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Okay we get started in order to discuss ideal solutions actually one topic I left out is equations of

state discuss that couple of classes put on the line because we have gone on to liquid mixtures

and also discuss ideal gageous mixtures and do equations of state later okay in the case of ideal

gas gaseous mixtures is one redeeming features that helps you solve the Gibbs Duhem equation

using experimental data.

The way this happen is you have  ∂ μi/ ∂P = Vi bar is an exact expression in the case of ideal

mixtures ideal gaseous mixtures first of all for ideal this is ideal mixing if the process of mixing



is ideal there is no volume change on mixing because ideally molecules do not occupy volume so

there  is  change in  volume and ideally  molecules  do  not  interact  with  one other  so  there  is

enthalpy change.

So these are the 2 basic definitions of ideal mixing, if that is true this is then if it is an ideal gas

that is with the pressure is sufficiently low Vi is simply RT/ P so you get μi = if you integrate this

is done at constant pressure and composition and temperature in composition and temperature in

composition so you will get some function of temperature and composition + RT/ lnP.

In particular you have μi pure is some function of temperature + RTlnP to find this function of

composition you separate out Mi and RTlnP you have F(T) and Xi you know you have to solve

the Gibbs Duhem equation now let us but down the I will come back to this in a minute.
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But let me put down the Gibbs Duhem equation we have already seen this is simply Xi ∂ μi with

respect to Xj I said the simplest solution is μi varying has log Xi right varying has because one

left  side  is  energy per  the  mole  the  right  hand side  is  dimensionless  so you have  do  some

corrections, so I can defined this thing an ideal solution I will show you they I can also come

from another root from the gaseous behavior and come to the same conclusion.



First of all define an ideal solution by writing μi ideal = μi if you okay I will just write or I will

write this has function of T in fact tell me get this function of T, P this is  the definition of

solution now clearly as Xi goes to 1 f should go μi.

(Refer Slide Time: 05:30)

This ideal refers only to the mixture I mean only to this mixing process so in the limit has Xi

goes to one you do  not having mixing left hand side will become μi pure so f(T) as to be = μi

pure wherever the value of the chemical potential at that temperature and pressure is.
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 So I have μi ideal this will give all the results that you need to define an ideal solution because

μi ideal by P this side is simply Vi bar ideal on the right hand side I simply get Vi then Hi bar

ideal by T2 or – of this is ∂ μi ideal of T with respect to T this is regress thermodynamics but if I

do the right side this comes from the right hand side on the right hand side.

If I  divide by T and differentiate with respect to T ay constant pressure and composition is

simply get ∂μi pure with respect to T μi pure by T with respect to T which is Hi sorry – hi/ T 2 so

you get hi bar is equal to hi Vi bar = Vi which is a dentition of ideal mixing. Ideal mixing says

mixing  without  change  in  volume  and  without  change  in  energy  enthalpy  I  can  go  further

because of this if I have an ideal gas Then I μi – this + RTlnP.
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I am sorry for a pure substance again this let me put this in here so if I have μi ideal for an ideal

gas mixture for a mixture of ideal gases I have to write two lines there 2 words there for an ideal

mixture of ideal gases the ideal mixing process in can be in the liquid phase can be in the gas

phase but I am taking this special case of ideal mixture of ideal gases for μi pure for an ideal gas

I got this result.

All of this is for this is for ideal gas right because I have substituted ideal gas here ideal mix of

ideal  gases  so  I  get  μi  ideal  =  some  function  of  T +  RTlnPXi  you  could  have  to  give  an

interpretation for f(T) simply to say what it represents when Xi goes to 1 and P goes to 1 this

term goes to 0 when Xi goes to 1 you get pure substance pure i  so pure i  at P = 1 is sufficiently

low pressure we usually measure P in bars.

So if you use those units then when P is = 1 bar you get f(T) is simply μi the chemical potential

of pure i  at the temperature of the mixture at pressure = unit T.
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So we write this has μi = μi this is μi ideal μi0 (T) + RTlnPxi. Also from this equation I will be

give these equations numbers this is 1 and Vi bar = Vi is for ideal mixing this is for ideal gas this

is 3 so this is will be 4 this will be 5 this of course 1 number every day 6, 7 then 8, this simply

proves that this is hence 8 satisfies conditions of ideal mixing are simply ∂V mix = 0 ∂h mix = 0

then finally this here 8 let us say this is 9 first of all from equations 1 to 3i have ∂ μi actual – μi

ideal / ∂P this when I write ideal here it only means only ideal mixing from μi  okay where I have

detailed mixing of ideal gas from μi okay where I have detailed mixing of ideal gases I write it

explicitly.

