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Good morning.  In today's class, I am going to start with a new topic. It is called shell 

momentum balance.  And this shell momentum balance, this part of the course is taken from 

the textbook Bird, Stewart, and Lightfoot.  So, what is a shell that we have to decide first.  

Whenever we are making a balance of the forces on a small control volume of a fluid, we first 

need to decide what is the direction in which the velocity is changing.  So, if the velocity of the 

fluid flowing between two plates, both are stationary, and if this is the x direction let us say. 

So, the first thing as I mentioned, is going to decide what is going to be my shell dimension.  

So, let us say that we have two plates and a fluid is situated in between them and the fluid is 

flowing. This is the x direction and this is the y direction.  So, obviously, you can well imagine 

that 𝑣𝑥 is going to be a function of y.  The closer the moving layer is toward the walls of the 

two plates, the velocity will be minimum, will be smaller and at the centre line the velocity is 

going to be maximum. 

So, under these considerations, since 𝑣𝑥 is going to be only a function of y, it is called one 

dimensional flow. And in one dimensional flow the shell to be chosen for any balancing of 

momentum we will choose a shell whose dimensions are going to be the length.  This is the 

width of the of the entire system, this essentially is the width of the volume that we are going 

to choose and this one is going to be my smaller dimensions delta y recognizing the fact that 

𝑣𝑥 is a function of y only.  So, whenever you have to choose a shell, always choose the shell 

the smaller dimension of the shell is the direction in which the velocity is changing.  So, since 

𝑣𝑥 is a function of y alone.  So, therefore, my shell would be of any length L. 

So, this could be the length L and its width could be W. However, the thickness of the imaginary 

shell across which we are going to make a balance of momentum will be the direction in which 

the velocity is changing with position. And also, this is a case of steady state flow. So, therefore, 

𝑣𝑥 is not a function of time. So, 𝑣𝑥 is a function of y and therefore, that is the method by which 

one should assign the smaller dimension of the chosen imaginary shell of fluid across which 

the fluid is moving. And of course, if we write something like a Newton's second law of motion 

for an open system at steady state where the velocity is not a function of time, the rate of 

momentum in, the MM here refers to momentum. 

Shell MM Balance: 

At steady state: Rate of MM IN – Rate of MM OUT + Sum of all forces acting on it = 0 

So, the rate of momentum in minus rate of momentum out plus sum of all forces acting on the 

shell would be equal to 0.  Had it not been a steady state, then the fluid may be accelerating, 

and therefore, I will have additional term on the right-hand side. So, here we have just 

momentum in and out of the shell because of the flow. And we will recognize what are the 

mechanisms by which the fluid can move in and out of the shell and the mechanism with which 

the momentum gets transferred in the liquid contained in the imaginary shell. So, this is what 



the shell momentum balance is all about.  Whenever we write the physics of the problem in 

terms of these equations, the momentum in, momentum out, plus forces, we need to first 

identify what are the inflow terms of momentum in such a system. 

In here, you can see that we have some momentum coming to the control volume. The control 

volume has the dimension, smaller dimension as y, the length could be anything any length L 

and width could be the system width W.  So, this is called the convective momentum. The 

convective momentum is because of flow. So, the mass of fluid which enters the control volume 

will carry some momentum with it because of its velocity. So, let us first see what is going to 

be the momentum in.  First if you look at delta y times W, this is the area available for flow. 

 

IN: ρ∆yWvx|x=0 vx|x=0 

So, this area is W times delta y. So, w times delta y being the area of flow you multiply that 

with velocity. So, this becomes the volumetric flow rate at x equals 0, with units of meter cube 

per second, and you multiply it with the density then this becomes the mass flow rate. So, this 

entire thing up to this point becomes the mass flow rate of liquid coming in to the control 

volume because of flow.  Now, when you multiply that with velocity, this becomes the 

momentum in, the momentum into the control volume by convection at this point. 

