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  This is going to be our next treatment of the use of Navier Stokes equation. So, what I am 

trying to show to you is that the, it is easy to use Navier Stokes equation, but it is equally 

important that we understand the physics of it. Because the physics of the problem is not only 

expressed in terms of the governing equation, but more importantly in terms of the boundary 

conditions. At some point it could be also necessary to identify even if it is not specifically 

mentioned that what could or could not be present in a specific situation. So, the next problem 

that we are going to deal with will give us some idea of what is to be, what is to be understood, 

what kind of a what kind of force or forces would be present to satisfy the condition that is 

stated in the problem. So, if we look at the problem statement here, what we can see is that we 

have a lubricated thrust bearing which is moving at a velocity. 

  So, we are going to continue with our treatment of Navier Stokes equation and you would see 

that it is not only necessary to simplify the Navier Stokes equation to obtain the governing 

equation. At some point of time, you also must think the statement of the problem and how that 

can be converted or how that would give rise to additional terms in Navier Stokes equation 

which are not apparent. And secondly, the physics of the problem is also expressed in an 

accurate manner by the boundary conditions. So, the next problem that we are going to deal 

with would simply state a situation and the statement of the situation would be such that it 

would, should give you some idea of what exactly is happening inside the system and what you 

need additionally that is not specified explicitly in the problem. 

  So, the problem that we are going to deal with is a plate which is moving a thrust, thrust 

bearing a lubricated plate where the bottom plate is bottom plate is moving with some velocity 

to the right and you have a lubricant which is present, which is present on top of it, but there 

exists a stopper over here. So, this is the stopper. The stopper does not allow any liquid to move 

past that point. So, since that bottom plate is moving.  So, it is going to drag, it will try to drag 

the liquid along with it. 

 



 To stop that flow this is what is provided in the problem, that obstruction does not allow any 

flow past that point and then there is a plate of weight W which is just kept on top of the liquid.  

Now, the plate will be will sustain the plate will not sink if it is if for some for some reason 

which we are trying which we will figure out. So, the plate is extremely wide.  So, we do not 

have to worry about the end effects and we also are going to assume that even if two different 

pressures are going to act at two ends of the plate which is not connected with the stop it is not 

going to topple. So, if this is a plate and one pressure  is at this point the other different pressure 

is going to act at this point then the tendency  natural tendency of any object is going to topple 

based on which side is at higher, but  the assumption of the problem is that even if two different 

pressures are acting at two  ends of the of the plate it can safely be said that an the entire 

situation can be  expressed as if an average pressure of these two is acting at the midpoint 

which will keep  the plate floating. 

 

 So, this is a statement of a problem.  Now, when we think about it is a simple case of Couette 

flow nothing else is mentioned except a statement is made that a stopper does not allow any 

flow to take place. So, how do we incorporate that statement in our governing equation there 

in comes the understanding part. Now, as you can see in the adjoining figure the entire system 

can be expressed as if it is a flow between two parallel plates and not only it is a flow between 

two parallel plates it is there must be an adverse pressure gradient which is present in this 

situation. And what does this adverse pressure gradient do? It is going to turn some of the fluid 

turn the fluid around. 

 So, whatever was coming with the plate is going to go back and it can only go back if the 

pressure at this point is going to be more than the pressure at this point.  So, the problem of 

having 0 net flow that means, stopper allowing no flow can only be accomplished if we 

superimpose a Couette flow against an adverse pressure gradient.  So, this adverse pressure 

gradient, the presence of this adverse pressure gradient must be incorporated in the Navier 

Stokes equation. So, as I mentioned to you sometimes the statement of the problem would be 

such which you which would let you think that something additional is to be incorporated, is 

to be considered while writing my governing equation. So, this situation can only be modelled 

if we correctly understand that there is an adverse pressure gradient in this situation. 

 And the value of this adverse pressure gradient should be calculated and once we calculate the 

value of the adverse pressure gradient that would somehow relate to the weight of the plate that 

is, that is going to be sustained under such situation. So, let us start with our treatment and as 

you can see I am going to write I have to write the choose the x component of Navier Stokes 



equation. So, this is an x component of Navier Stokes equation and the positive pressure 

gradient is nothing, but adverse pressure gradient. As the flow progresses in a certain direction 

it encounters increasing pressure. So, that is the adverse pressure gradient. 

 It will still go because there may be something else which is driving it forward.  So, in this 

case the forward movement of the fluid is going to be sustained by the motion of the bottom 

plate. The equal and opposite backward movement for the no flow situation is created by the 

creation of an adverse pressure gradient. So, that is all there in this problem.  So, when you 

write the Navier Stokes equation cancel the terms which are not going to do once again since 

you by now you must be masters of using Navier Stokes equation and cancelling terms. 