But  normally when I  write  μi  ideal  I  only mean ideal  mixing that is  the gases need not be

individually ideal but I am assuming the process of mixing is ideal this controller happen at very

high pressures between say ethane, methane mixtures similar substance will mix without change

in volume without change in so if I take this difference this is Vi bar first one if I take differentiae

this I get Vi now μi – μi ideal therefore = I am ∫ from 0 to P of Vi bar – Vi dP + some constant.

Now I can determine the constant very simply in the case of gas phase because in the limit has P

goes to 0 all gases behave ideally therefore this μi also becomes a mixing of ideal gases therefore

I have μi – μ ideal is 0 at P = 0.So the constant is this is because this is 0 I will write here since

all gases behave ideally as P goes to 0.
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I have this ∫ 0 to P of Vi bar – Vi dP I write this as ∫0 to P or – I am adding and subtracting RT / P

inside the ∫ and splitting the integral into two parts this is defined as this is 3 lines  is just a

definition  write  this  as RTln ( i)  – RTln( i  pure) when Vi bar is  replaced by small  vi  thisϕ ϕ

becomes  the  specific  volume  of  the  pure  substance  so  I  recognize  this  by  writing  i  pureϕ

indecently smith and van ness is a slightly different notion for i here writes i^ for this heϕ ϕ

writes i so when he writes i he is talking about pure fugacity.ϕ ϕ

The mixture value fugacity coefficients this is called fugacity coefficient I will come back to it in

a minute i is called i^ is the value ion the mixture m2 used to this notion to change if I changeϕ ϕ

½ with  ∂ will make a mistake again, I will stick to this notion, so  i for us is i^ our notionϕ ϕ

smith and van ness our notion is i pure and this is i similar  ϕ ϕ μi ^ in smith and van ness is

chemical potential in the mixture and μi is the chemical potential of pure.
The reason we give these symbols is because you need default options in chemical engineering

yiu can but i = 1 as an approximation where as you would not know what the default option forϕ

chemical potential was, so we will not really done any significant at this stage we are not made

progress in terms of defining the composition dependence is a chemical potential but we have

expressed it in terms of quantity for example in a gas phase this is completely measurable Vi bar

is measurable.

So if I know the composition dependence of the chemical potential if I know the composition

dependence of this molar ∂ molar volume that is all I am saying so if I know 1 I can get the other

I cannot  make this  connection  in the liquid phase because liquids  do not have a asymptotic



behavior either at a limit of temperature or a limit of pressure because all gases behave ideally at

P = 0 this integration constant vanished for you we would not such a facility in the liquid phase.
S
On  in  the  liquid  phase  you  have  stuck  with  solving  this  equation  directly  here  if  you

experimental data on Vi bar you have a solution of the Gibbs Duhem equation because the Gibbs

Duhem equation simply tells you then that μi – μi ideal is this and μi ideal is given by this so you

got your whole this thing worked out so let me get back and write this equations.

(Refer Slide Time: 18:01)

μi pure in particular okay let me write this out μi pure is = μi 0 sorry this is μi 0 I can just simply

write μi0 because μi0 that I have the notation I have used there is the chemical potential of pure i

at the temperature in question and pressure = 1 + this would have been ideal case times Vi pure

because if I did the same μi for the pure case μi pure -0.
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μi ideal pure would have been simply Vi – RT/ P may be is should write it here same follow us

that μi pure – μi ideal simply = 0 to P because it is pure Vi bar becomes simply Vi the second

case because it is ideal it becomes way – RT dP this is μi ideal pure in μi ideal pure we had

already that is μi 0 you would have μi ideal pure would have been μi 0 + RTlnpXi or RTln if I

multiply by oh there is no xA P  pure ϕ μi 0 + RTlnP would be the value for μi pure ideal add on

a correction for non ideality which is i pure.ϕ
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Then I have μi in the actual mixture = μi ideal mixture ideal mixture + RTln Pxi into i I haveϕ

actually μi = μi 0 μi ideal mixture is already there Pxi is there so this is μi0 sorry I have to come

back. These are the unique models for gas phase i is given in terms of Vi bar- RT/ PdP i pureϕ ϕ

is  simply  Vi RT/P for  gases  this  completes  a  description  remember  that  the  Gibbs  Duhem

equation is different return for a homogeneous phase.