OUT: ρ∆yWvx|x=L vx|x=L 

Now, in a similar fashion one can write what is the out one. Everything remains same except 

that instead of x equals 0, where x equals 0 is this point and x equal to L is over here. So, this 

is going to simply become the velocity at x equals L. So, these are the in and out term of 

momentum by convection and by convection, I mean when we have actual flow to the control 

volume. And any flow carries some momentum represented by its velocity. So, this momentum 

into the control volume and out of the control volume, these two expressions are I hope they 

are clear to you now.  Any equation governing equation which comes out of this would require 

certain boundary conditions. 



 

Relative velocity: at S-L interface, vrel = 0 

Shear at L-V interface = 0, 𝜏 = 0 

I have discussed the boundary conditions with you before, one is going to be the no slip 

condition in which at the solid liquid interface there is not going to be any velocity, v equals 0 

at the solid liquid interface. So, the relative velocity at the solid liquid interface is going to be 

0. Similarly, when we talk about the liquid vapor interface, as I mentioned in the previous class, 

because of the significant difference in viscosity of the liquid and the vapor, the liquid or the 

vapor cannot transfer any momentum to each other at the liquid vapor interface and the shear 

at the liquid vapor interface 𝜏 is therefore, going to be 0. So, these two are the major boundary 

conditions which we encounter in fluid mechanics. Now, we are going to write a shell 

momentum balance and try to solve a problem. The figure on the left side of your screen is 

essentially a liquid film of thickness delta falling along an inclined plane represented by the 

blue box which is at an angle beta with the vertical. 

 

So, the liquid and air, we have a liquid air interface at this point and we have a solid liquid 

interface at this point and the motion of the liquid is in this direction. And we realize that the 

velocity in the z direction, that is this is the z direction, velocity in the z direction is going to 

be the only nonzero velocity in this system. There is no 𝑣𝑥  there is no 𝑣𝑦 . I only have 𝑣𝑧 which 

is in this direction.  So, this 𝑣𝑧 we realize, it is of going to be a function of x only and therefore, 

our shell, assumed shell is going to have the smaller dimension as delta x as has been shown 

over here. And it could be of any length L and any width W that is not going to affect our 

calculation. And we will assume that it is a Newtonian fluid and 𝑣𝑧 is the nonzero and 𝑣𝑧 is not 

a function of time since it is a steady state.  So, with this the volume of the shell we know that 

it is going to be L times W times delta x and we are going to write the momentum equation that 



is rate of momentum in minus rate of momentum out plus sum of all forces acting on the system 

at steady state must be equal to 0. 

At Steady State/flow: 

Rate of MM IN – Rate of MM OUT + Σ F = 0 

So, we are going to write the individual terms for convection for conductive flow and then 

identify the forces. As we have discussed in the previous class, the previous slides, w times 

delta x is the area, multiply the area with the velocity you get the volumetric flow rate. The 

volumetric flow rate multiplied by the density would give you the mass flow rate, mass flow 

rate multiplied by the velocity would give you what is the rate of momentum which is coming 

in by convection to the control volume.  In a similar fashion, the nonzero component z 

momentum, the z momentum out by convection would be exactly identical with the previous 

expression, except that velocities are now evaluated at z equals L. So, in is at z equals 0, out is 

going to be at z equals L and therefore, the velocities are to be evaluated at each of these points. 

Rate of z-momentum in by conv.: ρ(W∆xvz|𝑧=0)vz|z=0 

Rate of z-momentum out by conv.: ρ(W∆xvz|z=L)vz|z=L 

So, the convection part is taken care of. So, what is going to be the mass in by conduction that 

is essentially shear stress. As I have told you before that this 𝜏 has two subscripts. The first one 

is the direction in which you have the flow which obviously, is in this case the z direction. And 

because of a variation in velocity in the z direction, some momentum is going to get transported 

in a direction perpendicular to the flow. So, that direction is x. 

So, 𝜏𝑥𝑧 the significance of this is the z momentum getting transported in the x direction because 

of the presence of viscosity. This is the shear stress and it acts on an area which is, if this is my 

shell, it acts on this area. So, this being the shell with thickness being equal to delta x, the flow 

is over it, the momentum due to conduction is going to be exerted in the x direction. The area 

on which this act on must be equal to L times W. So, that is why I have written over here, that 

this being the area, this being the shear stress, this z is the direction is the momentum, and x is 

the direction in which the momentum is getting transported. So, this is nothing but shear stress, 

shear stress acts on the lateral top area. So, this is evaluated at x equals x that means, over here 

and it is going to go out of this through the thickness at x plus delta x. 

