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  I welcome you to this lecture on Momentum Transfer in Fluids. In our last lecture, we 

discussed some elementary frameworks, particularly the difference between Eulerian and 

Lagrangian formulations.  

  I mentioned that we will be discussing about the Eulerian framework in this course. In 

this context, I talked about the probe volume. So, what we have already understood is 

what is the sampling volume you work with that gives you these. I mean, I am measuring 

density, and I am getting a consistent density, but when I reduce the probe volume I see 

there are fluctuations in that density. 

                        

  So, as a matter of fact, if you look at this part, here also density is not exactly constant; 

density is increasing or it may happen that the density is decreasing. So, why would you 

see that there is a slight increase, or a slight decrease in density? Why would you expect 

this? I mean this part I can understand. Here, the probe volume is too small, number of 

molecules entering and number of molecules leaving at a particular time that is 

fluctuating because these number of molecules entering and leaving is a large fraction 

compared to the sitting on the in house molecules that are sitting in that probe volume. 

But when you are talking about a larger probe volume, there also I see a continuous 

increase. 

  The reason could be that when the probe volume increases, let us say I have a probe 

volume of the size of this room and another probe volume of the size of this building. So, 

obviously, you would see that when it comes to density of air, which I am trying to 

measure when I have a probe volume of the size of this building. So, I would expect the 



average of the density across the entire floors of this building; that is what I am 

measuring. So, I expect that density to go down as I go up to the atmosphere. Air density 

is highest near the earth surface. As I go up, I expect that the density to decrease, and at 

one point there is no air present. It is all vacuum, it is all space that is what we call space 

technologies. 

  So, here, you can expect that there is a continuous variation in density. Similarly, 

suppose I am measuring pressure. So, there is every possibility there is a flow taking 

place. I would expect that the pressure will decrease in the direction of the flow. So, there 

would be a continuous variation in pressure; I mean that is not due to fluctuations in 

number of molecules at a particular time entering or leaving inside in the probe volume 

that is a different dynamics altogether. So, I mean it is going back to the same thing. I 

mean, the pressure itself is a manifestation of the molecules colliding with each other and 

colliding with the wall, and the other movements the molecules are having. 

  So, this part of the curve is referred to as the implications or the immediate result of the 

continuum hypothesis. I mean, you are treating this part as a continuum. I mean, here you 

are, treating the fluid as a continuum. The molecular level fluctuations are not coming 

into play. Whereas, this part here is the number of the probe volume is too small, and the 

molecular level fluctuations are getting instrumental in defining the density. 

  So, I mean I can give another quick example here. let us say I flip a coin and try I am 

trying to find out the number of heads and number of tails. You flip the coin 10 times, 

and by probability, you should expect 5 heads and 5 tails, but that will never happen. You 

will have either 7 heads or 3 tails or it may be 2 heads and 8 tails. So, that is very much 

possible. 

  If you flip the coin 1000 times and see how many heads you get and how many tails you 

get, you will find that it is close to 490 maybe and 510 or 480 and 520. So, if you look at 

the probability or if you look at the number of times you got head or fraction of the total 

number of times you got head ideally, you should get that as 0.5, but you will achieve 

0.5 when your sample size is large when you flip the coin 1000 times when you can leave 

the coil 10,000 times you will find you are getting to 0.4999 I mean you are very close to 

0.5. 

  Whereas, if you flip the coin 10 times you will get at one time 0.2 times head, or you 

may get 0.7 times head that is fluctuating. So, it is because your sample size is too small. 

Here also, it is a completely different physical problem, but probably the bottom line is 

same. I mean, your sample size is small, so you get a lot of fluctuations. 

  Now, the question is when it comes to the Eulerian framework, where, I mean, should 

be our probe volume. We said that I work with a differential volume I mentioned you 

may recall that we had talked about a differential element, and then we said that we will 



say that average when it comes to density that means, mass of total number of particles 

divided by the volume and we call that the density at that point. And we will assume here 

in this case that the density is a continuous function in space and time. That means when 

it comes to the next differential element, then I will have again at the center of it I will 

have another density, I have another density, here I have another density, and this density 

to this density I will assume that the density is changing like a continuous function. So, 

between one point to the other it is not a discrete change. So, I will now assume density 

as a continuous function in space and time, and what is this density at a point it is the 

average density or total mass of the number of molecules present in the differential 

volume divided by the volume itself. 

