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   Good morning.  We are going to start with continuation of shell momentum balance, but I 

will show you some results, some situations in which you would feel that imagining a shell for 

such a complex geometry could be a problem. Secondly, so far we are dealing with velocity 

being a function of only one variable. It could be one of the special coordinates x or y or z or 

it could be in some situations, for transient cases the velocity could be a function of time. But 

what if the velocity is a function of two variables, two independent variables. It could be x and 

y, two-dimensional flow or it could be x and time.  So, under those special circumstances it is 

extremely difficult to use the shell, imagine a shell and make a balance of momentum. 

   So, let us look at some of the examples.  Here what we have in this case is one cylinder which 

is stationary and the other cylinder which is being rotated. So, you could see that there is going 

to be, it is a cylindrical coordinate system. The velocity here is going to be a function of r, 

where r denotes the radial distance. This is the r direction. So, velocity is going to be 𝑣𝜃 the 

only nonzero component, it is going to be a function of r. It may not be a function of z or of 

theta. 

Situations of Increasingly Complex Geometry – Shell MM Balance?? 

 

   So, this is one situation where it is slightly difficult to imagine what could be a shell for such 

case. And this next figure that you see is a cone and plate viscometer which is quite common 

specially for the measurement of high viscosity liquids. Now, here we have a cone and the apex 

of the cone almost touches the plate, the flat plate and the liquid is kept in the intervening space. 

So, what we have is, we have liquid in here and the top cone, the cone is being rotated with a 

fixed angular speed.  Now, the torque required to move this cone with a certain velocity is 

measured and from there the viscosity is going to be correlated with the torque, with the 

measured torque. 

   So, this is how the unknown viscosity of viscous liquids are measured. Now, again what is 

going to be the shell in such a case, here you could see that the velocity is going to be a function 

of, it’s distance, it’s distance from the straight plate, it’s distance from the surface of the cone 

and it could also be a function of the distance in the r direction. So, there could be 

multidimensional effects as well. So, the shell momentum balance as we have practiced so far 

will may not work in this situation.  Then there is another class of, I would say problems where 

let us say this is a flat plate and I have a liquid on top of it. 



 

   So, initially the liquid and the plate is at rest and then suddenly at time t equal, greater than 

equal to 0, at time t equal to 0 the bottom plate starts to move with a constant velocity of capital 

V. Now, as the solid plate starts to move, it is going to impart a velocity in the adjoining liquid 

close to the solid surface. At the next instant, this velocity of the liquid initiated by the motion 

of the plate will be transmitted in the plus z direction.  So, initially only maybe this layer is 

moving with certain velocity. After sometime the viscosity will drag the liquid layer above it 

and so on. So, a motion of the bottom plate which is in contact with the fluid will make the 

velocity of the liquid in the x direction as a function of not only the distance from the plate, but 

also as a function of time. 

   So, it is a perfect example of 2-dimensional flow where a stationary plate is set in motion and 

that is going to initiate a motion in the fluid above it. So, the shell momentum balance will 

definitely not work here. So, in order to solve such problems, we would like to have a 

generalized approach and this generalized approach, before we get into the generalized 

approach, we have to get the concepts of certain important parameters, certain important 

definitions. And then these definitions of partial, total and substantial time derivative 

derivatives, they are used to derive the equation of continuity which is nothing but a statement 

of the conservation of mass. And more importantly the equation of motion, which is Newton's 

second law for an open system. 

   And once I have this equation of motion, certain restrictions or simplifications can be 

suggested which would lead to Navier Stokes equation. And this Navier Stokes equation can 

be used for any situation and you can write the Navier Stokes equation for the right component 

in the direction of the velocity, in the direction of the motion and then try to solve it analytically 

or numerically in order to get an idea of the entire flow field existing in the fluid.  So, Navier 

Stokes equation is extremely useful and a fundamental equation that allows us to calculate, to 

measure the flow field, to calculate the shear stress and it creates an important aid to the design 

of many equipment, many formations which are in contact with a liquid or a fluid. And if I 

impose the condition that the fluid that we are dealing with is not viscous, it is inviscid fluid 

with 0 viscosity, then from the Navier Stokes equation, the Euler's equation would follow. And 

one of the examples of the use of Euler's equation as you know is Bernoulli's equation. 

