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   Welcome, once again. We will continue our lectures on Shell Momentum Balance and this 

would probably be the last class on shell momentum balance. In the next class I will show you 

the limitations of shell momentum balance. So far, we were dealing with very simple 

geometries in which there could be flow through a tube or flow along an inclined plate or you 

can have the last one in which we have initiated Couette flow and pressure gradient driven 

flow, all in a very compact a very simple situation where the geometry is easy to visualize. 

Because unless you cannot visualize the situation geometry completely you would not be able 

to choose the shell and the boundary conditions would also probably have to be looked at 

carefully.  So, the prerequisite for choosing the shell is to have a very clear picture of what is 

happening in such a system. And we will see with increasing complexity of the geometry, this 

will become more and more difficult. 

   And secondly, our velocity in all the problems that we have discussed so far are, our velocities 

are a function of one of the coordinates.  It could either be a function of x, y, r etc. But what if 

the velocity is a function of both x and y. It is a two-dimensional flow. What if it is a transient 

case in which velocity apart from being a function of y is also a function of x. For such 

situations, a simple shell momentum balance will not suffice. 

   So, we will see what could be the proper methodical a structured way to deal with such 

problems.  So, the first problem that we deal with today is essentially one such situation in 

which you have flow of a liquid film outside of a tube. So, this part is the, this is the wall of 

the red crossed surfaces or the walls of the tube. The liquid travels in the upward direction. So, 

you have a pressure gradient which forces the liquid to move from the bottom of the tube, at 

toward near r equals 0 towards the top.  So, the flow between r equals 0 that means, at the 

centre line and r equals capital R is taking place inside the tube. 

 

   Whereas, when the liquid reaches the top of the tube, obviously it is going to spill over. So, 

it is going to spill and it is going to fall along the walls of the tube, along the outer walls of the 



tube. So, it is a unique situation because the moment it crosses the boundary at the top then it 

is a freely falling liquid. There is no imposed pressure gradient on this falling film. The pressure 

gradient is inside between r equals 0 to r equals capital R, where you need a pressure gradient 

in order to force the liquid to reach the top. 

   But once it reaches the top and starts its downward journey along the outer wall of the pipe, 

it is a freely falling liquid. And we need to figure out what is going to be the velocity 

distribution in this region, in the falling film which is located between capital R at this point 

and A r what is going to be the velocity distribution.  We have done similar problems when 

there was flow inside a tube upon the action of gravity and an imposed pressure gradient. And 

what we have found in our previous class that it would give rise to a parabolic distribution of 

velocity inside the tube and it would, the volumetric flow rate which was calculated has given 

us the well-known Hagen Poiseuille equation, but this case is different. In this case, it is a freely 

falling liquid on the outside of the tube. 

   So, I guess the geometry of the problem is clear to you. So, it is as if the fluid starts coming 

from the bottom, reaches the top and then it is going to come along the sides of this.  So, what 

is the imaginary shell that we are going to choose? Now, we can see on the outside of the tube 

in the falling film, the velocity is simply the nonzero component of velocity is 𝑣𝑧. So, 𝑣𝑧 the 

downward acting velocity and this is the direction of z. So, z downwards is the is the positive 

direction. 

   So, 𝑣𝑧 is the only nonzero component of the velocity, there is no 𝑣𝑟, but this requires some 

sort of an assumption over here. The with the region where it spills over near this region, the 

velocity profile is not going to be exactly the way I have drawn over here. There is going to be 

some 2-dimensional effect there would be some v, some 𝑣𝑟 and the situation quickly stabilizes 

and it becomes a 1 D flow, but very near to the top we need to understand that the velocity is 

not going to be 1 dimensional. It could have a 𝑣𝑟 component as well, but we are not considering 

that. We are going to analyse the situation where the velocity is fully developed, maybe after 

some region where you have only 𝑣𝑧 and no  𝑣𝑟. And this kind of stabilization will come quickly 

if we are dealing with a liquid with a high viscosity. 

   So, for that case the order come is established fairly quickly and except for a small region 

near the top, the analysis that we are going to present would be valid everywhere beyond that 

region. So, this cautionary statement I wanted to explain to you. Now, since here 𝑣𝑧 is a function 

of r only, in the r direction only. So, therefore, the smaller dimension according to our 

convention the smaller dimension should be equal to delta r. You can take any length of this 

imaginary shell having a thickness of delta r that is unimportant as long as our system does not 

get into the top portion where there could be 2 dimensional currents. 