 Suffice to say that there is going to be no v y, no v z, there is going to be v x, v x is not going 

to be a function of x and v x is going to be a function only of y. So, v x is essentially u in this 

problem and the gravity is not present, the body force is not present since it is a horizontal 

system and what we have is only the adverse pressure gradient present in this system. So, this 

is what the adverse pressure gradient is and once you identify that then you can figure out that 

at y equals 0 that means, at the top plate at this plate the velocity is no slip condition 0 and at y 

equals to b that means, on the bottom one the velocity is going to be equal to v 0.  So, this is a 

simple, the entire statement of the problem can be now brought to an equation which is a 

combination of Couette flow with adverse pressure gradient. We have solved this type of 

problems before. 

 

Boundary conditions: 

At, y = 0,  u = 0 

At, y =2b,  u = V0 

 So, once you do that then this is the expression for velocity that you are going to get where 

this part is the Couette flow and this part is the pressure driven pressure gradient driven flow. 

So, and a combination of that is going to give you the net flow rate which it is mentioned that 

the flow. So, this is the average velocity and once you plug in the expression for u from the 

from the previous slide then you would be able to obtain what is the, what is going to be the 

expression for the average value of average expression for the average velocity.  Now, it is 

mentioned that since it stops the flow completely that means, there is no net flow in the system. 

If there is no net flow in the system then the then the velocity is going to be equal to 0 the flow 

rate is going to be 0 flow rate to be 0 for that means, the velocity is going to be 0. 

u =
1

2μ
(
dp

dx
) [y2 − 2by] +

V0
2b
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 So, I equate this, the average velocity to 0 even though I understand that the point velocity can 

be positive or negative depending on its proximity to the moving belt or the static top plate. So, 

with that the expression, the expression when you set this expression equal to 0 the value of 

the pressure gradient would be 3 mu u or 3 mu v naught by twice B square. And you can once 

again see that the pressure gradient  is positive that means, it is the it is an adverse pressure 

gradient, it obstructs the  flow and it and it negates the effect of the Couette flow near the bottle 



which drives the  fluid towards the right whereas, the pressure gradient driven flow moves the 

fluid to the  left and the combination of these two for a specific geometry and specific velocity  

would be, this is the required pressure gradient to be generated in order to have 0 flow which  

of course, depends on the gap between the two the velocity of the top plate and the  property 

of the liquid viscosity. Now, the pressure is atmospheric at the other end. So, if you think if we 

if I go back to this figure once again the pressure over here is atmospheric that means, the gauge 

pressure at this point is going to be 0. 

⟨u⟩ =
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 So, gauge pressure once again is nothing, but at most the pressure at any point minus 

atmospheric pressure. So, the gauge pressure at this point is going to be equal to 0. So, the 

pressure at this point is equal to 0 and once we do that and once we once we find out what is 

the average velocity, average pressure in between them then the average pressure is simply 

going to be 3 by 4 this one which comes directly from this.  So, this is the average pressure and 

you can simply integrate this equation once and put the condition and then you get the average 

pressure and what is the weight of the plate that can be supported by this pressure it simply 

averages pressure multiplied by the area which would give you the load per unit width. So, this 

is the length of the plate this is per unit width. 

pav =
3μV0
4b2

L 

Load/width = pav × L × 1 

 So, this is area multiplied by the average pressure which is acting upwards on the plate would 

give you the load that this specific system can sustain.  So, this is an example as I mentioned 

is that when through your understanding you incorporate terms which are not explicitly 

mentioned in the problem. So, understanding reading and understanding the statement problem 

statement is extremely important. I would urge you to  do that before you start writing the 

governing writing the Navier Stokes equation and simply  start cancelling terms. So, that would 

also be important.  So, far we have discussed about boundary conditions before I move into the 

next problem. 

 So, far we have thought about boundary conditions which are no slip at the liquid solid 

interface and no shear at the liquid vapor interface. There can be conditions additional 

conditions like in the previous problem where the flow rate is going to be equal to 0. In such 

case the velocity, the average velocity is set equal to 0, but there can be additional conditions 

which you can figure out by once again by reading the statement carefully.  So, the next 

problem deals with one such situation in which apart from the no slip some other condition is 

to be incorporated, is to be used, is to be utilized to obtain the velocity distribution or some 

such thing. So, in this problem statement we have a cylinder which is falling through another 

cylinder. 