   So, starting with the concept, the equation of continuity, motion, Navier Stokes equation and 

finally Euler equation, we are going to use all these in our subsequent classes to get a fair idea 

about how the velocity, the shear stress field changes in a moving fluid for any complex 

geometry. So, that is going to be our task for the next few classes, but before that we need to 

clarify certain concepts for example, the before we reach to the equation of change.  Now, in 

order to give you an idea of the different derivatives which are commonly used in fluid 

mechanics, let us assume that you are standing at a very busy intersection in a major city where 

there are 4 or 5 roads converging to that point and they are going in different directions. So, I 

ask you that, you stand right at the centre point, at the central island, where you can see all the 



cars that are approaching you or passing by you. And I request you to count the number of 

white cars which you can see in all, among all those cars which are passing you by. 

   Now, you are standing at a fixed point. So, the origin of the coordinate system is fixed and 

you are counting the number of the white cars. The time variation of the number of white cars 

that you measure, that is known as the partial time derivative. In this partial derivative the 

origin of the coordinate system that x y z, your location is constant. You are simply counting 

the numbers of white cars passing you by. Now, let us assume that after obviously, after 

standing there for quite some time you get bored. 

Partial time derivative: 
𝜕𝐶

𝜕t
 (x,y,z constant) 

 

   So, you start to move around you decide to just go to some other place and but since I have 

requested you to count, keep on counting the numbers while moving from one point to another, 

you are still counting the number of white cars passing you by. Now, you have a velocity of 

your own your, velocity has 3 components dx/dt, dy/dt and dz/dt. So, with your velocity 

superimposed on the motion around you, the number of cars, number of white cars that you 

calculate would be known as the total time derivative. So, in here this dx/dt, dy/dt and dz/dt are 

the velocity of u as you decide to move in any random direction.  So, obviously, the numbers 

dc/dt would be different from del c/del t. 

Total time derivative: 
d𝐶

dt
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   So, the total time derivative, the number of white cars when you are in motion that you have 

counted would be different from the number of cars when you are stationary. Now, there is a 

third kind, let us say after walking for some time while still counting the numbers you have 

decided that I have had enough. So, let us flow with the cars, let us move with the average 

velocity of the cars around me at any given point of time. Mind it is the average velocity. And 

since it is average velocity, there will still be, still some cars which will pass you by or some 

cars which you will pass. Now, while moving with the average velocity of the fluid of the cars 

around you, are still counting the numbers, but now your velocity components are 𝑣𝑥,𝑣𝑦 and 

𝑣𝑧. Those are the fluid velocity, the velocity of the cars. 

Substatial time derivative: 
D𝐶

Dt
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   So, to say around you and the number of white cars that you calculate at that condition is 

known as substantial time derivative or more importantly it gives you a better picture when we 

say that it is a derivative following the motion.  So, the substantial derivative is therefore, the 

derivative following the motion where the velocity of u will simply be equal to the velocity of 

the fluid around you.  So, these three derivatives are going to be important in our understanding 

of equation of motion, equation of continuity and so on. Conceptually they are the same, but 



the way they are expressed is different. A fixed axis, an axis moving with a constant velocity 

and at a coordinate system which is moving with the velocity of the fluid around it. So, with 

these three concepts clearly understood, now let us try to move and find out what is going to 

be the equation of continuity or equation of conservation of mass. 

