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 Welcome to this session on Momentum Transfer in Fluids. We have been discussing 

inviscid flow. In particular, we were using Newton's second law and trying to develop 

some special cases of fluid statics or fluid is being hauled on an accelerating platform and 

as a third case the fluid flowing through a conduit. So, at the end of the last class, we 

mentioned that this is the equation we have been discussing, −∇p + ρg ⃗⃗ = ρa⃗ , that is the 

expression we have already obtained from by applying Newton's second law and doing a 

force balance on a differential volume. 

 So, what we are going to do now is we can extend it as before we said, 

−∇p + ρg ⃗⃗ = ρa⃗  

−(
∂p

∂x
î +

∂p

∂y
ĵ +

∂p

∂z
k̂) +  ρ(gx î + gyĵ + gzk̂) = ρ(ax î + ayĵ + azk̂) 

So, now, if we are matching x with x, y with y, and z with z, that has to be done, but 

before that, one must note here that pressure variation in the z direction. So, what is the z 

direction? We have pressure. So, we are talking about this is the tank which is being 

hauled at an acceleration ax only existing ay, az these are 0. 

 So, you can see ay = az = 0, only ax existing and I said that if the liquid level is this. So, 

then this is going to be the modified level since the tank is accelerating. So, we have ax 

existing, and similarly, I see that this is the direction of x, this is the direction of y, and z 

is perpendicular to the screen. So, perpendicular to the screen we do not see any reason 

for this pressure to vary perpendicular to the screen. Pressure can vary. 

 There is no reason for pressure to vary in the z direction, which means the pressure is not 

a function of z, and 
∂p

∂z
= 0. That is what it means. Similarly, gx in x direction gravity 

does not work, z direction perpendicular to the screen gravity does not work, only gravity 

works in y direction, but in negative way because gravity is downward. So, that is why 

we have gy = −g, g is the acceleration due to gravity. So, now if we put these so, we can 

see here 
∂p

∂z
 does not exist or gx and gz does not exist, and ay and azdoes not exist. So, 

now, if we pull the remaining terms, this is what we get  



−
∂p

∂x
î −

∂p

∂y
ĵ + ρgyĵ = ρax î 

 So, if we pull the î and j ̂terms together and all î terms in one place and j ̂terms in another 

bracket, we see that here (−
∂p

∂x
− ρax) î +  (−

∂p

∂y
− ρg) ĵ = 0î + 0j ̂

So, since left hand side I have î and j ̂ and right hand side I have essentially 0î + 0j.̂ So, I 

match this with the 0 and this with the 0. 

 

 

 So, we get −
∂p

∂x
= ρax, and similarly, this goes to the right-hand side −

∂p

∂y
= ρg. So, this 

is something which we note that means this is the variation of pressure in x and y 

direction. In the z direction, I do not have any reason to believe that pressure is a function 

of z. 

 

 
 What we do next is we take a Taylor series expansion of p and if we only work with the 

first order terms we see that essentially or generally we can write the difference in 

pressure between two points pressure dp is given by dp =
∂p

∂x
dx +

∂p

∂y
dy, because we 

have already agreed that the pressure is a function of x and y only pressure is not a 

function of z. So, dp =
∂p

∂x
dx +

∂p

∂y
dy. So, this is called the new line that is created and 

this is the equilibrium line that was there when there was no acceleration. So, now, if we 

see, I mean, what property does it have, what property does this line have to satisfy? First 

of all, these lines represent a free surface. 



 What is a free surface? Free surface, you might have seen that if a lot of drawings, 

etcetera liquid level is there and then there is a symbol like this. So, this is, so to say, a 

free surface. So, on a free surface, one condition is that along the free surface, pressure 

must be constant. Otherwise, the fluid would have moved in another direction, and the 

free surface could not have been maintained. So, along a free surface the dp =
∂p

∂x
dx +

∂p

∂y
dy and 

∂p

∂x
= −ρax, and 

∂p

∂y
= −ρg. So, then we can we can write this 

∂p

∂x
 as −ρax and 

∂p

∂y
 

as −ρg and this dp would be equal to 0 because of the condition of free surface. 

