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   Good morning, once again. We will continue with our discussion on the shell momentum 

balance and as before, this portion you can find in the prescribed textbook of Bird, Stewart and 

Lightfoot. So, we have already defined in the previous class what is a shell, how do we define 

it, the fact that we have to use the smaller dimension as the direction in which the flow is 

changing. So, if the velocity is a function of x, then it is the dimension, a smaller dimension of 

the imaginary shell is going to be delta x. The length and width could be anything. So, on that 

shell we made the momentum balance and there are two mechanisms by which the momentum 

can come into the shell. One is due to the real flow, which we call as the convective transport 

of momentum. The other is, since there is a variation in velocity on the top surface, let us 

assume on the top surface of the of the imaginary shell. 

   So, there is going to be a transport of momentum. The viscous transport of momentum, also 

called the molecular transport of momentum in a direction perpendicular to that of the flow. 

So, that is known as the conductive transport of momentum. So, the convective due to actual 

flow, conductive due to the presence of a velocity gradient. One is in the direction of flow, the 

other is in a direction perpendicular to that of the flow. And the common forces which we, one 

encounters in fluid mechanics would be the body force, which acts on every point of the fluid 

inside the imaginary shell equally and this it could also be an electrostatic force, and the second 

one is the applied, the surface force. 

   One of the examples of surface force very common example of surface force is the applied 

pressure gradient. That there is an external agency, most likely a pump which creates a pressure 

gradient that sustains the flow. So, these are the two different types of forces which will get 

into that equation and then since it at steady state the sum, algebraic sum of rate of momentum 

in minus rate of momentum out plus sum of all forces acting on it would be equal to 0. That is 

what we have covered in the last class. Then from the difference equation we obtained the 

differential equation which is also known as the governing equation. 

Shell MM Balance 

At steady state: Rate of MM IN – Rate of MM OUT + Sum of all forces acting on it = 0 

   The governing equation after incorporation of the after-Newton’s law of viscosity which 

relates shear stress with the velocity gradient, the proportionality constant being a material 

property viscosity 𝜇, one can then use the boundary conditions of no slip and no shear at the 

liquid vapor interface in order to obtain the in order to obtain the unknown unknown current 

unknown integration constants.  So, one is the no slip that is the relative velocity at the solid 

liquid interface would be equal to 0. The other is the no shear that the shear at the liquid vapor 

interface is equal to 0 or in other words 𝜏 should be equal to 0. With this and the first problem 

that we have solved is flow along an inclined plane.  The one that we are going to solve in this 

class is going to be the flow of a through a circular tube. 



   Now, all of us are aware of flow through a circular tube or a pipe. So, if you look at the figure 

on the left then you have flow coming from the top into this and the flow is going out of the 

tube at let us say at z equals L. So, this z direction is along the centre line down and r is in the 

radial direction. So, you can imagine that there is going to be a one-dimensional flow situation, 

there is going to be a nonzero value of vz and there is not going to be any vr. There is just not 

going to be any velocity in the r-direction and since this is cylindrical coordinate system, there 

is also the possibility of a vθ , that is the velocity in the theta direction which is also not present.  

So, I have vz as the only nonzero component of the velocity and if you think again this vz is 

going to be a function of r only. 

 

   So, if it is near the wall, the velocity is going to be smaller, if it is at near the centre line, the 

velocity is going to be larger. So, the velocity is definitely a function of r, it is steady state. So, 

it is not going to be a function of time and it is not going to be a function of z or of theta. So, 

since the velocity is changing with r and r alone. So, in order to make a shell across which we 

are going to make a momentum balance, I have to choose a cylindrical shell inside the pipe, 

inside the tube inside, the circular tube whose longitudinal length could be L. 

   However, the smaller dimension is going to be delta r. As I have shown in over here because 

this delta since vz is a function of r. So, my shell, smaller dimension of the shell is going to be 

delta r. So, I have a shell inside the tube with having the dimension same length, but the 

thickness is going to be equal to delta r. So, I hope that this is very clear to you how we have 

we choose the smaller dimension of the shell and then make the balance.  So, next is, we are 

going to write the convection, the rate of momentum in by convection and in order to write the 

rate of momentum in by convection first I have to find out what is the area that we are talking 

about. 

   So, this area is going to be the annular area, twice pi r times delta r. So, this is this area which 

is twice pi r times delta r. What you are seeing is just a sectional view of the tube along with 

the imaginary shell.  So, the flow from the top is entering into the shell into the cylindrical shell 

whose top area perpendicular to the direction of flow is twice pi r delta r. It enters with a 

velocity vz which is at z equals 0. That means, over here. So, area multiplied by velocity would 

give you the volumetric flow rate meter cube per second. 

