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 I welcome you to this course of Momentum Transfer in Fluids. We have already 

discussed several elementary aspects of these fluid characterizations, fluid properties, etc. 

Now, we are going to look into something called an inviscid flow. First of all, what is 

inviscid flow? We have defined viscosity. We talked about viscosity, and we have given 

you characteristics of different fluids that do not follow Newton's law, etc. Now, there is 

a class of fluid flow that goes by the name of inviscid flow. 

 

 
 Inviscid flow means, it does not mean that the viscosity is 0; it means that the flow is 

happening in mass. When one layer slides against the other, then the viscosity comes into 

play because then the shear stress arises, and then you have shear stress proportional to 

velocity gradient, and the proportionality constant is referred to as viscosity. Now, if the 

fluid is traveling in mass, that means there is no sliding of one layer. Rather, all the layers 

are moving at the same constant velocity. Before we get to this, let me tell you clearly 

how this inviscid flow or where this comes in. 

 Suppose, I have a flat plate. So, this is a flat plate, and I have a fluid coming in there. So, 

this is known as all the fluid layers they are moving in mass. You might have seen this 

type of flow in rivers and this type of flow in other places in large channels. So, all the 

fluids are not sliding against each other; they are moving in mass. 



 

 As it approaches this plate, now you have one condition that has to be satisfied, which 

means, at the wall, the velocity has to be 0, and away from the wall, the velocity will be 

increasing and far away from the wall; this is known as the free stream velocity. So, far 

away from the wall, the effect of the wall will not be there. So, far away from the wall 

probably this free stream velocity will be retained. So, at the wall, the velocity is 0; far 

away from the wall, the velocity is the same as the free stream velocity. So, in between 

there would be a transition. 

 So, I would expect that, let us say, at this location, the velocity itself is 0, then velocity 

increases a little bit, a little bit more, a little bit more, and then finally, the free stream 

velocity. So, you will see that the velocity increases from 0 velocity to the free stream 

velocity. So, typically, within this layer, the velocity builds up, the velocity layer sliding 

against the other and building up the velocity to free stream velocity. Typically, this 

thickness here would be less; here, it is the free stream velocity, and you will find that 

here, it is even more. This generally goes by the name boundary layer. 

 So, this goes by the name boundary layer. So, within the boundary layer, you will find 

that one fluid layer is sliding against the other whereas, outside, it is still free stream 

velocity is retained. So, the viscosity comes into play within this boundary layer; 

viscosity comes into play whereas, outside this, it would be just the free stream velocity, 

which means the fluid they are moving in mass. This type of flow, or what is happening 

outside this boundary layer, is commonly referred to as inviscid flow. In some cases, we 

refer to these as potential flow. 

 So, here, the pressure is important, but shear stress is not, because the moment you bring 

in shear stress, it ensures that one layer slides against the other, but the moment you bring 

a shear stress, then it is not an inviscid flow, if viscosity comes into play. So, within this 

boundary layer probably, the viscous flow governs, but outside the boundary layer, it 

would be inviscid flow. So, now, inside a tube, when you have a flow you would be 

expecting that this type of boundary layer will start forming from the wall, and here also 

it will start forming and at one point you will find that these two boundary layers they 

merge and at that point, entire channel one layer is sliding against the other that means, at 

the wall velocity is 0, here at the wall velocity is 0, and in between the velocity is sliding 

against the maximum velocity at the center and again it decreases to 0. So, we will have 

an entirely viscous flow inside the tube, but it takes some time. There is a boundary layer 

growth, and you need some entrance length for the boundary layer to fully develop and 

merge to the center line. Now, these dimensions are for small tubes; if you have a large 

tube possibly, you will have this boundary layer forming near the wall, whereas, away 

from the wall, you still have the inviscid flow. 



