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   Good morning.  We are going to continue our discussion on shell momentum balance. And 

in the previous classes we have seen how do we choose a shell, an imaginary shell through the 

control surfaces of which the liquid, the fluid can come in and leave. And while the liquid enters 

the shell it carries with it some momentum which is known as the convective momentum. And 

due to the presence of a velocity gradient from the top and the bottom surfaces of the imaginary 

shell, the shear stress or in other words the molecular transport of momentum is also taking 

place. So, these four terms, the convective momentum in and out, the molecular momentum or 

shear stress in and out, the algebraic sum of this plus all the forces, the body and the surface 

forces acting on the system at steady state would be equal to 0. 

   Then we divide both sides by the smaller dimension take the limit when that approach is 0. 

And what we get is from the difference equation a differential equation governing the process 

at hand. That governing equation would be integrated with appropriate boundary conditions, 

so that we can get a velocity profile which would be valid for every point in the flow field. 

   So, by inserting the correct value of the location, one would be able to obtain what is the 

velocity at that point. So, we will continue with this approach for a few more problems so as 

to get a clearer idea about how to handle such processes. And the physics of the process also 

starts to become interesting when you think of the interplay between the applied pressure 

gradient, the body force and something else where one of the bounding surfaces of the fluid is 

not fixed, but is having certain velocity of its own.  So, how do these factors affect the velocity 

distribution and what kind of insight we can obtain out of this. So, the problem that we are 

going to solve in this class is essentially, it is a liquid between two parallel plates. 

   I will show you the image, the figure of this and it is separated by certain distance h and we 

have decided what is going to be the origin, it is on the bottom plate. Unlike previous cases the 

top plate moves with a constant velocity u while the bottom plate remains stationary. You need 

to, we need to figure out that what is going to be the velocity profile, if an unfavourable pressure 

gradient is imposed on the flow such that the net flow rate is 0. And we will also have to find 

out the maximum favourable pressure gradient that can be applied and we will discuss about 

that, but first I think we should consider what is termed as favourable pressure gradient and 

unfavourable pressure gradient. So, when you think of two plates separated by certain distance 

h and one of the plates, let us say the top plate is moving to the right with some velocity u. 

   So, due to viscosity that plate will try to drag the fluid along with it. So, there is going to be 

a net flow because of the motion of the top plate to the right, along with the top plate.  Now, let 

us say you apply a pressure gradient. The pressure gradient is applied in such a way that the 

pressure on the left side is going to be more than the pressure on the right side. So, there is a 

pressure gradient from the left to the right. 



   This pressure gradient helps the flow. It creates more flow from the left to the right additional 

flow in addition to whatever flow that has been induced by the motion of the top plate.  So, I 

call that as favourable pressure gradient. A favourable pressure gradient drives the fluid in the 

direction in which the top plate is also moving. So, in order to make a fluid move in a specific 

direction, you have to have continually decreased pressure as you move along. 

   Because only if the pressure is lower than the before, than the previous point only then the 

flow is going to take place. And what is going to be the unfavourable pressure gradient? 

Because of the movement of the top plate, I have velocity, imposed velocity initiated in the 

fluid from left to right.  Now, let us say I apply a pressure gradient in such a way that the 

pressure on the right side is going to be more than the pressure on the left side. So, the pressure 

difference induced flow is going to be from right to left, whereas the plate motion induced flow 

is going to be from left to right. So, this pressure gradient which opposes the flow is called 

unfavourable pressure gradient in this case. 

   So, we will start with this description of the problem and see what is the problem, what are 

the information that we would get for a combination of both motion of the top plate and 

imposition of a pressure gradient in the flow field. So, that is going to be our today's problem. 

So, this is what I mean, that if you look at the image over here, the top plate the slight pink in 

colour moves to the right with some velocity u and the p0 in key if it is a. So, if it is a favourable 

pressure gradient the p0 is going to be more than pL. So, that there would be a flow due to 

pressure alone from left to right. 