   Volumetric flow rate twice pi r delta r times vz multiplied by 𝜌, the density would give you 

the mass flow rate.  The mass flow rate again multiplied with another velocity, with the velocity 

at that location would give you the rate of momentum in by convection, ok. So, area, velocity, 



density velocity again. So, meter square, meter per second, kg per meter cube. This will be the 

mass flow rate and then the mass flow rate is to be multiplied by vz. This is the in term and the 

out term when I wrote rate, I should probably have said I think you understand that it is the net 

rate of momentum. 

Rate of momentum in by Convection:   

2πr ∆rvz|z=0ρ vz|z=0 − 2πr ∆rvz|z=Lρ vz|z=L = 0 

 

   So, this is the in term, this is the out term and the out term would remain exactly the same 

except z equals 0. The velocities are to be evaluated at not at z equals 0, but at z equals L.  We 

also realize that, this is a one-dimensional flow. So, vz is a function of r only. It is not a function 

of z. So, if it is not a function of z then vz at z equals 0 would be equal to vz at z equals L. So, 

under these conditions there is not going to be any net rate of momentum to the control volume 

due to convection. 

   So, first these two terms will cancel out each other and therefore, I do not have any 

contribution of moment, contribution in momentum by convective flow. So, what is by 

conduction? In order to write the conduction, I first have to find figure out what is going to be 

the subscripts of  𝜏. Now, this is the z momentum getting transported in the r direction. z 

momentum getting transported in the r direction. So, it is going to be τrz and if you think of the 

annular area, the inside area the τrz is acting on this area. So, what is this area? It is simply 

going to be twice pi r times L, that is the annular area, inside area of the tube on which  𝜏 is 

acting and going out through this phase where the length remains the same except the radius is 

going to be r plus delta r. 

Net Rate of momentum in by Conduction along with surface and body forces: 

L[τrz|r=r2πr − τrz|r=r+∆r2π(r + ∆r)] + 2πr∆rp0 − 2πr∆rpL + 2πr∆rLρg = 0 

   So, thus the shear stress is multiplied by twice pi r times L. So, everything is evaluated at r 

equals r and the other one is going to be the shear stress evaluated at r plus delta r that means, 

on the outer edge of the imaginary shell and the area would simply be equals twice pi twice pi 

times r plus delta r multiplied by L. So, this is the in term this is the out term and so, that is 

what the shear stress is all about. So, I think it is very clear to all of you at this point that the 

shear stress how to evaluate the shear stress, the area on which it is acting on and so forth.  

Now, if you look at the figure once again the pressure at the top is equal to p0, the pressure at 

the bottom is pL. 

   So, there is a difference in pressure at the top of the shell and at the bottom of the shell. So, 

one has to then write the force difference due to the applied pressure and the pressure is acting 

on the annular area at the top.  So, what is the annular area of the top? It is twice pi r times delta 

r at the top and the same at the bottom. Over the top the pressure is p0 pushing the fluid 

downwards in the plus z direction, the force at the bottom is going to be pL multiplied by area 

and since it is trying to push the liquid up. So, that is why it comes with a minus sign. 

   So, the net force and here I have an imposed pressure gradient. So, therefore, I need to take 

into account the surface forces in this. In this case and of course, there is going to be gravity it 

is acting downward. So, the component of gravity is simply g and what is the volume contained 



in it, in the shell multiplied by 𝜌 multiplied by g would give me the force due to gravity the 

body force.  So, this is my area, this is the density, this is the density and I have the g. So, this 

essentially then constitutes my complete governing, a complete difference equation, I have 

already identified that the convective shear stresses do not play any role since the velocity is 

not a function of z. 

lim
∆r→0

[
rτrz|r+∆r−rτrz|r

∆r
] = (

p0−pL

L
+ ρg)r 

d(rτrz)

dr
= (

p0 − pL

L
+ ρg) r 

   So, they simply cancel out, but these are the terms which will remain in here. So, with this, I 

then take the 𝜏 containing terms on one side divide both sides by delta r and take the limit when 

delta r approaches 0.  So, this difference equation then gets converted into a differential 

equation which we will subsequently call as the governing equation. And if you look at the 

right-hand side, I have the imposed pressure rather imposed pressure gradient p0 minus 

pL divided by L, pressure difference per unit length and I have the 𝜌 g also r on the right-hand 

side.  So, the difference equation then gets converted and this becomes my governing equation 

for the flow of a fluid through a circular tube. 