 So, inviscid flow you can think of it is more like a plug flow, the entire fluid is flowing 

like a plug that is one thing, and since we talked about this boundary layer, I must tell you 

that as the boundary layer continues to grow at one point you will find that this growth of 

the velocity profile, the boundary layer becomes too big and there is a reversal of flow 

that happens. So, let us say this is the velocity. Here, it is growing to the free stream 

velocity, but here, there is a reversal of flow. So, that causes some amount of flow 

reversal, and we say that it is no longer a laminar flow because laminar flow requires the 

fluids to move one layer sliding against the other, whereas, if there is a flow reversal. So, 

it will not be strictly laminar. So, then that is going to happen here in this case. 

 So, generally, this is laminar to turbulent. We will discuss this laminar to turbulent and 

their transition, etc. Typically, there is a dimensionless number that goes by the name 

Reynolds number, which is for a tube or for a pipe. It is given as Dvρ/μ, D is the diameter 

of that tube, v is the velocity, and ρ is the density divided by μ is the viscosity. This is a 

dimensionless number, which means all the dimensions have canceled out, and this 

Reynolds number defines whether the flow is laminar or turbulent. So, we can expect that 

when the velocity increases, for example, for a flow through a tube, flow through a pipe. 

So, when the velocity increases, one layer sliding against the other does not continue to 

happen. Rather, there would be eddies formed, and eddies will have random motion, and 

we call that the turbulent flow. 

 Whereas, if you have a flow over a flat plate, typically, the Reynolds number is given as 

xvρ/μ, where x is the distance from the tip of the plate. So, this is x. So, x is counted from 

the tip of the plate distance. So, that x, when x exceeds some threshold value or v 

increases for some value of x, this transition from laminar to turbulent takes place. So, 

further downstream you see the transition taking place because this x is increasing here. 

 For that matter, if you increase the characteristic dimension D then also you can have 

turbulence because it is you are expecting one layer is slide against the other, but if this 

growth of this boundary layer is too large or if the tube dimension is too large you expect 

that this process of one layer sliding against the other and shear force dominates this 

effect that is not significant compared to the other effects that come in inertia coming in. 

So, because of increase in diameter, the inertia force dominates over the viscous force 

and there are other implications which are leading to some amount of instability setting in 

and that is no longer called laminar. So, even by change of D, change of ρ, or change of 

μ, that also can lead to a transition from laminar to turbulent. So, my original point was 

that inviscid flow. So, when it comes to inviscid flow, we are talking about a sort of plug 

flow that is happening outside the boundary layer, and that is a case where the channel 

size is large when you do not have a very small channel where one layer is sliding against 

the other, and the viscous flow dominates. 



 Before we proceed on this further, we will be focusing here on inviscid flow in this 

lecture, and before we proceed this further, we must understand there is some 

conservation rule that any fluid flow has to obey, and that is also referred to as continuity 

equation. So, the continuity equation means that the fluid that is going in, let us say, I 

pick up a differential volume, the fluid that is going in, and the fluid that is leaving the 

place. So, if I subtract in minus out, if the fluid is incompressible then in has to be equal 

to out, we cannot afford to have maybe the fluid that is moving in x direction the exactly 

same amount is not coming out from that other side of the face maybe some are coming 

out extra is coming out to the y or z direction that is different, but whatever is going in 

from all x, y, and z faces has to come out from the other side of x, y, and z faces. So, that 

is there and if the fluid is compressible that means, the density can change, if the density 

is not constant then in minus out would be accumulation and accumulation would be 

reflected in terms of the change of density of the fluid because the fluid will be denser 

because in is more out is less, but accumulation in terms of fluid density increases. So, 

that is a primary condition, any fluid flow has to satisfy, and this is referred to as 

continuity equation. 

 So, the fluid that enters or leaves through the surface. So, through the control surface,  

 

When you have a steady compressible flow, when there is a density present there, then 

one has to keep track of the density as well. When it is an unsteady flow one has to look 

into this equation.  

 

That means, here, it is the net mass flow that has taken place into that differential 

element, in minus out, in is positive out is negative net over the control surface, and net 

accumulation that has taken place in terms of the buildup of density. 