 

   Now, if let us say p0 is equal to pL and you have only the top plate moving, then also you are 

going to have a flow from left to right because the top plate will drag some liquid along with it 

because of viscosity. So, the x and y the coordinate system is marked over here. So, the it lies 

on the bottom plate and then when the length of which is equal to L, the width of the plate 

width of the plates w, and the separation between the two plates is b. Now, here we can see that 

the velocity is going to be principally in the x direction. So, the only non-zero component of 

velocity it is one dimensional steady flow is going to be vx and as the figure suggests that this 

vx is going to be a function of y. 

   So, if the velocity varies in the y direction, then when we choose the shell, imaginary shell 

for making the momentum balance, the thickness of that is going to be equal to delta y which 

is what has been shown over here the grey one for which the length is L the width is w. 

However, the thickness is delta y once again this delta y is chosen since the velocity vx varies 

with y. So, and then we will use the equation, the fundamental statement, the momentum 

conservation for steady state case, the rate of momentum in minus rate of momentum out plus 

sum of all forces acting on the fluid inside the control volume would be equal to 0. Once again, 

we understand that since the velocity vx is not a function of x and therefore, the convective 



momentum in through this face would be equal to the convective momentum out of this face. 

So, the vx is a function of y only and the width of the surface is equal to the velocity vx. 

   So, the width of the plate is very large as compared to the separation. So, vx is not going to 

be a function of z as well. So, since vx is not a function of x it is a constant at a given y if you 

change the y, vx changes, but at a given y the velocity remains constant. So, this leads to our 

statement that the net convective momentum will be 0.  Additionally, we also identify what is 

going to be the pressure gradient. 

Rate of momentum IN – Rate of momentum OUT + ∑ 𝐹 = 0 

dp

dx
=

pL − p0

L − 0
 

   The pressure gradient is going to be p final which in this case is pL minus initial divided by 

the spatial locations at L and 0. So, with this knowledge I will not get into this any further.  So, 

we would be able to obtain what is going to be the governing equation which is d2vx/dy2 is 

equal to 1 by µdp/dx. Once again, this expression is valid only for a Newtonian fluid. The shell 

momentum balance is exactly the one which we have done before. 

d2vx

dy2
=

1

𝜇
(

dp

dx
) 

   Rate of momentum in minus rate of momentum out plus sum of all forces would be equal to 

0. There is no convective momentum, only conductive momentum and if you think about the 

conductive momentum, it is the x component of momentum getting transported in the y 

direction. So, you know what is going to be the subscript of τyx which is applied on the area w 

times L in at y out at y plus delta y. So, two terms for the shear induced momentum transport 

and the there is no body force in the x direction, no gravity in the x direction. So, what you 

have in the x direction is surface force and the surface force is essentially the pressure gradient. 

   So, pressure gradient, the pressure multiplied by the area. So, pL multiplied by the 

corresponding area which would be delta y times w and p0 multiplied by the area the algebraic 

sum of these two and when you couple that with the Newton's law of viscosity this is the 

governing equation, this is the governing equation that you should get. I leave this to you to do 

it on your own and this is the form of the governing equation.  Now, next we have to identify 

what are the boundary conditions and if you look at the figure that we have on the screen we 

are going to use two no slip conditions. One is vx is equal to u, capital U the velocity of the top 

plate at y equals b. 