  So, similarly, we will define velocity as a field variable in the Eulerian framework. 

Velocity will be a field variable; pressure will be a field variable; density will be a field 

variable like this. So, this entire process is referred as the continuum approach. We are 

assuming pressure to be a continuous function of space and time. What is the pressure at 

a point? Pressure at a point is average pressure as far as that differential element is 

concerned. And from that differential element to the next differential element, pressure is 

changing continuously, not discretely. 

 That means, here I have a pressure between these two points pressure is 0 and we have a 

continuous line. So, now the question is, what should this differential volume be? So, our 

understanding is that the differential volume is greater than this threshold. So, if the 

differential volume that I choose is less than this threshold, then I would have these 

fluctuations, and I cannot handle this then my continuum assumption is not valid. So, 

differential volume dimension is greater than this, but the differential volume dimension 

would be less than certain value so that I can treat this density to be constant within that 

differential element. So, with continuum assumption we can now write density as a field 

variable. So, density as a field variable is probably what we write density as a field 

variable.        

                     

  V is struck through here this means we are talking about the volume when we write v 

without striking through that we are referring here as velocity. So, it has to be near this 

threshold. So, then we can call the density is a field variable this is how we define. 

                                  

 

 It is not that only at that point it is valid, and next point it is not it is a continuous 

function. The same thing applies to the velocity, and then this velocity field would be 

now we break it up into unit vectors î, ĵ, and k̂. So, we can have a velocity u is the 

velocity in x direction, v is the velocity in y direction, and w is the velocity in k direction. 

𝜌 ≡ lim
𝛿𝑉→𝛿𝑉′

𝛿𝑚

𝛿𝑉
 

𝜌 = 𝜌(𝑥, 𝑦, 𝑧, 𝑡) 



So, now we will be working with this Eulerian framework our differential volume that we 

choose. We make sure that it is sufficiently large than the issue of probe volume does not 

interfere. Then the question is that when this continuum approach fails, when do we I 

mean we must have studied in your high school days you heard of some energy 

equations, Bernoulli's equations, you might have some introduction. 

  So, there, you might have encountered something called velocity and pressure, etc. So, 

those are all essentially this field variable that is based on the Eulerian framework. So, 

then the question is where you think this will not work I mean when we have to resort to 

Lagrangian I mean if we have been doing all these things with Eulerian framework where 

is the scope for Lagrangian framework. The Lagrangian framework one has to resort to 

when the dimension of the conduit that means, you are having a flow through a pipe flow 

through a tube flow through a channel. So, there the dimension of that channel or the 

diameter of the tube if that is too small compared to the mean free path of molecules then 

one cannot operate on Eulerian framework you understand what I am saying this is the 

differential volume we are talking about. 

  And I said there is a restriction that the size of the differential volume has to be greater 

than some threshold. Now, if it turns out that the channel through which the flow is 

taking place that channel dimension is such that you cannot have a probe volume of that 

dimension. For example, you are having a channel dimension that is on the order of let us 

say nanometer. And the fluid that is flowing is essentially gas at a low pressure high 

temperature for which the mean free path is very large. 

 So, in that case you will find that this Eulerian approach does not work. In that case, you 

have to work with the individual molecules and their collisions within themselves. Of 

course, there are certain hybrid approaches possible where partly Eulerian and partly 

Lagrangian approaches are there. But essentially the take home message is that when the 

dimension of this channel is very small and when the gas is flowing or fluid that is 

flowing is highly rarefied that mean free path is very large. Then this type of analysis, i.e. 

Eulerian framework, does not work. Typically what people refer here is something called 

a Knudsen number, which is λ/D where λ is the mean free path and D is the characteristic 

dimension of the channel. 

  For example, it could be diameter when it comes to a capillary. So, if this Knudsen 

number is greater than 1 Knudsen number is large. So, in that case, λ becomes more than 

the characteristic dimension of the channel. In that case, limitations in Eulerian 

framework will come into play at that time. Now, once we have this velocity field then 

we will talk about the steady flow and unsteady flow. That means this velocity, we said, 

is a function of x, y, z, and time. 



  Now, suppose with time the velocity does not change, velocity is changing only with 

space or in some other case you will find that the velocity is changing with time only, but 

in space that is remaining constant. So, depending on these one can differentiate as steady 

flow or unsteady flow. Steady flow means with time the velocity remains constant. 

Velocity can vary with space. Let us say when it comes to a waterfall, you will find that 

the velocity increases as the water comes down. 