   So, we are going to derive the equation of continuity. I am not going to show you all the steps, 

this is the derivation, is there in Bird Stewart Lightfoot. You can take a look at it, but it is the 

application of these equations and understanding of the different terms of the equation which 

are going to be important specially when we deal with the equation of motion.  So, in order to 

derive the equation of continuity first we state the obvious, the conservation of mass and what 

does conservation of mass tell us that the rate of accumulation of mass inside a control volume 

must be equal to the rate of mass in minus rate of mass out. So, we need to first define a control 

volume fixed in space, identify the phases through which mass can come in or leave the control 

volume. As a result of this inflow, net inflow, that means, inflow minus outflow there is going 

to be some accumulation or depletion of mass inside the control volume. So, if we can express 

that in terms of quantities that we know, in terms of the velocity, in terms of the density, in 

terms of the area then we have our conservation equation written in a compact form, written in 

the form of a differential equation which would give us the equation of continuity. 

Rate of mass ACCUMULATION = Rate of mass IN – Rate of mass OUT 

 

   In order to do that, let us assume that we have a cubical box whose size are del x del y and 

del z. Now, when we talk about the x face, the x face is the area which is perpendicular to the 

x direction. So, this is the x face and as you can see the x face has area equal to delta y times 

delta z. Similarly, the area that you see over here is the y face which has area of delta x and 

delta z and mass is going to come in through the x face and leave the face at, located at x plus 

delta x.  Similarly, the velocity in the y direction will bring some liquid in here and it is going 

to leave out of this and same is true for z face. 

   So, the liquid, the fluid will enter through these faces at x, leaving at x plus del x, y and at y 

plus del y and so on. So, let us first identify what is going to be the terms that would indicate 

the total flow of liquid through each of these faces.  So, rate of mass in through the x face and 

x face is this one. So, the area of the x face is del y del z multiplied by the velocity at x would 

give me the volumetric flow rate.  So, meter square, meter per second and kg per meter cube. 

Rate of mass IN through x-face: ρvx|x∆y∆z 

   So, the product of these three essentially gives me the kg per second that means, whatever be 

the mass that comes in through this face. The rate of mass out through the x face would simply 

be everything remaining same except the velocity is evaluated at x plus delta x. So, that is going 

to be the only difference in this situation. So, imagining a control volume, putting it right in the 



flow field and identifying the terms with which the mass can come into the system or leave the 

system is a very useful tool in order to obtain what is the total amount of mass being added to 

the control volume. So, this is a control volume which is fixed at space, that means, the origin 

over here is stationary, it is not moving at all with time. 

Rate of mass OUT through x-face: ρvx|x+∆x∆y∆z 

Similarly for other 2 faces: y and z 

   The same approach can also be used to obtain what is the momentum that comes in to the 

control volume. Now, if you look at this one. So, this one is the rate of mass in through the x 

face. Now, rate of mass in through the x face can be multiplied with velocity in order to find 

out what is the momentum that comes in through the x face. So, once we have this control 

volume, the different faces, the amount of mass being added, we if figure it out, then converting 

it to momentum is going to be straightforward. 

   But once again the mass that we are talking about, the momentum that I have explained 

subsequently are all due are convective process.  The mass comes in because of the velocity 

associated with the fluid which enters through  the x face. Similarly, when we multiply that 

with velocity again in order to obtain the momentum, that is convective transport of momentum 

through the x face.  But we understand that there could be, apart from convective momentum 

there could be diffusive or molecular transport of momentum as well that we have to think 

about. But let us discuss that when we talk about the equation of motion. 

   Right now, the rate of mass in and the rate of mass out through the x and the x plus del x face, 

this should be x plus delta x. So, x plus del x face, x plus del x face is clear.  So, we can write 

the similar terms for the other two faces, that means, the y face and the z face. So, for the y 

face if I just give you the one this simply would be 𝜌 times  𝑣𝑦 evaluated at y then multiplied 

by the area of the y face, which is delta x delta z. So, this is going to be the in term and the out 

term would remain the same except this y is going to be replaced by y plus delta y. 