 

 Along the free surface pressure is constant. So, the differential of the pressure is 0. So, in 

that case if we take one of them to the left hand side and write 
dy

dx
]

free
surface

=
−ax

g
, because if 

you take ρgdy to the other side it would be qual to−ρaxdx. You will have if you bring in 
dy

dx
. 

 So, 
dy

dx
 would be equal to 

−ρax

ρg
. So, rho and rho will cancel out. So, you have 

−ax

g
. So, this 

gives you the 
dy

dx
 this is the free surface. So, this gives me the slope 

dy

dx
 essentially, this is 

my x, and this is my y. 

 So, 
dy

dx
 for the free surface. So, this gives me the slope. So, the slope is negative. That is 

one thing I intuitively have from our regular observations. We have already seen that the 

slope is expected to be negative. So, 
dy

dx
 is for the free surface is negative and the 

magnitude is 
−ax

g
. Then what is important for me is how far the liquid level will go up on 

this side. 

 So, that has to be figured out. So, to do that one may have to do some kind of volumetric 

balance. Volumetric balance in the sense we note that initially, the liquid is this and later 

on, this is the liquid volume, and no volume is added. So, say the liquid and the static 

state has to be same as the liquid volume that you have in the deformed state. So, that 

means, what that means is area z is perpendicular to the screen. 

 So, these areas in the z direction there is no activity. So, the area of this triangle has to be 

equal to area of this triangle. That is one condition that these two areas have to be equal, 

the volumetric balance has to be satisfied. On top of that, these angle is equal to this 

angle. So, if this angle is equal to this angle, this is 90 degrees. This is 90 degrees. So, 

this angle is equal to this angle. 

 So, you can then immediately conclude that this length is equal to this length. So, this 

length is equal to this length by comparing the two triangles. So, in that case you know 



for sure that this length is 
b

2
. So, once you know this is 

b

2
 once you know what this angle θ 

is tan θ = (
dy

dx
). So, from there, you know, and on the other hand, tan θ would be equal 

to 
e

b/2
. 

 So, from there, e =
b

2
tan θ =

b

2
(−

dy

dx
) =

b

2

ax

g
 

So, from here we can find out what is this extra height the liquid will gain because of this 

acceleration because e is that extra height. Of course, there is a rider only valid when the 

free surface intersects the front wall at or above the floor. That means if you are 

accelerating it too hard, then you would expect the liquid level to go all the way to this, 

and even if you go further, then the liquid level will go to this side. 

 So, then this whole calculation would be again you have to redo it. So, that is there, but 

otherwise, as long as this rider is, I mean, as long as this condition is satisfied, the e that 

extra height it will gain is given by 
b

2

ax

g
. ax is the acceleration by which you are pulling 

the truck, b is, I mean we are assuming it to be a rectangular tank. So, this side is b and g 

is acceleration due to gravity. The next point we are trying to address is we had talked 

about three conditions. 

 

 
 We said one is fluid statics, another is fluid hauled in a truck, hauled at a particular 

acceleration, and the third case is fluid is truly flowing through a conduit of some nature. 

So, this is the way it comes to the third condition, which is that fluid is simply flowing 

through a conduit. In that case we have to come up with an expression for acceleration 

that A right. A was initially 0 for fluid statics, A had a finite axî+ ayĵ + azk̂ for fluid 



hauled in mass at an acceleration, but then the third case, that is when you have fluid 

itself, is accelerating. The example I have given a conical section where the velocity is 

increasing so which means fluid is accelerating. 

 So, in that for the third case, I said acceleration can have to be given by something called 

a substantial derivative upper case dv, upper case dt. So, what is that, why do I end up 

with that substantial derivative? If we try to see what it is? u is a function of x, y, z, and t. 

So, space and time. So, this is the velocity field let us say. So, we have a velocity field. 

Ideally, we should be calling it a velocity v. 

 So, let us call this VA and this is again VB. So, velocity is given by this will let us say to 

avoid confusion we write it in terms of capital V. Then what we see here is that if we talk 

about the velocity the u component of that velocity we see that the u component of the 

velocity is given by u = u (x, y, z, t) again. And here again, after some tim, t = t + ∆t. 

You will see that this is a time t the fluid all the fluid particles were in this box 

differential volume where the space special coordinates were x y z. At some other t + ∆t 

the special coordinates are x + ∆x because over this time period the fluid particles have 

moved. 