Rate of momentum in by cond.: (LW)τxz|x=x 

Rate of momentum out by cond.: (LW)τxz|x=x+∆x 

So, the rate of momentum out by conduction, which is shear stress, it is also known as 

molecular transport of momentum. So, it is going to be, everything will remain the same, the 

area will remain the same, 𝜏𝑥𝑧 is going to be evaluated at x plus delta x. So, that is the only 

difference that we have between the in and out by conduction.  So, this is something which we 

have to understand is that the convection is on the area W times delta z, conduction is on the 

area W times L and the nomenclature of 𝜏, I have already explained to you. The next one is 

going to the only force that you have in this is because of the inclination of the plate. 

Body Force: (LW∆x)ρg cos β 



So, the inclination of the plate and the film associated with it, which is flowing along it. So, of 

course, this being the volume and this being the density.  So, this is mass and this is the 

component of the gravity and therefore, this is going to be simply, if you look at the figure, it 

is going to be g cos β.  So, the body force acting on the fluid situated, located inside the control 

volume would simply be L W delta x ρg cos β. So, my starting equation which is similar to 

Newton's law of motion for an open system at steady state, the rate of momentum in minus out 

plus all forces acting on it would be equal to 0. 

Rate of momentum IN - Rate of momentum OUT + ∑ F = 0 

This is a freely falling film. So, there is no imposed pressure gradient on the fluid. Therefore, 

we do not have any pressure force, which is a surface force acting on it. The only force acting 

on this is the gravity force. So, I write all these terms. 

LWτxz|x − LWτxz|x+∆x + W∆xρvz
2|z=0 − W∆xρvz

2|z=L + LW∆xρg cos β = 0 

So, this is my conductive or molecular transport of momentum in and out, convective or the 

momentum due to the actual flow in and out, and the force which is acting on the system. Now, 

you can see that I would get, I could get rid of this L times w I mean not L times w, w 

everywhere and after cancelling from both sides what we would get is, we also understand that 

𝑣𝑧 at the start of my discussion, I wrote that 𝑣𝑧 is not a function of time, it is not a function of 

z. Therefore, 𝑣𝑧 at z equals 0 must be equal to 𝑣𝑧 at z equals L. So, the film at any x location is 

falling with a constant velocity, 𝑣𝑧 is not a function of z. So, once you do that then you 

understand that this term and this term will cancel each other. 

As vz|z=0 = vz|z=L  ⇒ τxz|x+∆x − τxz|x = ∆xρg cos β 

So, therefore, the sorry this term and this one the two terms which you have now marked with 

an x they cancel each other. Since 𝑣𝑧 at z equals L is equal to 𝑣𝑧 at z equals 0.  So, therefore, in 

this imaginary shell there is not going to be any contribution from convective transport of 

momentum, in is equal to out. So, I am left with three terms, the two terms for the two 

conductive or molecular transport of momentum and one which is for the body force. So, with 

these three my equation therefore, reduces through the one which I have shown over here. Then 

what I am going to do is I am going to divide this side by delta x and take the limit as x tends 

to 0. 

lim
∆x→0

τxz|x+∆x − τxz|x

∆x
= ρg cos β 

Once I do that I am essentially using the  definition of the first derivative and the definition of 

the first derivative leads us  to the governing equation for the flow and momentum transfer for 

a film which is falling along a solid plate at steady state with known thickness delta, and 

realizing that  only velocity, non-zero velocity component being 𝑣𝑧 and this 𝑣𝑧 is not a function 

of  time, it is not a function of z, it is not a function of y, it is only a function of  x, which is 

called one dimensional flow. So, for one dimensional steady state flow, the governing equation 

for this is what I have shown in the bracket over here where  𝜏𝑥𝑧 is the shear stress and the z 

and x the two subscripts I have already explained, z is the direction of flow and x is the direction 

in which the momentum is getting transported because of viscosity. So, with this governing 

equation I can integrate it once. Once I have the governing equation, then I can obviously 

integrate it once C1 being the constant of integration. So, this constant of integration will have 



to be evaluated using physical boundary conditions. So, we identify what are the physical 

boundary condition that can be applied in this case. 