   So, it is like a, it is if this is the tube through which the liquid is spilling over. I am thinking 

about just a clamp sleeve kind of thing which in which encompasses the whole tube and whose 

thickness is equal to delta r and this is at r, this point is at r. So, this point is at r plus delta r and 

it could be of any length L and across which we are going to write our shell momentum balance. 

So, this is what it looks like, r and r plus delta r. We have flow in at the top, flow out at the 

bottom. So, convective momentum comes in from the top, convective momentum out from the 

top and here I realize that 𝑣𝑧 is a function of r only, 𝑣𝑧 is not a function of z. So, it is fully 

developed flow in which the velocity is a function of r only. 



   So, if that is the case then 𝑣𝑧 at z equals 0 must be equal to 𝑣𝑧 at z equals L. So, under these 

conditions we know that the convective, net convective transport of momentum into the control 

volume would be equal to 0.  So, the governing equation is again, once again the difference 

equation is, in minus out, momentum in, rate of momentum in minus rate of momentum out 

plus sum of all forces acting on the control volume would be equal to 0. 𝑣𝑧 is not a function of 

z and of course, 𝑣𝑟 𝑣𝜃  etc. It is a cylindrical coordinate system. So, 𝑣𝑟 𝑣𝜃 would be equal to 0. 

So, the net convective momentum, as I said it is also going to be 0 since 𝑣𝑧is not a function of 

z. 

   So, what I get then is the shear stress and note the subscript of 𝜏 once again. I am stressing it 

again and again to impress upon you that it is very important that you realize which component 

of momentum is getting transported in which direction due to the molecular transport 

mechanism. So, it is the z component of momentum and since there is a variation in the, z 

component variation of velocity with variation in the z component of momentum. So, it is 

getting transported in the r direction. So, that is what we have decided. Now, what is this, what 

is the area on which this 𝜏 is acting on. 

τrz|r2πrL − τrz|r+∆r2π(r + ∆r)L + 2π r ∆r Lρg = 0 

   So, in term this one in term is simply going to be over here twice pi r L, that is the area, twice 

pi r times L is the area, this is shear stress, force per unit area and it goes out at r plus delta r, 

the convention is always it comes at smaller value leaves at higher value, that is the convention 

that is followed throughout this course. So, shear stress, the molecular momentum in, 

conductive momentum in minus conductive momentum out plus the only force acting in this 

case, it is as I said it is freely falling liquid.  So, there is no imposed pressure gradient. So, only 

force which is acting on it is a gravity. So, these beings the volume this makes it mass the 

𝜌 makes it mass and it is simply mg. 

d(rτrz)

dr
= ρgr 

τrz =
ρgr

2
+

C1

r
 

   So, this is my governing, this is my difference equation. So, what I do is I divide both sides 

by delta r take in the limit when delta r approaches 0, use the definition of the first derivative 

and what you get is d/dr of r 𝜏𝑟𝑧 is equal to 𝜌gr.  Now, this then becomes my, I have to evaluate 

the first constant of integration C1, but how do I do this. If you recall in the case of flow inside 

a cylinder we have evaluated C1 by saying that at r equal to 0, 𝜏𝑟𝑧 cannot be undefined. Which 

means which requires that C1 has to be equal to 0. But if you look at this problem, the governing 

equation which you have obtained in this case is valid for the region outside of the tube. It is 

not valid for any point inside the tube.  So, the domain of applicability of the governing 

equation is to be, is to be studied carefully which simply tells you that I cannot use the condition 

at r equal to 0. 

   Whatever happens for any r, small r less than capital R, is beyond the domain of applicability 

of this governing equation. So, I have to figure out something else to evaluate C1.  The next is, 

I can, what I can say is that at r equals capital R, the velocity of the fluid is going to be 0 which 

is just a no slip condition. So, I could use no slip condition. I cannot definitely use r equals 0 

condition because that is not where my equation is going to be valid. And then when you think 



of the other end that means, over here at r equals A r, I have a liquid on this side and a vapor 

or air on the other side. 

r = R,  vz = 0, No Slip 

r = aR,  𝜏 =
d𝑣𝑧

dr
= 0, No Shear 

   So, it is a liquid air interface. If it is a liquid air interface then at r equals A r 𝜏, which 𝜏 is 

equal to 0 and 𝜏, the shear stress being equal to 0 would give me dvz/dr at that point would be 

equal to 0. So, at r equals A r 𝜏 or dvz/dr would be equal to 0. So, these are the two conditions 

no slip and no shear which would be applicable in this case. And once you assume that it is a 

Newtonian fluid, substitute that in here use the two boundary conditions. 

vz =
ρgR2

4μ
[1 − (

r

R
)

2

+ 2a2ln (
r

R
)] 

   This is the expression for velocity that you should get for a flow outside of a tube, where the 

film is formed and the downward moving film is going to have a no pressure gradient condition. 