When you write Dg = - STT+ VdP now writing for a homogeneous phase so you have to solve

this since luckily we have only 3 phases of aggregation you have to solve it for the solid state the

gaseous state and the liquid state separately so I have done the gas phase now we will do the

liquid phase.
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Liquid  mixtures  for  liquid  mixtures  first  know asymptotic  behavior  if  your  able  to  find  an

asymptotic behavior you are in for a noble price here but some of these things are not worth

searching when the liquid range has been covered people have looked everywhere so you have to

solve need to solve Gibbs Duhem equation what we do is to simplest solution is μi ideal again I

still have okay possible simplest solution is however you must notice that in liquids you have all

kinds of mixtures I can have gas dissolved in liquid.

So suppose i refers to carbon dioxide in water and I referred to carbon dioxide then has if you go

to the temperature of the solution if you go to the temperature in pressure of the solution go to

the pure state the pure state is a gaseous state it is not realizable in practice that is I cannot take a

mixture of composition Xi where Xi represents the composition of carbon dioxide mole fraction

of carbon dioxide in a mixture and take their mole fraction continuously to one without change

of phase and Gibbs Duhem equation is written for a single phase.

So I have to solve within that phase so what we do is write this has simplest solution for give

name for mixtures in we classify mixtures into solvents,  solvent mixtures and solvent solute

mixtures, so this is valid only for solvent – solvent mixtures in solvent – solvent mixtures you

can take the mole fraction of all the components individually to unity without change of phase

that is the definition of a solvent – solvent mixture.

For every component I can go to mole fraction unity and still get preserve liquid state so this is a

simplest solution this is A solution so what you do in practice is write for non ideal solutions or



real solutions as here you have μi – μi pure at TP again for solvent – solvent mixtures only will

treat the other case separately.

I write μi = that where I have to tell you what γi is in this case when Xi goes to one left hand side

becomes equal to this so γi is 1 in the pure state so I you write a along with this you notice that γi

goes to one as Xi goes to 1.

(Refer Slide Time: 25:36)

This quantity γi x Xi is called ai is been called activity and to the term coined by Louis long ago

incidentally Louis is credited with being the first expositor of classical thermodynamics because

Gibbs need an interpreter what Gibbs said was absolutely right but very tedious Gibbs would say

in the foot note obviously and he will say in the foot note if necessary this can be derived and so

on then Louis will do the derivation.
So Louis is book at all the just like he took notice from the master and filled them up so in ideal

solutions the role of non ideal solutions the role of mole fraction is played by ai the activity and

the activity default option and all chemical engineering design programs as I said γa = 1 but yiu

can go terribly wrong, there are mixtures in which γi can be 1500 which means Xi being the

being a representative of μi is meaningless log Xi does nor any longer represent.

But those are exceptions but typical γ values of 2, 1.5 2, 3 etc very common many mixtures so

we will do lots of examples in which these and that will make a lot of differences I told you

finally you are going to use ΔG is the work done ΔG is Xi μi – Xi μi for the of μi pure so that is



the change when you do mixing or unmixing you take air separated into oxygen and nitrogen you

can calculate how much work is done in the process.

I will do that calculation when you do difference essentially this RTln γ log γ aXi represents the

work in bring you show that it is equal to the work in bring 1 mole of a i into a mixture of j so if

you have a binary system and since the work depends on log of Xi if it is log γaXi and γi turns

out to be 2 you will make a mistake of Rtln2 it can be large differences that is all so this is your

activity coefficient.

Now you have not really done anything only change words because if substitute this into the

Gibbs Duhem equation now let me go to the Gibbs Duhem equation it will play it you solve it in

some way or other now substitute this quantity give these finished 9 I think last we will call this

10 this can be 11, 12 so substitute 12 into the Gibbs Duhem equation do this by inspection μi

pure non function of Xj at all so if it will cancel RTlnXi satisfies the Gibbs Duhem equation.