 

 So, this is now x + ∆x, y + ∆y, and z + ∆z. So, these are the new special coordinates 

over which the differential element is constructed. So, now, this is again here if we focus 

only on u component here also we will have, u = u(x + ∆x, y + ∆y, z + ∆z, t + ∆t). So, 

now, if we try to take a Taylor series expansion because dt is all these time the Δt is 

small. So, Δx, Δy, Δz all are small. 

 So, if we try to take a write 

u(x + ∆x, y + ∆y + z + ∆z, t + ∆t) = u(x, y, z, t) +
∂u

∂x
∆x +

∂u

∂y
∆y +

∂u

∂z
∆z +

∂u

∂t
∆t + ⋯ 

So, these are the first derivatives you have. I mean if you want to continue with these you 

will have del square u del x square delta x square by 2 factorial plus del square del square 

u del y square delta x delta y whole square by 2 factorial like that you will have all these 

additional terms would be coming. So, we are for the time being we are working only 

with this with the assumption that you have only the first order terms considered for 

Taylor series expansion. 

 So, this is what we end up with. Then what we see here is this: instead of this ∆x, we can 

write ∆x as u∆t because u is the velocity in x direction. So, over time ∆t the ∆x the 

distance traveled in the x direction by these particles that would be equal to u∆t. So, if we 

write ∆x as u∆t, ∆y as v∆t, Δz as w∆t and then this the other term remains. So, this is 

what we end up with.  



u(x + ∆x, y + ∆y + z + ∆z, t + ∆t)

= u(x, y, z, t) +
∂u

∂x
u∆t +

∂u

∂y
v∆t +

∂u

∂z
w∆t +

∂u

∂t
∆t + ⋯ 

u(x + ∆x, y + ∆y + z + ∆z, t + ∆t) − u(x, y, z, t)

∆t
=

∂u

∂x
u +

∂u

∂y
v +

∂u

∂z
w +

∂u

∂t
 

So, this is if we set limit delta t tending to 0 this is essentially the acceleration as far as 

the x direction is concerned that is what the Eulerian acceleration we call it. So, this 

acceleration is not merely 
∂u

∂t
 just what we see for particle acceleration. This acceleration 

has these additional terms and if you extend the same concept in y and z direction. 

 So, you will have a very similar expressions 

⟹ ax =
∂u

∂x
u +

∂u

∂y
v +

∂u

∂z
w +

∂u

∂t
 

⟹ ay =
∂v

∂x
u +

∂v

∂y
v +

∂v

∂z
w +

∂v

∂t
 

⟹ az =
∂w

∂x
u +

∂w

∂y
v +

∂w

∂z
w +

∂w

∂t
 

So, these are essentially ax ay and az these are the acceleration terms. So, why it is 

happening is that the velocity that we talk about, u v or w these, are not the velocity of a 

particle. These are the average velocity of all particles. As I said, that is the Eulerian 

concept that has to be accounted. And then, in some cases, this part of the expression is 

referred to as convective acceleration, and this part is referred to as local acceleration. 

 So, this ax is written as 
Du

Dt
, this is called the substantial derivative and that is how we 

differentiate the regular partial derivative of u with respect to t we differentiate we call it 

substantial derivative which is the sum of the convective acceleration and the local 

acceleration. And you have one thing you may like to note I mean why do I need a 

convective acceleration term what I understand is that a typical explanation provided by 

the authors who have developed this framework it is something like this. Suppose 

someone is standing on a bridge and it there is a there is a small revolute flowing below 

this and then there are fishes travelling. So, now, someone wants to know what is the 

velocity of the fishsitting on the top of the bridge. So, the position of the observer is 

fixed, observer is not travelling with the fish, observer's position is fixed on the bridge 

and from that position observer is trying to measure the velocity. 

 So, when it comes to measuring the velocity, the observer has to find two position 

vectors, one position vector at time t and another position vector at time t+Δt, and then 



find the difference in the distance traveled over this time Δt and then divide it by Δt to get 

the velocity of the fish. That the observer can do by sitting in its position fixed Eulerian 

framework is your position is fixed and then if you are asked to ask the observer to find 

out what is the acceleration of the fish. Then in that case observer has to find out what is 

the velocity of the fish at this location what is the velocity of the fish at this location 

subtract the two divided by the time taken to move from here to there and you get the 

acceleration. Now, the problem is when you need to find out the velocity of the fish at 

this location here by sitting in that position you cannot find out for that you have to move 

you have to find another reference frame to find out what is the velocity of the fish at this 

location and you have to find another reference frame to find out the velocity at this 

location. So, for that probably one way of doing it is probably some someone with a 

canoe has to sit there and measure the velocity of this. 