 

   So, and so whenever the top plate moves it will drag the fluid along with it and at the right, 

at the liquid solid interface the velocity of the liquid particles would be the same as the velocity 

of the solid part. So, velocity of the solid. So, therefore, vx is u at y equals b and the no slip 

condition also tells us that at the bottom plate vx is going to be equal to, vx is going to be equal 

to 0 because of no slip again.  So, when you solve this, integrate, find out the governing, find 

out the boundary integration constants using the boundary condition, this is what you are going 



to get. It is interesting to note that you have two distinct terms, one is this the other is the one 

which contains the pressure gradient. 

vx =
U

b
y −

1

2μ
(

dp

dx
) b2 [

y

b
− (

y

b
)

2
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   So, the first part of the velocity distribution is purely due to the motion of the top plate which 

is which is denoted by capital U. The second part of the motion is caused by the pressure 

gradient. So, this is, as if it is a superimposition of two flows, one due to the motion of the top 

plate the second due to the imposition of pressure. So, if dp, if I set the imposed pressure 

gradient to be equal to 0 then vx is simply going to be a linear distribution in terms of y.  So, 

vx and y are related in a linear fashion. This kind of flow initiated by the motion of one of the 

bounding surfaces in this case, one of the plates without any pressure gradient is known as 

Couette flow. 

 

   So, this Couette flow is quite common in certain applications which we will discuss 

subsequently. So, this is how the Couette flow would look like a linear distribution of velocity 

starting at y equal to 0 and becoming equal to capital U at the top plate. So, this is at y equals 

b, the velocity that is what it is going to be. Now, if you assume, now that the top plate has 

stopped moving only you have pressure gradient present in the system. So, if you look at the 

second part of the expression the second part of the expression is due to pressure driven flow 

and the pressure driven flow will give you a distribution something like this, with the maximum 

velocity being at the mid plane that is at y equals b by 2. 

 

   And in this case, both the plates are stationary that is why at y equal to 0 and y equal to b, the 

vx is going to be equal to 0. So, that is what is pressure driven flow. So, a Couette flow looks 

something like this. Once again, no pressure gradient and only pressure gradient the velocity 

distribution would look like the figure at the bottom. And when you superimpose one on the 

other that means, when you do have pressure gradient and, in this case, it is favourable pressure 

gradient. So, whichever direction the top plate is moving the pressure gradient. 



 

   So, the pressure keeps on decreasing as you move from towards the right. So, the pressure 

gradient also tries to move the velocity, move the fluid towards the right. So, this is called the 

favourable pressure gradient and the profile that I have drawn over there is essentially the 

Couette and pressure gradient driven flow when they are acting together.  So, this is a 

superposition and another interesting thing is what is going to be the location of the maximum 

velocity. If you look at this one, the location of maximum velocity for Couette flow was here 

for the case of pressure driven flow the location of maximum velocity was at the centre line, 

but what if both are present. 

 

   So, if both are present, where are we going to have the maximum mean velocity. So, here as 

I have drawn it, is the maximum mean velocity could be somewhere over here, but the location, 

position of this maximum would depend on what is the velocity of the top plate and what is the 

pressure gradient that you have applied. If you apply a large pressure gradient, then the 

maximum is going to be more than the velocity of the top plate. If you just apply a small 

pressure gradient, then the velocity profile would probably look something like this where the 

top plate velocity will still be the maximum. So, the magnitude of the maximum velocity is a 

function of the velocity of the top plate and the impose and the value of the pressure gradient, 

favourable pressure gradient that has been applied. 

   So, the location of the maximum velocity is something interesting to look at and what if I 

have unfavourable pressure gradient and Couette flow in such a way that the top part of the 

fluid will move along with the plate towards the right and since it is unfavourable pressure 

gradient, the bottom part of the fluid will move due to pressure gradient to the left. So, there is 

going to be two flows, two flows superimposed on each other- Couette flow and pressure driven 

flow. So, this kind of situation may give rise to a condition where even though you have flow 

at the top and flow at the bottom, but the net flow across any cross section could be equal to 0. 