   What are the boundary conditions? At r equals 0 that means, at this point the velocity is going 

to be maximum, right. Our intuitively it tells us that the 𝜏 is going to be maximum, sorry 

velocity is going to be maximum and  τrz will be 0. Since 𝜏 is proportional to the velocity 

gradient. So, for the case of maximum, the velocity gradient is going to be 0 there. So, therefore, 

my 𝜏 is going to be 0 and the other boundary condition is the no slip condition that is at r equals 

r where the liquid encounters the walls of the tube, there is going to be no slip condition.  So, 

at r equals capital R the velocity is going to be 0. 

Boundary Condition: r = 0, τrz =0 

Boundary Condition: r = R, vz =0 

   So, the no shear in this case comes from our physical understanding that the velocity has to 

be maximum at the centre line and the other one is the no slip condition. Now, in order to make 

it more compact no, additional understanding is required. This is just to make this part look 

more compact, I define a capital P which is pz minus 𝜌 g z. So, what is going to be my p0. P at 

z equals 0 is simply going to be p0 and pL is going to be p at l minus 𝜌 g L. This is only to make 

this term more compact nothing else. So, this capital P are defined in terms of the actual 

pressure and the 𝜌 g z nothing more than that. So, when you, if you can continue without doing 

this and you will be right as well, but to make it more compact, the equation would look like 

the pressure the dτrz/d r would be this. 

Define: P = pz − ρgz; P0 = p0 & PL = pL − ρgL 

   So, once you integrate this, you are going to use the first boundary condition and use 

Newton’s law and the second boundary condition. So, you should be able to evaluate what is 

c1 and what is c2, I am not doing all these steps in here they are done quite well in Bird’s 

Lightfoot. Take a look at it, try to do it yourself, this would be a good exercise starting with the 

governing equation with the help of these two boundary conditions whether and how you arrive 

at the velocity distribution.  Now, if you look at the velocity distribution in this case, this capital 



P are what we have defined which have embedded in it the effect of applied pressure and that 

of gravity as per my definition of capital P which contains the pressure and the gravity term 

together.  So, that is what I meant by making it look more compact nothing else. So, I leave 

this to an exercise so that you can figure out what is going to be the velocity. 

vz =
(P0 − PL)

4μL
R2 [1 − (

r

R
)

2

] 

   So, it is going to be the applied pressure gradient pressure difference divided by length, but 

the most important thing is the form of this, which would tell me that the profile of the velocity 

in the tube is going to look something like a parabola.  So, this would look like a parabola with 

the maximum at the central line. So, which is vz is going to be equal to the maximum, is going 

to be equal to maximum and the no slip would tell me that vz over here is going to be equal to 

0. So, this is the profile and for any flow in a tube a cylindrical system the velocity will 

obviously, be the parabolic distribution. And once again by putting r equal 0 you can get an 

expression for what is vz max the maximum velocity at the central line. 

vz, max =
(P0 − PL)

4μL
R2 

   And therefore, you can also write the vz in terms of v in terms of v max.  The next important 

thing what we have done before is finding out the average velocity.  In order to find the average 

velocity, you have to integrate the velocity over the entire cross section and then divide it with 

the cross section. So, it is going to be 0 to 2 pi r dr d𝜃 , this 0 to 2 pi r dr d𝜃 is the area. So, 

vztimes r dr d𝜃  integrated over the possible limits of 0 to 2 pi and 0 to r. 

⟨vz⟩ =
∫ ∫ vz r dr dθ

R

0

2π

0

∫ ∫ r dr dθ
R

0

2π

0

=
(P0 − PL)

8μL
R2 

   This essentially is average velocity, is the area averaged flow velocity. So, this area that we 

talk about are the area in a direction perpendicular to the direction of flow. So, if this is the vz 

then the area is pi r square. So, it is the area, is the averaged, is the velocity averaged over the 

cross-sectional area that is what we have over here and this is going to be the expression for 

the average velocity.  Now, all these you should try to do yourself by plugging in the expression 

of vz in here and try to see if you arrive at the same result. 

   So, the volumetric flow rate would simply be equal to the average velocity multiplied by the 

flow area. When you do that, this is the expression for the volumetric flow rate because of an 

applied pressure gradient and flow assisted by gravity which was our case.  This equation has 

a special name, it is called Hagen–Poiseuille equation. And what are the assumptions that we 

have chosen for this one? The assumptions are that it is laminar flow, it is one dimensional 

flow, only nonzero component being vz it is a steady state flow. So, it does not, the velocity 

does not vary with time. 