  So, velocity is not uniform, velocity is non-uniform, velocity is less up there, my 

velocity is increasing, or there could be similar situations, but that could be that with 

time, it is not changing. So, then you will call it a steady flow, and with time if it changes 

you call it unsteady flow, and if the flow is with space it is remaining same then it will 

call it uniform flow. And of course, velocity is a function of we said x, y, and z, three 

dimensions. It could be that it could be a two-dimensional problem or one-dimensional 

problem. So, in the other direction velocity is uniform. 

  So, generally, then we consider the velocity to be at, and we treat that as a 2D problem 

or 1D problem, assuming that in the third dimension, the velocity is the same 

everywhere. So, we can work only with per unit depth perpendicular to the screen. Let us 

say the third dimension is perpendicular to the screen. So, we can operate. So, in many 

cases, you will find that our 2D or 1D flow, if we work with that, still works. 

 

 

 The next topic that I will be discussing is something called a stress field. Let us say I 

have a fluid flowing on one side of any surface, I mean I have a fluid surface and then I 

have let us say at point C I have a force acting on that surface which is given by 𝛿�⃗�. So, 



force that is given by delta F, and this is the point C on which this 𝛿�⃗� force acts. Now, 

point C here I have it has an area of magnitude delta A, and the area is a vector. So, it has 

a direction which is perpendicular to the surface which is given that the area vector is 

given here as 𝛿𝐴. 

  So, 𝛿𝐴  is the area of that element that we are talking about, and then this has a 

magnitude of 𝛿𝐴 and a direction that is normal to this surface. So, let us say this 𝛿�⃗� is 

now broken into two components: one is the tangential component, and the other is the 

normal component. So, this is the normal direction. So, along the normal direction the 

velocity is 𝛿𝐹𝑛, and the tangential direction let us say this is 𝛿𝐹𝑡. So 𝛿�⃗� is broken down 

into two components one is 𝛿𝐹𝑡 another is 𝛿𝐹𝑛 and then what we have here is we write 

the normal stress 

𝜎𝑛 = lim
𝛿𝐴𝑛→0

 
𝛿𝐹𝑛

𝛿𝐴𝑛
 

The shear stress 

𝜏𝑛 = lim
𝛿𝐴𝑛→0

 
𝛿𝐹𝑡

𝛿𝐴𝑛
 

  So, this is called shear stress 𝛿𝐹𝑡  divided by the area that is called shear stress 𝛿𝐹𝑛 

divided by the area that is called normal stress. Now, instead of this tangential and 

normal components if you have if you call it the x, y, z direction if we put it then, in that 

case, we have in an orthogonal x, y, z coordinates we will have𝜎𝑥𝑥, 𝜏𝑥𝑦, and 𝜏𝑥𝑧.  

                   

  Let us say I have the dimensions written here you can see this is a differential element 

this is the differential element. So, this is the differential element I have. So, let us say I 

talk about this surface this face. So, this face this is the x direction is the x direction. So, 

as far as this face is concerned, I have normal stress that is acting here over this area is 𝜎, 

and the tangential stress that is acting is 𝜏 in this direction, and 𝜏 is in this direction. So, 

that is what is reflected here. Now there is certain catch to this subscript you can see there 



are two subscripts here the first subscript is the one I have two things to talk about one is 

the direction in which this force is acting and the other is the surface on which the force is 

acting and any surface that means, that surface it has it is an area vector. So, when it 

comes to the direction of that, I mean any surface is characterized by the direction of that 

area vector, and the direction of the area vector is normal to the area down which it is 

applied. 

 

  That means, when it comes to this area the direction as far as this face is concerned is 

normal to that means, that direction is in the x direction, and the force that is acting is 

also in the x direction. So, that is why the subscript here is x x whereas, here the force 

that is acting is in y direction and the area on which this force is acting. So, area on which 

it is acting that area also has a direction and that is the x direction, area direction of an 

area is normal to the area that that is what that is how area vector is. Similarly, this one 

here is the z direction. So, the subscript z that is showing the direction in which this force 

is acting and this subscript x indicates the area on which this force is acting. So, that 

means, I have two subscripts here first subscript represents the area on which this force is 

acting and the second subscript indicates the direction in on which this force is acting. 

  So, everything is falling in place here it is x x because it is acting on the force is acting 

in x direction force is acting on an area the area itself has the unit area vector is in x 

direction. Here also area vector is in x direction here also area vector is in x direction. 