Governing Equation: 
d(τxz)

dx
= ρg cos β 

τxz = ρg cos β x + C1 

As I have mentioned before, there is no shear at the liquid air interface due to the marked 

significant difference in viscosity, that is a very common acceptable practice. So, with this, we 

know that at x equals 0,  𝜏 is 0. So, this leads to C1 equals 0. 

No shear at L-V interface: x = 0, τxz = 0 ⇒  C1 = 0 

So, I have successfully evaluated the integration constant using a physical boundary condition 

which we knew before.  The second boundary condition then I am going to put the expression 

for Newtonian fluid in terms of 𝜏. 

τxz = ρg cos β x 

or,  − μ
dvz

dx
= ρg cos β x ; (Newtonian Fluid) 

So, this 𝜏 is essentially expressed in the form of a velocity gradient and viscosity with a minus 

sign and you know what is the significance of the minus sign is that the momentum always is 

getting transported from higher velocity to lower velocity from a layer moving with a higher 

velocity to a layer moving with this lower velocity. That is why we have this minus term. 

Integrate it once again and you get this C2 constant of integration and of course, this C2 is to be 

evaluated using the second boundary condition at the liquid solid interface, which essentially 

tells us that at the liquid solid interface we will invoke no slip boundary condition, that is at x 

equals delta, that is on the solid plate over here, the velocity is going to 0.  This would let us 

evaluate the expression for C2.  

or,  vz =
−ρg cos β 

μ
 
x2

2
+ C2 

No Slip Boundary Condition: x =  δ, vz =0  ⇒  C2 

Once you substitute that C2 back into the governing equation what you get is the expression 

for velocity of a falling film along an inclined plate in terms of the properties. The properties 

are the ρ, the density, μ, the viscosity, the component the gravitational constant and the angle 

of inclination, the thickness of the film, but most importantly is it tells us how 𝑣𝑧 varies with x 

and this you could clearly identify that this is going to give rise to a parabolic distribution of 

velocity. 

vz =
ρgδ2 cos β 

2μ
 {1 − (

x

δ
)

2

} 



 

So, this parabolic distribution it would look something like this. So, when you, on the solid 

plate the velocity is going to be 0 over here at this point the profile would approach the interface 

with a 0 slope. So, it would look, the distribution will look something like this. So, that is the 

first, our first exercise of converting a physical problem into the basic equation and from the 

difference equation dividing both sides by the smaller dimension that is the thickness of the 

control volume and in the limit when delta x in this case approaches 0, I can use the definition 

of the first derivative  and get our governing equation which would be subsequently integrated 

and with appropriate  boundary conditions of no shear and no slip to get a concise expression, 

closed from expression  of velocity distribution in a falling film. 

vz,Max |x=0
=

ρgδ2 cos β 

2μ
 

So, well you can also see that the maximum value of velocity in the falling film is going to be 

at x equals 0, at this point. So, when you set x equals 0 what you would get is this is the 

expression for the maximum velocity at the top layer. So, once you have the maximum velocity 

and the point velocity, engineering application would require that you get what is the average 

velocity because it is not the point velocity which would be relevant in engineering applications 

you would like to know how much of fluid is flowing rather than what is the velocity of the 

fluid at any given point. Both are important, one from an application point of view, the other is 

from an understanding point of view.  So, the average velocity, the definition is that you 

integrate the velocity 𝑣𝑧 which we understand is a function of x over the entire area, through 

which the flow is taking place. So, this is essentially the flow area and the flow area would 

consist of w times delta when you integrate them. 