Volumetric flow rate, Q = ⟨πR2⟩⟨vz⟩ 

Q =
π(P0−PL)

8μL
R4 ; Hagen Poiseuille Equation 



   So, all these together would give us this expression for Hagen–Poiseuille equation which is 

extremely useful important you will see its application later on as well. But one of the common 

examples of the use of this is if you have used a capillary viscometer for trying to find out what 

is the average viscosity during your school days. What you have done is you have chosen a 

capillary and you let a fluid liquid flow through it, collect the amount in a beaker figure out 

what is going to, what is your q, the volumetric flow rate amount collected per unit time.  You 

know what is the radius of the capillary that was handed to you and you also know that in 

absence of any applied pressure gradient this is nothing, but gravity this p0 minus  pL is due to 

gravity only and you know the length of the tube. So, through a large number of experiments 

and calculating that you would be able to obtain what is the unknown 𝜇. 

   So, this is one of the simplest ways to measure the viscosity of any fluid.  So, next I am going 

to quickly give you some pointers about a problem which I will leave to you as an exercise. 

So, I will give you the answer for, but let me first describe the problem to you. What you see 

on the left is a narrow slit, what is the significance of a narrow slit? That means, the separation 

between the two plates which is 2b is very small as compared to the width or length of it.  So, 

what means it means is that if you take, if you take 2 pages, 2 A4 size papers and bring them 

very close to each other with leaving a small gap in there. 

  

   So, the gap thickness is essentially very small in compared to the width or the length of the 

A4 size paper. What it means is that, for most of the flow area, the flow and you let a liquid 

flow through them. Most of the flow area, the flow is going to be one dimensional. It is going 

to be a function of its distance from the side walls, but it is not going to be a function of these 

open ends since they are very long in comparison to twice b, it is not also going to be a function 

of the length of the two papers.  So, for evaluating the flow in a narrow slit when you have a 

pressure difference imposed of them in terms of p0 and pL. 

   So, this is the flow in and out and its laminar flow. How do I find out what is the velocity 

distribution? That is first part of the problem. So, we have to find out what is the velocity 

profile, the average velocity and the relation between the average velocity and the maximum 

velocity. So, that is what the problem is all about.  Now, in order to solve the problem, I first 

have to choose my shell. 

   So, the velocity is a function, in this figure velocity is a function of x only, it is not a function 

of y or of z. So, therefore, my shell, chosen shell should have the dimensions, it could be any 



length and width. So, it could be L and W and the smaller dimension is going to be equal to the 

delta x. Since velocity so, the nonzero component of velocity vz is a function of x only and 

vz is not a function of time x or y. So, this understanding would let us draw the shell in this 

way. 

   So, it is delta x any length L and any width W and then make the balance of momentum for 

this shell. We understand that the fluid is entering through the top, it is leaving through the 

bottom. Since it is one dimensional flow there is not going to be any flow on this face or at the 

back face on this side or this side. So, my velocity is going to be a function of x only. 

Rate of momentum IN - Rate of momentum OUT + ∑ 𝐹 = 0 

   So, let us write the equation. So, once again the shell momentum balance for one dimensional 

case is rate of momentum in minus rate of momentum out plus sum of all forces acting on it 

would be equal to 0. And over here I realize that I have gravity force and I also have pressure 

force because there is some imposed pressure on this system. We also understand since velocity 

is not a function of z. So, vz at z equals 0 would be equal to vz at z equals L. What this tells me 

is that the convection in and convection out will be equal and in my equation. 

   So, rate of momentum in the convection part need not be taken into account because the in 

and the out will cancel each other.  With this what I am and I have mentioned that vz is not a 

function of z, it is not a function of y because of this geometric reason and it is fully developed, 

that means the flow is completely developed and we will talk more about fully developed later 

on what exactly is fully developed. It is fully developed when the flow does not change with 

the direction of flow. The flow velocity can still be different because as in this case vz is in this 

case is a function of x. So, velocity changes with x, but velocity does not change with z the 

flow direction. 

   So, whatever be the profile of the velocity with x will be maintained at all values of z. So, if 

it starts if it is parabolic, it will remain parabolic throughout the length of the pipe or the tube 

or the slit and that is what is known as the fully developed flow. So, once again the pictorial 

description of this and after for cancelling the convective terms, I have my conductive terms. 