 

 
 So, that is given here. So, the rate of change of mass inside the control volume and net 

rate of mass flux out through that has to be equal to 0. What is the implication of it? If we 

take a differential element here and if we try to write density and velocity. So, this 

coordinate that the center of this differential element is at a location x, y, z, those are the 

coordinates, and the dimensions of this differential volume are dx, dy, and dz. So, this is 

the control volume. 

 So, now, if we try to find out what is the density at the left face that means the face 

which is here. The density of the left face. So, that would be  

𝜌]𝑥−𝑑𝑥/2 

When it comes to the right face, it would be  

𝜌]𝑥+𝑑𝑥/2 

 So, now, if we take Taylor series expansion of 𝜌 and we ignore higher-order terms. So, 

what that means is that I am assuming that the 𝜌 is varying from the left face to the right 

face, the 𝜌 is varying linearly, there is higher order terms are neglected. When can we 

make such an assumption? When this differential element is very small, so that we can 

assume that within this maybe 𝜌 has a parabolic nature or second order equation, some 

polynomial expression will fit, but since the dimension is small I can linearize it and get 

away with it. So, that is why I am ignoring the higher order terms and 𝜌 is written as 𝜌 at 

x, plus (
𝜕𝜌

𝜕𝑥
)  

𝑑𝑥

2
. The next term would be dx/2 whole square by 2 factorial (

𝜕2𝜌

𝜕𝑥2
) etc. 

 So, those are ignored. Similarly, the velocity at the left face it is 𝑢]𝑥−𝑑𝑥/2 = 𝑢]𝑥 −

(
𝜕𝑢

𝜕𝑥
)  

𝑑𝑥

2
, which is again by Taylor series expansion it takes only take the first order term. 

That means, again, I am assuming that u is changing linearly from left face to right face 

since the differential size of this differential element is small, dx is small, and so u at two 

different faces here. So, as far as the x direction is concerned what is in? In is 𝜌𝑢]𝑥−𝑑𝑥/2 

into the area, and what is the area? Area here is this side is dy, and this side is dz. So, this 



into dy.dz that he gives me the net mass flow that is happening from the left face, and if I 

multiply that by Δt, this much of mass entering from the left face and how much is 

leaving the right face that would be 𝜌𝑢]𝑥+𝑑𝑥/2 dy.dz.Δt. So, that would be the mass, see u 

is the velocity, u unit is m/s that into dy.dz, dy.dz are length units, meter × meter, meter2. 

 So, m/s × m × m, so that gives me m3/s. So, essentially udydz gives me the m3/s, 

volumetric flow rate that multiplied by 𝜌, 𝜌 has a unit of kg/m3. So, kg/m3 × m3/s, so that 

gives me kg/s. So, kg/s this is the mass flow rate as far as the right face is concerned that 

multiplied by Δt in second. So, that gives me over duration Δt, so many kg of mass has 

flowed out from the right face and this gives me so much of k so much of kg of mass that 

has entered from the left face. 

 

 
 So, left minus right, so entered minus left, so this gives me an idea how much fluid in-

out, as far as the x face as far as the area is concerned whose perpendicular is in x 

direction. The same thing will happen with the y direction, and the same thing will 

happen with the z direction. So, it would be again (𝜌v), and small v is in y-direction. 

 

  

So this would be in the y direction. Similarly, in the z direction, you will have 



 
 So, over duration Δt this is in minus out as far as this box is concerned x direction y 

direction z direction. This in minus out has to be equal to accumulation, and what would 

be the accumulation? What is the volume of this block that is dx.dy.dz, that is the volume 

of this block? And let us say over this duration, Δt, there is a change in density, which is 

given by Δ𝜌. So, that is, initially, the density was 𝜌dxdydz, dx.dy.dz is the volume that is 

d with v struck through. So, dx.dy.dz is the volume of this differential element. 

 So, at time t, the density into volume that gives me kg right density is in kg/m3, and this 

dx dy dz is m3. So, this is kg. So, 𝜌dxdydz gives me so, many of kg at time t present in 

the box, and at time Δt it would be 𝜌 at t+ Δt, dx.dy.dz. So, let us say I write this 𝜌 at t+ 

Δt as 𝜌 at t plus Δ𝜌. 