So, the 0 net flow that is something which you would like to look at.  So, if the second part of 

the question is, obtain and sketch the velocity profile if an unfavourable pressure gradient is 

imposed on the flow such that the net flow is 0. 



vx =
U

h
y +

1

2μ
Ay2 [1 −

h

y
]  A =

dp

dx
 

   So, this is what I was talking about and we would like to see how it looks. So, this is the 

expression for velocity which you have obtained from shell momentum balance and the 

expression can be integrated in order to obtain what is the average velocity.  So, since the 

velocity varies with y. So, therefore, it is from 0 to h vxd y would give me the area averaged 

velocity and note here is that I have taken unit width basis 1. If it is not unit width then I could 

have it this from 0 to w and dy dz where z is the width of the plate. 

For net flow to be zero, ∫ vx
h

0
dy = 0 (Avg velocity = 0) 

   So, along the flow area which is w times delta w times delta y along that area how vx changes. 

So, the expression for vx is plugged in here and it is equated to 0 which essentially means the 

average velocity for such a case of an unfavourable pressure gradient would be equal to 0. 

When you perform that you would see that the pressure gradient is simply going to be equal to 

6µu by h square that is the expression for the unfavourable pressure gradient that you have to 

apply in order to obtain a 0 net flow when you have Couette flow and unfavourable pressure 

gradient together.  And you also note that this dp/dx is positive. So, this dp/dx is positive which 

means that as the flow progresses, the pressure over here is going to be more than the pressure 

over here and so on. 

A =
6μU

h2
=

dp

dx
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U
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y
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   So, with in the pressure is going to force the fluid to move from the right to the left and the 

after you plug in the value this would be the expression for the velocity and this is how it looks 

like. So, near the top it is Couette flow at that point it is more like Couette flow. Over here it is 

pressure gradient driven flow and in order to have the have the 0 net flow the area under the 

curve over here and over here must be equal. So, essentially what we are saying is that whatever 

be the flow rate in the top part of it and the flow rate in the bottom part they are equal, but 

opposite in direction. So, this is what it should look like when you have Couette and 

unfavourable pressure gradient acting together. 

 

   Now, then comes the last part of this problem, find the maximum favourable pressure gradient 

that can be applied so that the maximum velocity in the fluid will be the velocity of the top 

plate and sketch the velocity profile for this case. So, if I draw it like this, if it is Couette flow, 

the velocity is simply going to be linear. So, your v max is over here and which is equal to the 

velocity of the top plate. If you apply a small value of the favourable pressure gradient this is 



still my capital U. So, instead of this being a straight line, it is going to be slightly deviated 

from straight line, but it will still the maximum is still going to be over here. 

   If we apply a large pressure gradient then this being capital U it will go it will look something 

like this. So, in between these two, I have a situation in which if you apply just a slightly more 

pressure gradient it is the maximum in velocity is going to be more than capital U. So, if you 

apply a lower pressure then it would look something like this, where the maximum is going to 

be still going to be the velocity at the top plate. So, what is that transition pressure which would 

give you the last point of the maximum on the plate. Any more pressure gradient and the 

maximum will lie somewhere in between the two plates, not at the top plate. So, you have the 

expression for the velocity and since it is going to be maximum at the top. 

Here, 
dvx

dy
|

y=h
= 0 

So, therefore, dvx/dy at y equals h must be equal to 0. You can intuitively also arrive at the 

same conclusion because as our discussion suggests over here, if this is my capital U then it 

should look something like this. Because if it is rightly just vertical over here any increase in 

dp/dx would force the maximum to move somewhat over here.  So, this is the condition where 

I have the maximum still on the top plate and this is the condition where the maximum shifts 

from the top plate to the right. And if you look carefully, the boundary condition over here is 

that the profile, the velocity profile approaches the top plate with a condition where dv/dx for 

dy at y equals h to be equal to 0. 