So, what is conductive? z momentum being carried in the x direction. So, the convention that 

we have chosen would be would fix the subscript of 𝜏 as τxz. 

   The area on which it is acting on is L times W. So, I have this area and the one out would be 

everything remaining of the same except for x everything is going to be evaluated at x plus 

delta x now. The convective part is 0. So, the conductive part the molecular transport part or 

viscous transport part the it is called in different names. So, it is simply going to be 𝜏 multiplied 

by the area on which it is acting on. 

 



   I have some pressure force acting on it. This is the area over which the pressure is acting on. 

So, W times delta x is the area on which the pressure p0 is acting at the inlet. The one, the 

pressure at the outlet is pL. So, that is why I simply substitute p0 by pL in here the area remains 

the same. 

   What is the volume of it? It is delta x W L is the volume. This 𝜌  multiplication with 

𝜌 converts it to mass and this is mass times m times g m g. So, that is essentially the downward 

acting gravity force in this case.  So, what you now, you understand what you have to do. You 

have to cancel the terms which are there. For example, you can cancel W from both sides and 

then divide it by the smaller dimension which is delta x. 

τxz|xLW − τxz|x+∆xLW + p0W∆x − pLW∆x + (∆x WLρ)g = 0 

   Take in the limit when delta x tends to 0 and with that you can convert this difference equation 

into the governing equation governing differential equation and then you solve the governing 

equation with appropriate boundary conditions and what could be the appropriate boundary 

conditions if I go back to this figure.  What are the boundary conditions? Now, what I have in 

here is a flow contained between two solid plates. There is no liquid vapor interface, but I have 

two liquid solid interfaces.  One is at x equals plus b and the other is at x equals minus b. So, 

my boundary condition for this case would be the no slip condition at the plus x and no slip 

condition at minus x such that vz the velocity in the z direction is 0 at x equals plus b and x 

equals minus b. 

   So, these are the two no slip conditions which are to be used in order to solve this governing 

equation and you should get, once again you should do it on your own and check if you are 

getting the correct results. So, your vz is going to be the applied pressure gradient whereas 

before as we have done with the cylindrical tube problem this p0  and pL capital P0and P0 

contains embedded in them the effect of gravity. You could leave the limit as before you could 

leave it the gravity separate also it will not change anything, it will be equally correct. But the 

important part is the nature of the variation of velocity and you can see from here is that it is 

going to be parabolic in nature. So, in between the two plates the velocity is going to be 

parabolic in nature with the maximum velocity at the center line and the 0-velocity due to no 

slip at the side walls. 

vz =
B2

2μ
(

P0 − PL

L
) [1 − (

x

B
)

2

] 

   So, this is what the distribution suggests that it should be. Once you have the point velocity, 

we could find out what is the average velocity and from here you can also say that vz max is 

whatever be the vz at x equals 0. So, that means, right at the center line the velocity is going to 

be the maximum and the average velocity can be obtained as I have explained when the velocity 

is integrated over the flow area and divided by the flow area itself.  So, the average across the 

flow area when the flow area is simply going to be equal to this area. This is the flow area W 

times delta w times delta w times 2 b. So, the flow area is twice b W because this is the width 

and this is the gap through which the flow is taking place. 

⟨vz⟩ =
2

3
vmax 



   So, this is essentially equals to the flow area. So, in order to obtain the average velocity vz 

you have to integrate the, in order to calculate the vz you have to integrate this over dx and dy. 

dx and dy with the limits of x from plus minus v with the limits of y between 0 to w. Once 

again you should try that and the final result, I am writing over here is that the velocity, the 

average velocity is going to be two-third of v max. So, this is an exercise which I leave for you.  

So, before I leave, we have seen how a simple momentum balance in an imaginary shell can 

give rise to compact analytical expressions for velocity, the average velocity, the maximum 

velocity and the flow rate. For two cases one is quite common which is flow through a circular 

tube and the second is an application example where the flow is in between a narrow slit. 

   So, in both cases the velocity distribution turned out to be parabolic in nature and you can 

have relations, one of the very important relations in fluid mechanics that we have derived in 

today's class is the Hagen–Poiseuille equation.  So, in the next class we will see slightly more 

complicated problem, more complicated geometries to be handled and more conceptual 

problems and we would slowly start to realize that the shell momentum balance will not work 

in every case and we need to have something more general than a shell momentum balance to 

tackle problems of varying increasing complexity.  So, that would be the topics of my 

subsequent classes.  Thank you. 