Only gravity situation, and the velocity is, you cannot say that the velocity is going to be 

parabolic.  So, it is going to be a complex function of r. So, here this is an example where you 

see that you have to mentally first imagine what is happening, what kind of a shell you are 

going to choose, what is the domain of applicability of the governing equation that you have 

obtained and you can yourself see that the situation is more complex than the ones that we have 

analysed before. So, this concludes one of the problems that I wanted to discuss.  The second 

problem that I have is something which is industrially very relevant. 

 

 

 

An upward moving belt, with a velocity equal to Uo , 

drags a viscous solution along with it creating a thin film 

of thickness h, as shown in the figure. Obtain an 

expression for the liquid velocity in the film, in terms of 

the relevant parameters. 

    

   Now, many of you have, I mean many of you are aware that when you want to coat something 

on a solid surface, a liquid or a solid surface, you dip the solid surface and then you pull it up. 

As you pull it up there would be a small thickness of the liquid made which will cling to the 

surface. So, you pull this up and then you dry it such that the surface is, being going to be 

coated with the liquid.  So, this is very relevant in photographic film and other coating processes 

where this process, the dip coating is used in order to cover a solid with a liquid which would 

impart certain property, a photosensitive or other property to the surface. So, the situation here. 

the picture here depicts one such solid which is being pulled through a liquid bath and it moves 

up. 

   As it is moving up, it is going to drag some amount of liquid along with it. Now, if you think 

carefully, you would understand that the flow, the liquid very close to the surface will move 



along with the solid. Whereas, the fluid slightly near the interface will probably try to move 

down due to the application of gravity. And a balance between the two will leave a constant 

thickness on the plate, constant thickness of the liquid film on the plate.  So, what are the factors 

intuitively if you think, what are the factors in which this would depend on, this is what I call 

about the relevant parameters. 

   Of course, the operational parameter, it will depend on the value of the velocity imposed on 

the solid. So, it is going to be a function of 𝑢0. It is also going to be a function of the liquid 

property which is which is obviously, the most important one being the viscosity. And it is also 

going to be a function of whatever forces that are present in this system.  There is no pressure 

gradient in this system. 

   It is just a freely upward moving film with part of it, which is moving downward resulting in 

a constant thickness of h, at some sections of the film. And so, once again when the solid starts 

to leave the liquid surface, there is a region which is not going to be stable, where the flow is 

not going to be one dimensional. Like the problem we discussed in the last class, where the 

liquid spills over from the top of a tube near that spilling over region, the flow is going to be 

complex, it is going to be two dimensional or more than one dimensional. Similarly, over here 

also there could be disturbances present in the region that I have circled over there. But in most 

of the cases, the viscosity brings order back to the system. 

   And for coating a solid with a liquid, one of the major parts, important parameter or property 

of a coating is that it is a high viscous material. So, we can safely assume that from this point 

onwards that it is one dimensional flow and we will restrict ourselves to that analysis of the 

two-dimensional analysis of the one-dimensional region only. The region where the flow is 

going to be one dimensional. And we understand that according to the coordinate system that 

we have chosen that is going to be the only nonzero component is going to be 𝑣𝑦 and this 𝑣𝑦 is 

going to be a function of x only, it is not going to be a function of either in either y or z which 

is the width of the film. And we will assume that the width of the film is too large as compared 

to the thickness of the ultimate film h which remains on the surface. 

   So, my 𝑣𝑥 is going to be a function of x only. And it is easy to right now you must be feeling 

very comfortable about what is going to be the smaller dimension of the shell of course, it is 

going to be delta x because my velocity is a function of x. So, I am going to have a thin layer 

of the liquid near the falling film whose size could be anything in terms of the length and the 

width, but its thickness is going to be equal to delta x and we are going to make a shell 

momentum balance for that.  So, as the downward acting gravity and the upward moving belt 

create a flow pattern in the thin film that I have, that I have discussed. So, part of it is going 

up, part of it is going down and the nonzero component of the velocity is 𝑣𝑦 and as I said 𝑣𝑦 

could be a function of all these parameters, the geometric parameters, the operational 

parameters and the properties of the fluid. 