So when I do sum over i of Xi ∂ of log Xi with respect to Xj you know we get 0 right for come ij

i=j you will get 1 for the last component r you will get – 1 so you will get 0 so only thing that

remains is log I and RT is constant so this will give you sum over i ∂ of log γi with respect to Xj

= 0, to solve this you go back to the other formalism remember we wanted to look at ∂ G you

model ∂ G and you get all your equations for μi instead of μ I now you will get log γi so the

equation.
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So the equations are very simple you get g excess by RT I will write this for a binary X1 now log

γ1 + X2 lg γ2 reason is g excess is Δg - Δ g ideal Δ g is g after mixing – g before mixing – g after

mixing ideal – g before mixing g excess / definitions Δ g - Δ g ideal so this g after mixing – g

after mixing ideal g after mixing is sum over Xi μi these 2 will cancel before mixing these 2 will

cancel I am looking at the ideal mixing process now.

Xiμi – μi ideal so μi ideal is μi pure + RTlnXi μi non ideal is μi pure + RTln γaXi so the only

difference is log γi so this is = RT Σ SO g excess for binary this in particular will give you x1 log

γ1 + x2 log γ2 okay suppose I should say here since this is okay so then do the same thing that I

did before.
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Differentiate this ∂ of ∂g excess by RT/ ∂X1 is log γ 1 – log γ 2 + and this term is 0 because is

the Gibbs Duhem equation I just to solve these two equations algebraically equation 12 this is 13

this 14 and if you recall and we did one last equation we really got an expression for g excess not



for  ∂g  the  models  for  solid  mixtures  are  identical  we  do  not  often  use  them  in  chemical

engineering.

We use them in metrological engineering because basically between solids and liquids is not

really  much difference  they both represent  the condense phase molecules  reasonably  closely

packed in the density of the solid is not very different from that of the liquid we have very well

defined crystal structure in solids in a amphora solids you do not have a crystal structure but you

have a well defined reasonably well defined structure in the case of the liquids you have a little

more entropy.

So  the  model  for  solids  mixtures  are  similar  but  we  do  not  use  them  often  in  chemical

engineering to it main solid mixture problems are in metrological thermodynamics so primarily

we will deal with liquid mixtures we will of course deal with gaseous mixtures but most of the

time your gaseous mixtures will behave themselves when you will have to calculate frigorific

coefficient but you will know the equation of state and you can calculate it that way.

(Refer Slide Time: 34:24)

For this you will have to go through for liquid mixtures I will write the model for g excess in the

corresponding log γ1 you can get this from tables this is you will have to write this separately for

2 classes of mixtures and deal with solvents solute mixtures later for solvent solute mixtures the

model for the solvent will rennin the same but for the solute I will have to write it differently gx

as can be 0 is a ideal solution γ1 = 1or I will just write γ its is okay log γ or not gx is can be A x1



x2 gx/RT this is called the misses ideal given name for the model this is called porters equations

and if you do that solution that I have given in 14 you take this expression differentiate it and so

on.

(Refer Slide Time: 35:53)

With Aax22 for log γ1 to like for log γ1 here you get 0 γ1 is 1 log γ1 is equal, so you can built

models of this kind get Ax1 x2 into 1 + Bx1 you can write higher polynomial models this is

Margulies it is called two suffix mod.

As I told you, you can write this is A11 and this is B12 so it is called two suffix I think he even

writes is AA12 and A2 1 or something does not matter two parameters existing and you have to

solve that I do not remember the solution but you can solve those equations simultaneously and

get the values what I will do is put a table of this instantly this is very nice personally do not like

the book points but it is well written and it is written by an industrial practice so it is written

typically with the law out of redundancy.

It is got everything worked for an open book examination it is ideal classify and tell you the

model you do not have to start solving those equations and the examiner make mistakes and



solving simultaneous equations because I will never find out where you know your thermo you

will make a silly mistake there so the best thing is for you to keep these things wall as a table I

will and put that table on the web itself, he has this model and he has the solution for log γ1 log

γ2 is got it for ternary mixtures.
For any number of multi component mixtures in case you do not know how to simplify the multi

component mixture equation for a binary he will separately give you a binary table, so he is got

all that it is called I think phase equilibrium thing just got a phase equilibrium I do not remember

exactly, but wall  is a practicing engineer for 15 20 years okay so I just said once you have

models with the chemical potential the various models in and your also have to go through the

model for venlor.

Which is in expression for RT / gx is only thing you have to be careful about is at gz is has to go

0 in the limits otherwise you can propose your own model.
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 But if you have a phase equilibrium if you have vapor liquid equilibrium and you will get μ i

liquid = μi vapor this is we have already shown now the whole purpose of all this exercise was

expressed μi liquid in terms of measurable quantities and we will  shown that everything has

measurable except the composition dependents the chemical potential, so this alone you have to

do modeling so with the model you get it in terms of composition we get so what you do is when

you solve this phase.