   Similarly, for the z face you can write the 𝜌 𝑣𝑧 at z multiplied by del x del y where del x del 

y is the area of the z face and the area that goes, the mass that goes out through z plus delta z 

face would simply be where the velocity at that location is considered.  So, as a result of all 

these inflow and outflow, there is going to be some accumulation of mass inside the control 

volume. So, what is the control volume? It is del x del y del z and the mass is changing with 

time which means that the density is changing with time since my size of the control volume 

is fixed. So, del x del y del z times del 𝜌 del t would give us the time rate of change of mass, 

quantity of mass inside the control volume.  So, I have the in, all the in terms, the out terms 

and the accumulation term. 

Rate of mass ACCUMULATION: ∆y∆z∆x
𝜕ρ

𝜕t
 

∆y∆z∆x
𝜕ρ

𝜕t
= ∆y∆z[(ρvx)|x − (ρvx)|x+∆x] + ∆x∆z [(ρvy)|

y
− (ρvy)|

y+∆y
] + 

∆x∆y[(ρvz)|z − (ρvz)|z+∆z] 

   So, now, I can write the equation that where the left-hand side is the accumulation term that 

I have defined. Del y del z this is the amount of mass coming in through the x face, amount of 



mass going out through x plus delta x face for y, y plus del y, z and z plus delta z. So, this is a 

difference equation. We know what we have to do is divide both sides by del x del y del z and 

take in the limit when del x del y and del z all approach 0. So, if that happens then we are going 

to get the differential form of the equation as del 𝜌 del t, the time rate of change of density 

would be equal to del del x with a minus sign 𝜌 𝑣𝑥 ,  𝜌 𝑣𝑦  and 𝜌 𝑣𝑧 . 

If, ∆y ∆z ∆x → 0 

𝜕ρ

𝜕t
= − [

𝜕

𝜕x
(ρvx) +

𝜕

𝜕y
(ρvy) +

𝜕

𝜕z
(ρvz)] 

   Now, if you think more about what is 𝜌 times v, 𝜌 is kg per meter cube, v is meter per second. 

So, the so, this is going to be kg per meter square second. So, this is the mass flux. Now, this 

equation, the one that we have written over here, this equation can be made, can be expressed 

in a more compact form where del 𝜌 del t is simply going to be minus of del of 𝜌 v. So, this is 

the compact vector form of the conservation of mass equation which is also the equation of 

continuity. 

𝜕ρ

𝜕t
= −(∇. ρv) 

   So, this is the mass flux as I have mentioned before.  Now, this equation can also be expanded 

a bit because where I just find out, I just figure out what is del del x of 𝜌 𝑣𝑥 . The first term is 

going to be 𝑣𝑥  del 𝜌 del x, the second term is going to be 𝜌 del v del x. So, it this is simply 

follows from the differentiation.  Now, I could take all the 𝜌 all the I could take every term 

containing 𝑣𝑥  on the left-hand side. 
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 So, these terms are taken to the left-hand side to have del 𝜌 del t plus 𝑣𝑥  del 𝜌 del x and so on 

would be equal to the right-hand side.  Now, if you have followed the definition of the 

derivatives that we have discussed this is nothing, but the substantial derivative of density. I 

will go back quickly to the definitions that we have presented at the second slide and there you 

could see that what is the substantial time derivative. So, the substantial time derivative is 

𝑣𝑥 𝑣𝑦 𝑣𝑧  multiplied by del c del x del c del y and del c del z. Now, if I go back to my equation 

that we have derived in this specific case here also I have, I see the same thing. 

𝜕ρ

𝜕t
+ vx

𝜕ρ

𝜕x
+vy

𝜕ρ

𝜕y
+vz

𝜕ρ

𝜕z
= −ρ [

𝜕vx

𝜕x
+

𝜕vy

𝜕y
+

𝜕vz

𝜕z
] 

Dρ

Dt
= −ρ(∇v) 

   So, the right-hand side, the entire right-hand side is nothing, but the substantial derivative of 

density. Substantial derivative of density so, it is del d dt of 𝜌 is equal to minus  𝜌 times del v. 