Average Velocity: ⟨vz⟩ = ∫ ∫
vzdxdy

Wδ

𝛿

0

𝑊

0
 

⟨vz⟩ =
ρgδ2 cos β 

3μ
 

So, this is your delta x and this is your width w. So, if we call it as w. So, its integration of the 

velocity which is a function of x over the cross-sectional area across which the flow is taking 

place. So, once you plug in the expression of velocity in here and perform the integration, this 

is what you are going to get as the average velocity for such a system. So, for a falling film 

along a solid, the average velocity, the expression for average velocity and the expression for 

point velocity can be obtained by a simple shell balance of momentum. 

So, a shell balance of momentum identifying that, I am going to choose the shell as the smaller 

dimension of the shell, I am going to choose the smaller dimension of the shell as the one in 

which the velocity is changing.  In this specific application if you look at the figure once again 



the velocity is changing with x, not with y or with z. So, the smaller dimension of my imaginary 

shell is going to be delta x. This is extremely important. So, I am saying it time and again to 

make sure that you are you are completely familiar with your choice of the shell. The length L 

or the width w is immaterial because 𝑣𝑧 is not a function of z it is not a function of y. 

So, whatever length dimensions that you choose for x and for z and for y is unimportant, but 

your choice of delta x is crucial that is going to be the smaller dimension in the limit you would 

like that delta x to approach 0 such that you can write the differential equation which is going 

to be the governing equation. And once you have the average velocity then you could find out 

what is the volumetric flow rate, what is going to be the flow per unit time the meter cube per 

unit time. Since it is volumetric flow rate, it is going to be meter cube per time which would 

simply be the average velocity multiplied by the flow area. The average velocity expression is 

known to you and the flow area is the area which is perpendicular to the flow direction. So, the 

area perpendicular to the flow direction is w times delta therefore, your volumetric flow rate 

would simply be equals 𝑣𝑧 times w times delta. 

Volumetric flow rate, Q = ⟨vz⟩. Wδ 

So, with this, these are the three major results of this class. The expression for point velocity, 

the maximum velocity and the velocity in terms of 𝑣𝑧 max. I have discussed them extensively. 

The average velocity, the flow rate these I have this.  

vz =
ρgδ2 cos β 

2μ
 {1 − (

x

δ
)

2

} 

vz,Max  =
ρgδ2 cos β 

2μ
 

vz = vz,Max {1 − (
x

δ
)

2

} 
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So, this is essentially the summary of what we have covered in this class and the last thing that 

remains is what is going to be the force exerted by the fluid on the plate. So, the force in this 

direction is first of all we identify that this is going to be the shear force, shear stress exerted 

by the moving fluid on the plate. So, the shear stress is simply minus μ times velocity gradient 

dvz dx evaluated at x equals delta. 



Fz = ∫ ∫ (−μ
dvz

dx
)|

x=δ
dydz

W

0

L

0

 

Fz = (ρgδ cos β)LW 

So, if you see look at the geometry, the shear stress is acting at the liquid solid interface that 

means, at x equals delta and the area and the length scales the area in this case is going to be 

dy, where y is this direction and dz, where dz varies from 0 to L, whereas, y varies from 0 to 

w. So, once you have the expression for vz available to you when you put that over here dvz dx 

over here perform the integration what you get is the expression for the force and that would 

contain the property ρ it is going to contain g cos β  L and w. So, this is what we have covered 

in today’s class. How to choose a shell? Write the convective and conductive momentum flow 

in and out of the shell, identify the forces body or surface. Major body force is gravity, possible 

surface forces could be a pressure difference and imposed externally imposed pressure 

difference which in this specific case we did not have. 

Write the difference equation, divide both sides, cancel out the convective term if possible if 

vz is not a function of z which was in this case. So, I am going to be left with only the conductive 

term and the force term, in this case only the gravity term divide both sides by delta x take in 

the limit when delta x approaches 0 that is my definition of the first derivative differential 

equation, get the integration constants using the appropriate boundary condition and the rest 

follows after that. So, that is more or less of what I wanted to cover and I hope it is clear to you 

and in the next class we will see applications of this shell momentum balance to other 

geometries to other applications which we commonly encounter for flow of fluid through 

conduits. Thank you. 

 


