be 

convergent provided we have a linear equation which is well posed mathematically. 

So, during this kind of analysis, we can come up with with a with a scheme of numerical 

solution which we know will be will lead us to a satisfactory solution. We will apply this 

analysis to the generic scalar transport equation in the next lecture, and then come up 

with a template which is satisfactory, and which we can replicate for different equations 

and come up with an overall solution like that.  