 

The chosen shell will be of thickness Δx, as the velocity 

varies with x   

 

 

   So, this is once again going to be the shell of thickness delta x could be any width, any length 

does not matter because your 𝑣𝑦 is not a function of w, not a function of L because it has 

reached the steady state, it has reached the fully developed fully developed condition it has 

reached the 𝑣𝑦 is only a function of x. So, once again the equation that we have is rate of 

momentum in minus out plus sum of all forces acting to 0. Just to recap the it contains the 

momentum, contains convection and conduction those are the mechanisms by which the 

momentum can come into a control volume or leave a control volume and in two most 

commonly site used forces are gravity and the pressure though there could be additional forces 

due to electrostatic or other may other things. So, we understand that the convection, net 

convection would be equal to 0 since 𝑣𝑦 is not a function of y. So, any momentum comes in 

through the top surface is going to be equal to the momentum, convective momentum which is 

going from the bottom surface. 

Rate of momentum IN - Rate of momentum OUT + ∑ 𝐹 = 0 

The net convective momentum will be zero  

   So, the conduction is, convection part in this case is going to be equal to 0. So, that leaves us 

with conductive transport of momentum. Conductive transport is essentially shear stress 

multiplied by the area. So, too we have to write that. So, shear stress, it is one, if you go back 

to this figure it is the y component of momentum getting transported in the x direction. 

    

τx𝑦|
x
LW − τx𝑦|

x+∆x
LW −  (∆x WLρ)g = 0 

Boundary conditions: 

1. No slip:   vy = Uo at x = 0 

2. No shear the liquid-vapor interface i.e., τxy = 0 at x = h 

So, this is going to be  𝜏𝑥𝑦 and the area on which it is acting is L times W this is at x and x plus 

delta x and then you have the gravity which is acting downwards and then the two boundary 

conditions are no slip at, if you go to this figure this is no slip over here at the liquid solid 

interface.  And no vapor, no sorry, no slip at this condition and no shear at this condition. So, 

with these boundary conditions that is 𝜏𝑥𝑦 is 0 at x equals h, one should be able to solve the 

governing equation. So, this is your governing equation and this governing equation can then 

be solved in order to obtain, this being the velocity, this being the velocity profile inside the 

falling film of liquid. Now, if you once again see carefully that the three could be velocity 



depending on where you are the, look the gradient of the velocity the velocity could be could 

vary with thickness. 

 

   The velocity is sustained, the flow is sustained by something like a Couette flow without 

anything on this side.  So, it is the motion of the plate is going to drag the fluid along with it 

whereas, the gravity will try to pull the liquid down and it is the complex combination of this 

as exemplified by this relation. The effect of gravity and the effect of upwardly moving plate, 

the downward acting gravity and the upward moving plate, these two will together balance 

what is going to be the velocity in this. And you can find, you can if this gives you a very good 

tool for the design engineer, a very good tool about how do I change this u how, for a specific 

fluid with a viscosity µ what should this value of 𝑢0 be so as to have some sort of a v in it. And 

you would most likely like to have a situation in which the net velocity is going to be equal to 

0 such that h remains a constant. 

   And a design engineer who likes to coat the surface with a thin layer of a photosensitive 

material would understand the physics of the process by looking at this.  So, we have solved 

two problems, two problems using shell momentum balance. One is the flow, the spill over 

flow along the side of a tube. how do I find out the velocity distribution in that case? And you 

really have to have mentally imagine what kind of a situation is being depicted by the 

description of the problem. And there we could see that the velocity distribution you can have 

logarithmic terms as well. And the present one is about again, once again an industrially 

relevant situation in which a film is being pulled in a liquid where you would like to have a 

specific coating left on the surface. 

   So, this method is known as dip coating which is quite common in a number of applications 

including in semiconductor applications. Where you apply this technique in order to have 

specific thickness of the material on top of the surface, but this essentially gives us insights 

into the physics of the process as far as the fluid flow is concerned. So, that is more or less that 

I wanted to cover for shell momentum balance. And in the next lecture I will show you it will 

become difficult when the flow situation is more complex, when the geometry is complex how 

do we handle such situations that I will introduce in the next class. And it would give rise to 

theoretical fundamental concepts of equation of continuity which is nothing, but mass 

conservation equation and equation of motion which is again a Newton's second law for an 

open system. 

   I will not go into the detail derivation of them, but I will talk about the specific points the 

importance, the significance of each of these terms and briefly how it was developed and then 

start using those equations for solving our problems that would be the topic of next two classes.  

Thank you. 
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