So, this is another form of equation of continuity which can be used depending on whatever is 



convenient for a specific problem.  So, the continuity equation essentially as I said conservation 

of mass, it can be expressed in times of del 𝜌 del t or in terms of d 𝜌 of dt and the, if we further 

assume that it is an incompressible fluid. An incompressible fluid is characterized by having a 

density having its density constant. 

                  

   So, if 𝜌 is constant then this specific, the two equations that you see on the slide can be 

modified further which would simply tell us del v equals 0 or the bottom part is simply going 

to be this.  So, essentially if del of v is 0 and you plug it in here. So, it is d this part is going to 

be 0. So, this is the differential form of continuity equation, conservation of mass for a fluid 

that is incompressible. This is the differential form, now if it is a differential form there has to 

be an integral form which we will discuss later on, but just for complete witness, I am going to 

write this, is going to be 0 which is where A is the area, v is the average velocity of the fluid 

passing through that area. 

          

   So, if you expand this, it is going to be A 1 v 1 plus A 2 v 2 plus A 3 v 3 and so on would be 

equal to 0 at would be 0 for an incompressible fluid. However, there has to be some word of 

caution in here is what am I going to write, what sign I am going to write for A 1 v 1. The 

convention or the, what is done is that if the flow is into the control volume it is going to be 

negative and if the flow is out of the control volume it is going to be positive. So, while using 

A 1 v 1 A 2 v 2 this formula you have to be careful that if the flow is in, A 1 v 1 is going to be 

negative, if the flow is going to be out of the control volume this term is going to be positive.  

Now, why is that because if you understand that for any area if I talk about this area the area 

vector is always pointed out of this. 

   So, this is your A i. Now, if you have the velocity in here, the velocity is into the control 

volume through the surface area, then this A i v i will be negative. Whereas, if the v i is out of 

the control volume, then A i v i is going to be positive. So, this is the essence of continuity 

equation both for, both for this, for an incompressible fluid, for a fluid which may not be 

incompressible equation of continuity in the differential form, equation of continuity in the 

integral form. So, this is the integral form of continuity equation and we use this equation many 

times specially when dealing with flow coming in with multiple inlet and outlet in a control 

volume. So, for that case the formula to be used is A 1 v 1 plus A 2 v 2 equal to 0. 

   One point to note here is that this v 1 is not the point velocity. Since, we are dealing with the 

control, dealing with the integral approach, this v 1 is essentially averaged over A 1 the entire 

area A 1. So, this also highlights the difference between the integral approach and the 

differential approach. So, far we are doing differential approach, but when we go for integral 



approach, there is going to be some sort of an approximation and here you can clearly see where 

does that approximation come from. The velocity here in the differential approach I mean the 

equation that I have written for the differential approach is valid for every point. 

   Whereas, the expression that I have used for the integral approach over here, the velocities 

are assumed to be constant over the entire A 1. The closest you can get to that approximation 

is when the velocity is the average velocity.  So, for average velocity, using average velocity, 

the expression that A 1 v 1 summation A 1 v 1 summation A i v i to be equal to 0 for a fluid of 

constant density incompressible fluid that is going to be valid. So, with this I stop here and in 

the next class I am going to talk more about the equation of motion and how Navier Stokes 

equation can be derived from, can be obtained from the equation of motion and subsequently 

Euler's equation.  Once we have our idea of equation of continuity and the Navier Stokes 

equation then I am going to show you how easy it is to use Navier Stokes equation for solving 

problems. 

   So, I will start with the problems that I have already solved using a shell momentum balance 

and then slowly go towards slightly more complicated problems where you can truly appreciate 

the beauty of Navier Stokes equation. So, the next class is going to be on the conceptual, not 

stepwise conceptual derivation of Navier Stokes equation.  Thank you. 