A =
−2μU

h2
=

dp

dx
 

   So, when you plug that condition, the expression for force the pressure gradient that you 

would get the expression for favourable pressure gradient that you would get is minus twice 

µu by h square. Note the minus sign which denotes that you have the favourable pressure 

gradient. So, this is a unique problem and as I mentioned any dp/dx larger than minus 2 µu by 

h square. This would result in a velocity which is going to be greater than the velocity of the 

top plate, greater than the velocity of the top plate in between 0 and h. So, this is a unique 

problem which shows us so many things about the interplay of the pressure gradient and the 

Couette flow. 

   Now, let us think about Couette flow once again. The top plate is moving and it is imparting 

a flow due to viscosity in the fluid below it, in the fluid which is situated in between the two 

plates. So, as the top plate moves, what it is going to do is that it because of liquid viscosity the 

flow will start in the direction of the motion of the top plate.  Now, viscosity always resists 

motion. So, viscosity will, in order to make the top plate move some external agency must 

apply a force on the top plate. So, the top plate will only move if a force is being applied on it. 

As any 
dp

dx
 larger than this would result in a velocity > U   between y = 0 → h 

   Now, you can always calculate that force by evaluating what is 𝜏, what is 𝜏 at the top plate 

that means, at y equals capital H and multiply it with the area of the plate in contact with the 

liquid which would simply be w times L. And this 𝜏 is essentially if I use Newton's law of 

viscosity, it is going to be viscosity multiplied by velocity gradient evaluated at the top plate at 



y equals H. So, that multiplied by w times H would give me the force needed to make the top 

plate move. So, this would be µtimes dvxby d y at y equals 0 multiplied by w times L. 

   This is the force needed to move the top plate.  So, interest and the faster the velocity of the 

top plate as the velocity increase, as the u becomes larger and larger this velocity gradient term 

it keeps on increasing because your separation is fixed at H. So, if your separation is fixed at 

H any increase in the top velocity would essentially enhance the velocity gradient. So, if the 

velocity gradient increases then the force will also increase. So, the question then comes is 

what is going to be the force when you have a condition that the velocity, the maximum is 

going to be at the top plate. Now, the condition that we have used for getting the maximum at 

the top plate is d vx/ d y at y equals H is equal to 0. 

   So, interestingly then that and the profile would look something like this. So, the blue one is 

the profile the it approaches the top plate with in a vertical fashion dp/dx is greater than 0. So, 

the force necessary to move the top plate under this condition what is going to be its value? Its 

µ times velocity gradient, but the velocity gradient at that point is 0 that is being shown over 

here.  So, essentially that means, that for that special condition you do not require any force to 

move the top plate under that condition. So, for a situation in which the maximum will lie, the 

last point of maximum for which the velocity in the flow field is maximum at the top plate 

would require that the top plate will move on its own without having any force to be applied 

on it. 

 

   So, we have solved an interesting problem where we have seen that the motion of the top 

plate can initiate a flow which is Couette flow, which is termed Couette flow. The velocity 

profile in that case is going to be linear.  If I have a favourable pressure gradient then the 

velocity profile would not be linear, but it is going to have a maximum at the centre line. When 

we superimpose the two together what we have is Couette flow plus favourable or unfavourable 

pressure gradient. The unfavourable pressure gradient can give rise to a situation in which the 

net flow rate could be 0. And the net flow rate could be 0 essentially you can derive what is the 

value of the pressure gradient that is to be applied in order to have 0 net flow. 

   All these are going to be a function, the expressions are going to be a function of the physical 

property mainly viscosity of the fluid and the geometrical parameters. For example, what is the 

separation between the two plates H and it is also going to be what is the magnitude of the 

velocity u with which the top plate is moving. And we have also analysed an interesting case, 

what is going to be the force needed to move the top plate with a constant velocity when the 

last point of the maximum still lies on the top plate for a specific pressure gradient. Any 

pressure gradient more than that will cause that to shift from there. 



   So, that is all for this class. Thank you and we will continue; we will have one more class on 

the shell momentum balance and then we will see that how we will feel the need to have a more 

generalized approach rather than a shell momentum balance.  Thank you. 