Equilibrium problem for μi liquid I have to go through a little more so here you express in terms

of T,P and composition and you will get 1 term here that represents and μi liquid pure, beaks your

model is μi = μi pure + RT ln and γA xi in your rated for the liquid phase this is μi liquid pure this

will come out similarly in terms of μ this will come out in terms of μi is 0 always we will come

out in terms of T,P what will do hereafter for composition and the gas phase will use y for liquid

phase we use x it seems to be a convention.

Composition xi so the only thing that is that is still gives you a little difficulty is this μi 0 that

appears in the gas phase equations in the μi liquid pure that appears in the liquid phase equations,

so you have to related μi liquid to μi vapor and I will do that then I will go back and do in solids

in solids solvent mixtures if you go back to your pure component phase diagram P was a H.
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This t = tc and you have liquid + vapor diagram here so if you talking of liquid pure you are

talking of substance below the critical point it has to be that is the ways of critical point right, so

the way you connect the two which to recognize that at this point the chemical potential of the

liquid is same as the liquid in chemical potential the vapor, so if I want to cancel this μi0 I have

to express to μi liquid in terms of μi  gas if I do that the μi gas will have the μi0 in it which will

cancel on both sides.

So having introduced a μi0 which is a hypothetical quantity which is the chemical potential of

pure I at the temperature and pressure equal to 1 I do not care what it is it will cancel on both



sides, so I will simply write the equations down and cancel so to do this all I do is to take at any

temperature Tn let sy TP I write μi liquid pure this is what I want I know from thermo dynamics

that this is equal to Vi so I integrate this between this point where I can make the connection with

the gas along that temperature this is the saturation pressure.
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So integrate this I get μi liquid pure TP – μi liquid pure at T and P saturation = ∫ Vi liquid dT

from P saturation to P but this is the same as μi vapor pure and TP saturation because the pure

substance in the pure substance at this saturation pressure and temperature the vapor and liquid

are at equilibrium, because this is given in term this is simply μi 0 of T + RT ln Ai saturation Vi

saturation this is referring back to the way I treated this once I have got μi 0 on both sides of the

equation.

I can cancel it of I do not have to worry what it is I do not even care if it goes to – it is the

identical quantity on both sides, so to complete the picture let me go ahead and do solvents solute

mixtures.
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For the solvent the model is the same μi is μi  pure liquid T,P this is the complete specification

because γi will go to 1 as xi goes to for solute mixtures I still have log xi s an ideal solution and

simply writ μi reference but for the solute the physical state that I can realize is between xi = 0

and xi = saturation value if it is carbon dioxide dissolved in water the saturation value at room

temperature and normal pressure would be something like 10 – 2 mole fraction whatever the value

so xi can varying.

Xi is physically realizable or it physically realizable range of x i S0 to Si saturation whatever the

solubility limit is now there are two constants here one is this μi reference in this γi it is a function

of composition add only one unknown to began with, so I must be able to specify one number

uniquely so I will have to choose an xi reference at which I choose γ i to be 1 in this case of pure

substances  I  would  go all  the  way to  mole  fraction  1  I  could  use  the  pure  substances  is  a

reference.
So here I will simply say since xi is going to 0 is a realizable we said γi = 1 you will have this

conceptual difficulty that as γi goes to 1xi goes to 0 you get log of 0 so you get – ∞ there but we

would not worry about it what I am going to do in thermodynamics we also cheat you on this

actually it is very valid it is not just we think what you do is get an animal that diverges but the

same animal on both sides of equation then you can cancel it, so that is one way of doing it the

other things in simply ways.

Although this  quantity  this  is  an expression has a function of xi  so I  can divide this  T and



differentiate with respect xi differentiate with respect to T or P if I differentiate if I divide by T

and differentiate with respect to Ti  will get a quantity here which represents – enthalpy of I bar

partial  more or enthalpy by T2 on this side I will get some reference enthalpy this term will

vanish because I am differentiating with respect to temperature, so if I do that in the if I it will

vanish in the limit as xi goes to 0.

So I got very dilute solutions so what I will do is although I do not know this animal I know it is

derivative with respect to T or it is derivative with respect to T and I will show you in treating

phase equilibrium I do not need to know μi reference I only need to know it is derivatives.
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