 

 So, this is an inner cylinder which is moving down an inner cylinder which is moving down 

with certain velocity and this is the outer cylinder which does not move. So, it is as if this pane 

as this pane as the cylinder is falling straight into another cylinder and the space in between the 

two cylinders are filled with a liquid. So, it is one moving into the other and the assumption is 

that the cylinder is falling. So, big assumption is that it is falling in perfectly straight and while 

falling it is not going to tilt in any way such that the gap and it is falling through the centre line. 

So, the gap in between the moving or the falling cylinder and the fixed or the outer cylinder 

remains unchanged a big assumption. 

 But let us say for the sort the solution of this problem we would we would assume that this is 

the situation. No toppling, no sideways movement of the of the falling cylinder, gap remaining 

the same.  So, the cylinder which is falling has a mass per unit length m. So, the total mass of 

the cylinder would simply be equals to m times L where L is the length of the, where L is the 

length of the of the of the cylinder. Now, there is no pressure gradient, no pressure gradient 

within this system and where and there is no swirl velocity component. 

 That means, there is no movement in this direction, the motion of the film is always directed 

down. So, it is going to initiate a downward velocity, but no velocity in the theta direction or 

in the r direction. It is only velocity is in the z direction along with the freely falling cylinder. 

So, with this we need to figure out what is the vertical speed of the inner cylinder as a function 

of the parameters, the gravitational constant the two radii inner and the outer the mass per unit 

length of the cylinder the density and the viscosity. And it is mentioned here, specifically 

mentioned here that the space between the two cylinders is not too small. 

 It is not too small compared to the radii of the cylinder. That means, I must use cylindrical, I 

must use cylindrical coordinate system and I cannot use the assumption that the gap is so small. 

So, a Cartesian coordinate system can be used.  So, a problem of one cylinder falling freely 

into another through another cylinder with a liquid in between with no sideways bend the gap 

between the two cylinders remaining the same and we have to figure out what is going to be 

the vertical speed, the final vertical speed v of the inner cylinder. Now, you have you probably 

know I can give you an example which with which you must be familiar with that when you 

let a ball fall into a liquid where the density of the ball is higher than the density of the liquid 

then it starts its downward motion. 

 As it starts its downward motion there will be forces opposing forces acting on it. So, the 

gravity downward buoyancy upward and there is going to be a drag force because of the relative 

velocity between the ball and the liquid that is also returning the motion of the downward 



motion of the ball.  So, initially the ball would start accelerating, as it starts accelerating the 

value of the gravity and the buoyancy force will remain unchanged, but the upward acting drag 

force will be will keep on increasing because that drag force is a function of velocity. So, once 

the drag force reaches a certain value in which all three forces are balanced, that means, the 

gravity, the upward buoyancy and the upward acting drag forces are balanced then from that 

point onwards the ball will have a constant velocity with which it is going to settle. So, that is 

known as the terminal velocity of the spherical particle. 

 So, in here the cylinder is also going to have a constant velocity once that condition is reached. 

So, we will have to figure out what it is going to be. So, for the inner cylinder moving at a 

constant velocity the downward force is exactly balanced by the viscous force. So, the viscous 

force is tau w what is the wall shear stress multiplied by A w at the inner cylinder. So, the 

upward downward acting gravity is going to be exactly balanced by the viscous shear force. 

(𝜏𝑤 𝐴𝑤)│𝐼𝑛𝑛𝑒𝑟 𝐶𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 𝑚 𝐿 𝑔 

 

 So, that is the condition, that is an additional condition which one can obtain by understanding 

the physics of the problem.  So, with this let us move on and try to figure out, try to find out 

how this problem can be solved. Once again it is a z component of equation of motion which 

is in cylindrical coordinate that we must consider and then we need to cancel the terms that it 

is at steady state, it is at steady state. So, this part would not be there is no v r and v z are not a 

function of theta and v z is not a function of z, there is no applied pressure gradient and v z 

once again not a function of theta z and there is going to be a rho g and there is going to be this 

term since v z is a function of r.  So, those two terms will remain in the governing equation and 

this governing equation can now be integrated and this is going to give rise to a distribution 

which with a logarithmic term in there. 
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 So, what are the two boundary conditions? The two boundary conditions are velocity is equal 

to capital V yet to be determined we do not know what this v is going to be, but v z is going to 

be capital V at the inner cylinder at r equals r i which is falling with some velocity. And the 

second boundary condition is v z equals 0 due to the static nature of the outer cylinder at r 

equals r 0. So, both are no slip conditions, one in which case the velocity is equal to the velocity 

of the downward velocity of the cylinder and the other is the static cylinder the velocity at the 

liquid solid interface at that point would be equal to 0.  So, this these are the two equations 

which would let you figure out what is going to be the expression for c 1 and c 2. Once you do 

that then the complete expression for velocity would be something like this, where the 

integration constant one of the integration constant c 1 would simply be this one. 
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𝑣𝑧 = − 
𝜌𝑔𝑟2