However, here the direction is in y here the direction is in z. So, this is what we can do 

 

 

  Here in this case when we talk about the three dimensional here we will call this as 𝛿𝐴𝑥 

because this area has a direction which is in x direction. This area that means, this area is 

delta Ay because this has the direction in y direction and similarly you have this as the z 

direction this area has the z direction because perpendicular to this area is in z direction. 

  So, this is exactly what we defined here 𝜎𝑥𝑥, 𝜏𝑥𝑦, and 𝜏𝑥𝑧 as far as only this plane is 

concerned we can have here the first subscript is plane on which the stress acts first 

subscript is plane on which the stress axis given by the normal to the plane and second 

subscript is direction on which the stress axis. So, this is not right. So, direction on which 

the stress axis. So, that is the second subscript. So, this is how we can have a general 

nomenclature. 

 So, now, here is something called a stress tensor we define because if we have that entire 

the last one that we showed this is only for the area Ax. So, you can see it is all 

𝜎𝑥𝑥 = lim
𝛿𝐴𝑥→0

  
𝛿𝐹𝑥

𝛿𝐴𝑥
 



everywhere it is Ax lim
𝛿𝐴𝑥→0

. When we work with all Ax Ay and Az. So, we will have you 

can see 𝜎𝑥𝑥 coming in 𝜎𝑦𝑦 coming in. So, 𝜎𝑥𝑥 is here 𝜎𝑥𝑥 is there 𝜎𝑦𝑦, 𝜎𝑧𝑧, and 𝜎𝑧𝑧. 

  So, these are so called normal stresses and I will have shear stresses which are I give by 

box. So, these are all shear stresses. So, these are all shear stresses. So, now, as far as the 

total stress environment is concerned at a this is at a particular point. At a particular point 

we have drawn a differential element. We made sure that the probe volume is greater than 

the delta v prime. 

 

 

  So, that we can apply continuum assumption we can apply Eulerian approach. So, now, 

at a point momentum transfer is taking place we have to define something called a stress 

field and this is known as the stress tensor. So, typically, this is referred as generally 

whenever you have a stress tensor whatever form you do typically you put three lines on 

top just to make sure that it is a tensor. It is an extended form of vector you have you are 

all familiar with velocity as a vector, velocity is having ui hat plus vj hat plus wk hat. So, 

this is you have the velocity as a vector. This is an extended form of a vector, which is 

referred to as tensor. 

  In fact, you can call a vector as a first order tensor you can call a scalar as a zero order 

tensor and this is tensor. So, basically they all come under the umbrella of tensor. So, 

now, you when it comes to pressure at a point. So, what is the pressure at a point? You 

see here the pressure at a point is average of first of all 𝜎𝑥𝑥, 𝜎𝑦𝑦, and 𝜎𝑧𝑧 that is acting 

there. So, when it comes to pressure at a point it would be the normal stresses, but you 

have to take average of this 𝜎𝑥𝑥 in x direction 𝜎𝑦𝑦 in y direction 𝜎𝑧𝑧 in z direction. 

  So, one has to take the average of all these and another point one has to note is that the 

𝜎𝑥𝑥 is acting outward from the center of this differential element 𝜎𝑦𝑦 is acting outward, 

but pressure is typically defined as pressure acting towards that point that is how the 

pressure is defined. So, we have put a minus sign outside. So, this is 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧 the 

normal stresses average of that with a minus sign on that that is what is pressure. In fact, 

there is I mean whether pressure is a scalar or a vector this because pressure you would 

define as force per unit area essentially pressure is average of these 𝜎 values 𝜎 's are in 

that means, the diagonal elements of this stress tensor. 

  So, that is how the pressure is defined. And so, in the Eulerian framework we will talk 

about pressure as the average of these normal stresses and so, pressure and the shear 

stress they have lot of other implications on these on this differential element you may 

you may note already that if the shear stresses are there they tend to deform the 

differential element they tend differential element tend to rotate tend to get deformed. So, 



those the so, shear stress will get into those. So, there would be some amount of 

rotationality involved in a differential element whereas, pressure alone which is just 

simply the average of these normal stresses can operate and they may not rotate the rotate 

the differential element. So, that is that that is quite apparent from this figure. 

  I will continue this discussion in the next lecture. Thank you very much for your for 

your attention. We will build on it further. 