 So, some observer has to sit on the canoe and measure it another observer has to sit on 

the canoe and measure this velocity and then give that information to the person who is 

sitting on the bridge and then based on that he or she can calculate the acceleration. So, 

this one has to one has to one has to change the reference frame. So, I mean sitting when 

your position is fixed as is the case for Eulerian framework when your position is fixed 

you need to have additional terms to account for this aspect. So, that is why this 

convective acceleration is very important. In a moment, I will give you an example and 

where you will see that, for example, in a very simple case, I point out that conical 

section that I mentioned if I let us say this is the conical section. 

 So, here the fluid is accelerating but it is a non uniform flow, but it is a steady flow there 

is no time derivative involved the Q/A the velocity and here it is Q/A. So, velocity is 

continuously increasing because area is continuously decreasing as you move from inlet 

to outlet. So, this is definitely perfect example of non uniform flow, but steady flow. 

Unsteady flow means with time, the flow is changing here with time, flow is not 

changing. So, if with time flow is not changing then your 
∂u

∂t
 will always be 0 fluid will 

not be accelerating. 

 

 So, if you are using Eulerian framework unless you have some additional terms. So, to 

say I mean referred as convective acceleration you will not be able to obtain the 

acceleration and if you still want to do it I mean you stick to it then I will do it by this 

then you have to travel with a canoe that is what we will go through an example and this 

becomes obvious.  



 

You have here fluid particles in motion we already have talked about this acceleration 

and acceleration is a a⃗ = ax î + ay ĵ + az k̂, but here in this case the acceleration becomes 

acceleration takes this form. So, that when we talk about the ax, ax= 
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

w
∂u

∂z
. So, like this similarly you have the ay and az  term in the compact notation this 

would be the acceleration and referred as the substantial derivative of velocity vector. 

 So, three cases we said one is fluid statics acceleration of 0 second case fluid is hauled n 

mass with an acceleration then you have a finite acceleration of simple form like this and 

when the fluid is accelerating in a conduit then you have to take into the substantial 

derivative. So, these are the three treatments we have. Now, with this understanding in 

place let us say we try to find out what all motions a fluid particle will undergo. One 

thing we just now said is acceleration. The acceleration is acceleration is a part of so, 

called translation that means, I have let us say at time t, I have the fluid element which is 

of shape like this and then at time t+dt we find that the fluid element has moved rotated 

deformed and all those processes have happened to it. 



 

 
 So, now the acceleration that I have talked about that is essentially translation that 

means, this is the initial one and then after t + ∆t it is simply it is everything shape and 

all these remaining same only the center has moved to some distance some Δx some Δy 

some Δz over time Δt. So, this translation is given by the expression that we had talked 

about. Other than this the one can have something called rotation that means, the fluid 

element itself around the center it is rotating you can see that this whole thing has rotated. 

So, now one thing is there: if to rotate a fluid element, you need a shear stress that will 

get into, but then this is one aspect of it fluid element gets rotated. The other aspect is 

fluid element get deformed, there is angular deformation. 

 In fact, that is what we discussed when we defined viscosity you must remember a fluid 

element over time ∆t it got deformed. So, angular deformation and then rate of angular 

deformation equated with our what you have with the shear stress in Newton's law of 

viscosity. So, this angular deformation is also a part of this and the fourth case is linear 

deformation that means, the angle 90 degree remains same, but it was a square now it is a 

rectangle. The total area is conserved, but the shape changes. 

 So, but angle remains 90 degree. So, this is known as linear deformation. So, this is 

angular deformation this is linear deformation. So, what we will do next in the next 

lecture is we will go one by one through these translation, rotation, angular deformation, 

linear deformation and see if the entire thing happens how the movement of the fluid or 

motion of the fluid particle can be characterized. That is all for this module of the lecture. 

 

 Look forward to take this further in the next one. Thank you very much for your 

attention. 