4𝜇
+ 𝐶1 ln 𝑟 +  𝐶2 

Boundary Conditions 



vz = V at r = Ri         =>              𝑉 = − 
𝜌𝑔

4𝜇
 𝑅𝑖2 +  𝐶1 ln 𝑅𝑖 +  𝐶2 

vz = 0 at r = Ro             =>              0 = − 
𝜌𝑔

4𝜇
 𝑅𝑜2 +  𝐶1 ln 𝑅𝑜 +  𝐶2 

 So, it is a cumbersome it is a big relation and this also underscores that if we could if we could 

have used the Cartesian coordinate system the expression would be more compact it would not 

contain any logarithmic term and it would be easy to work with. But it has been specifically 

mentioned that the gap is not small with respect to in comparison to the radii of the cylinder. 

Therefore, we do not have the liberty or the luxury of assuming that it is a Cartesian coordinate 

system.  So, with this then you in next step is to figure out what is going to be the shear stress.  

So, in order to obtain the shear stress because the shear stress when multiplied by the area 

would give us the opposing force against gravity with which the liquid with which the cylinder 

is falling. 
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 So, we figure out what is the velocity dv z dr and we also underscore that v z is a function only 

of r. So, there is no need to think about additional terms in the expression for tau. So, dv z dr is 

simply going to be this the combination of these two terms and tau would be mu times dv z dr 

plus mu since this is the force acting on the on the cylinder. And so, you would be able to write 

then convert the equation the idea that force on the cylinder must be equal to force due to 

gravity.  So, the viscous drag force on the cylinder must be equal to the force due to gravity. 

𝜏│𝑟=𝑅𝑖 2𝜋𝑅𝑖𝐿 = 𝑚 𝐿 𝑔 

  So, if you do that then what you would see is that you need to figure out what is tau at r equals 

r i that is at the inner cylinder and so, multiplied by the area of the inner cylinder which is twice 

pi r i times L must be equal to m times L because m is mass per unit length. So, that is why I 

multiply it with L, the length of the length of the of the cylinder and g. So, the shear stress 

multiplied by the area must be equal to the mass per unit length times length times g. So, this 

is the additional condition that we need to incorporate to obtain my final expression. So, upon 

substitution of the expression for the shear stress we would get this complex relation for the 

unknown velocity, unknown constant velocity with which the with which the inner cylinder is 

falling in the liquid. 

𝑉 =  𝑅𝑖 ln
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  So, what did we learn in through the from this problem is that sometimes one has to think of 

additional relations which would be necessary to solve a specific problem.  And when to use 



the Cartesian coordinate approximation and when you cannot use that as it has been mentioned 

that the gap is not too small you cannot use the Cartesian coordinate transformation from a 

cylindrical coordinate system. And secondly, the no slip conditions are going to be valid on the 

moving cylinder and on the stationary cylinder. Additional consideration, additional constraint 

would come in the form of balancing of gravitational force with that of the oppositely acting 

viscous force. How do I calculate viscous force? The first step in calculating the viscous force 

is to know the velocity distribution. 

 The velocity distribution at any given location multiplied by mu, the velocity, it is from the 

velocity distribution you can find out what is the velocity gradient. Velocity gradient multiplied 

by mu the viscosity at that specific location would give you the value of the shear stress.  So, 

shear stress multiplied by the area would give you an additional idea of the force present in the 

system. So, with this additional condition we have obtained this expression for the velocity for 

a moving fluid in such situations. So, this is a very good example of introducing physical insight 

into the system for final solution. 

 So, both the problems which we have solved in this class require additional thinking beyond 

just simply cancelling the terms. In the first case you had to think of an adverse pressure 

gradient which would cause the some of the fluid to move in the other direction. And in the 

second problem an additional force balance is to be incorporated to make them to make the 

situation moving at steady state with no variation of velocity with time, but both required 

approximations.  In the first case the plate must be kept horizontal even though dissimilar forces 

are acting at two ends which is which is difficult to obtain. And in the second case we are 

assuming that the cylinder is falling through the central line at a constant velocity without any 

sideways movement. 

 So, those are approximations to the real situation, but it would give us very good insights into 

the physics of the process. So, that is all for this class we will meet again with some more 

examples of Navier Stokes equation.  Thank you. 