 Let us say I write this change over duration Δt as change in density as Δ𝜌. So, what is 

the net change in mass over duration Δt, that would be the net Δ𝜌dxdydz, Δ𝜌 has a kg/m3 

unit and this is m3. So, so, many kg has been has accumulated over duration Δt and that is 

reflected by the change of density because the volume Δ is Δy.Δz, that is not going to 

change it is not a deformable differential element. So, this is a rigid differential element. 

 So, this is the change. So, then this in minus out that I have here in x, y, and z direction 

has to be equated to this, and if you bring in this dx dy dz when you bring into this side. 

So, what I do here is I bring in this dx dy dz part and this dx dy dz part I bring into the 

denominator. So, this becomes dx dy dz this is gone here. So, this is dx dy dz, and further 

this Δt, I remove from here and it goes there in the denominator. So, this delta t this is 

going out this Δt is going they have all gone to the denominator on the left hand side. 

 So, this Δt is gone and this Δt is gone. So, what I see here is that the dy dz goes out with 

dy dz, this dy dz dx dz goes out with dx dz, and dx dy goes out with dx dy. So, you are 

left with on this side 𝜌u at x minus dx by 2 and 𝜌x plus dx by 2, this is divided by dx and 

this is divided by dx is in the denominator. So, if you put limit dx tending to 0 you, if you 

put limit dx tending to 0 we could have we could have used this as Δx then we could have 

written it as delta x tending to 0. So, limit delta x tending to 0 within this block, and here 

we put limit dy tending to 0, and here we put limit dz tending to 0, and this whole thing 

this whole thing and then this whole thing. 

 So, if we if put this we will end up with this term here as -
𝜕

𝜕𝑥
 𝜌u, this term the second rho 

that gives me −
𝜕

𝜕𝑦
 𝜌v and this gives me third term is −

𝜕

𝜕𝑧
 𝜌w and here in this if we add 

limit delta t tending to 0 this gives me Δ𝜌/Δt. So, this whole thing this right hand side is 

equal to Δ𝜌/Δt. So, this is a primary condition simply arising from conservation equation. 



So this is referred to as the continuity equation, and if I come, I give you a field variable, 

the velocity with their u, v, and w, some expression, and if those do not satisfy this 

condition, then the fluid flow is not possible. So, this is a primary condition, also referred 

to as the continuity equation, which arises from the conservation mass conservation 

equation. 

 

 So, it is in a simplified form. This �⃗�  ∙ 𝑑𝐴  is written as. 

 

I mean it in a compact form. This is how you will write in an expanded form I have 

already shown here. So, you can see here that if we take all these right-hand sides to the 

left. So, all these minus would be equal to plus, and this is equal to 0, and that is that is 

exactly what we see here:  

 
 

 So this is referred to as the continuity equation. So, I give you a velocity field. Let us say 

some u i hat plus v j hat plus w k hat, mind. It is a velocity field, not the velocity of a 

particle. The velocity of a particle does not have any such restriction, but when it comes 

to the Eulerian framework and continuum assumption as valid, then this u v w some 

relation between u v w has to be considered, that is that has to have to be followed has to 

be obeyed that is mass conservation and that that condition is this. So, u v w their relation 

is that has to satisfy this equation. Any arbitrary choice of u v w will not get you that may 

be a vector, but that may not satisfy the condition of a field variable called velocity in the 

Eulerian framework in with the continuum hypothesis. So, I will proceed on this further, 

and I will work on the extension of this. 

 Now, this equation has to be valid to at the very outset I mean inviscid or non-inviscid 

this is this is a very basic framework one has to satisfy. I will proceed further on inviscid 

flow, but before we proceed on inviscid flow this condition was important. This condition 

is a primary condition that has to be satisfied for any fluid flow irrespective of what you 

have inviscid or viscous. So, that that I must point out. So, I will continue this discussion 

on inviscid flow. That is all as far as this lecture module is concerned. Thank you very 

much for your attention. 


