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Hello and welcome to another class on Chemical Engineering Fluid Dynamics and Heat 

Transfer, we are in the heat transfer part and discussing Internal Forced Convection. 
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In the last class, we have gone through the essentials of internal forced convection that is 

understanding mean fluid temperature, mean velocity and also, we have seen what is fully 

developed flow that is the thermally fully developed region and hydrodynamically fully 

developed region. And the utility of the entrance length on the heat transfer coefficient, 

the convection coefficient. 
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Now, generally, what happens when we have a fluid element or when a fluid is flowing 

through a tube, say if we consider element of it, if the energy is going into the fluid. So, 

what happens the energy balance if it is (𝑚̇𝑐!𝑇") temperature and (𝑚̇𝑐!𝑇#), then what 

happens what we write is that energy balance that: 

𝑄̇ = 𝑚̇𝑐!(𝑇# − 𝑇") 

The energy equation that we can write for this fluid element. Now, where this Te and Ti 

the inlet and exit, these are the mean temperatures at those positions. That means, in this 

cross section, these are the mean temperature, at the exit as well as at the inlet 

corresponding e and i, e stands for the exit, i stands for the inlet condition.  

Now, the thermal conditions at the surface usually that we can consider either of these two 

cases that we have seen. That either we can consider this is having a uniform or isothermal 

surface which is having a constant temperature that is (Ts = constant). Or we can have 

constant surface heat flux that is 𝑞$ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡̇  

We can supply constant heat flux in order to maintain the second boundary conditions. So, 

constant surface temperature we can think of when say there is phase change is happening 

of a fluid. It is at the same temperature, but the phase is changing, say for example, boiling 

condensation etcetera is occurring.  



However, the constant surface heat flux practically we can think of a situation that this 

tube is say perhaps is wrapped with the electric coil where a continuous supply of 

electricity is given in order to maintain its temperature at a particular condition of the fluid. 

So, now in those cases where qs is constant there the surface temperature would vary along 

the surface. Because the surface heat flux is essentially: 

𝑞$̇ = ℎ%(𝑇$ − 𝑇&) 

 Where hx is the local heat transfer coefficient, Ts is the surface temperature, Tm is the 

mean fluid temperature at particular location wherever we are calculating hx or equating 

that with the hx. 

Now, mean fluid temperature in a flow it would change during heating or cooling whatever 

the scenario would be. This Tm would change, that would change when qs is constant. And 

the surface heat flux would change if surface temperature is constant.  

So, from this relation what we see that when Tm which is the mean fluid temperature of a 

flowing fluid it would change and if Ts is constant. If Ts is constant and Tm is changing in 

order to maintain this balance 𝑞$̇ must change that means, the surface heat flux must 

change if we keep Ts is constant.  

Similarly, or on the other hand if Ts is constant in the second case, as Tm is changing in 

order to have this balance Ts must change, it cannot be constant. So, this we have to clearly 

understand. So, let us consider the second case first that means, the constant surface heat 

flux condition that means, 𝑞$̇ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

If this is the case then the rate of heat transfer also that we consider is essentially: 

𝑄̇ = 𝑞$̇𝐴$ = 𝑚̇𝑐!(𝑇# − 𝑇") 

This is the value and the mean fluid temperature at the outlet that we can calculate is 

essentially: 

𝑇# = 𝑇" +
𝑞$̇
𝑚𝑐!

 



So, mean fluid temperature at the exit what we see is linearly increasing. So, if we try to 

see now the situation in a schematic for a pipe where we have constant surface heat flux, 

this is constant. So, for this length L what we see that from and if this is my Ti, inlet 

temperature which is lower.  

And if this is my total length and if this is my Te, there is a linear relation between these 

two points from this expression that (Te = Ti + constant part). Considering that this is the 

case we are resolving constant heat surface where heat flux surface heat flux condition. 

So, that means, mean fluid temperature increases linearly in the flow direction. The flow 

direction is in this direction where As in this case is the area of the perimeter or the 

perimeter which is constant in case of I mean it is a constant, but multiplied by the tube 

length. 

It is a constant multiplied by the tube length is the perimeter, in this case the A s. Now, the 

surface temperature in case of the constant surface heat flux condition what we can write 

is: 

𝑞$̇ = ℎ(𝑇$−𝑇&) 

that means, surface temperature is essentially: 

𝑇$ = 𝑇& +
𝑞$̇
ℎ  

Now, consider the case of fully developed region. In fully developed region surface 

temperature Ts that will increase linearly in the flow direction because h is constant. 

Already we had 𝑞$̇ is constant in this case this is the conditioner we are talking about. So, 

in the fully developed region when h is constant because the reason we have seen earlier, 

the surface temperature also linearly varies, but that is in the fully developed region. So, 

this (𝑇$−𝑇&) will have a linear slope, ok. 

So, if this is my fully developed zone or say the length that is necessary in order to be the 

fully developed part. If this is the length that is necessary for the flow to be fully developed 

then in this region. So, from here there is a linear profile till this linear profile is for the Ts 

in the fully developed region. And this is the ∆𝑇 is essentially '!̇
)

 . But in the entrance 



region the surface temperature would vary like this. Because there h is varying, h is not 

constant until it reaches the thermal entry length. 

So, this gives sense schematic or the idea how it is happening or what that what is the thing 

that is happening. And so what we can see that if we quickly balance a small element in 

the fluid like we did in the earlier case that this is 4𝑚̇𝑐!𝑇&5 that is going in and 

4𝑚̇𝑐!(𝑇& + 𝑑𝑇&5) in this case. This is the surface temperature Ts, the amount of heat that 

is the 𝛿𝑄 = ℎ(𝑇$ − 𝑇&)𝑑𝐴. 

So, this is the Tm and this is (𝑇& + 𝑑𝑇&) of a element that is Tx. If we do the steady state 

energy balance for this slice what we can write: 

4𝑚̇𝑐!𝑑𝑇&5 = 𝑞$̇(𝑃𝑑𝑥) 

where p is the perimeter of the tube. That means: 

𝑑𝑇&
𝑑𝑥 =

𝑞$𝑃̇
𝑚̇𝐶!

 

So, what we see the change of mean temperature of the fluid with respect to x is constant. 

And again from the surface temperature Ts expression: 

𝑑𝑇$
𝑑𝑥 =

𝑑𝑇&
𝑑𝑥  

And also, based on the dimensionless temperature profile that remains unchanged in the 

fully developed region what we can write?  

𝜕
𝜕𝑥 <

𝑇$ − 𝑇
𝑇$ − 𝑇&

= = 0 

This is essentially a constant value. 
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And further if we look at in a different way: 

1
𝑇$ − 𝑇&

<
𝜕𝑇$
𝑑𝑥 −

𝜕𝑇
𝑑𝑥= = 0 

Or,  

𝜕𝑇$
𝑑𝑥 =

𝜕𝑇
𝑑𝑥 

So, if we combine all these what it leads to: 

𝜕𝑇
𝑑𝑥 =

𝑑𝑇$
𝑑𝑥 =

𝑑𝑇&
𝑑𝑥 =

𝑞$𝑝̇
𝑚̇𝑐!

 

So, we conclude that in the fully developed flow in a tube that is subjected to constant 

surface heat flux temperature gradient is independent of x and the shape of temperature 

profile does not change along the tube. So for fully developed flow in a tube subjected to 

constant surface heat flux the temperature profile does not change along the tube or along 

the flow direction and the temperature gradient is independent of x. 
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Now, if we consider constant surface temperature condition. So, in that case again from 

the Newton's law of cooling the rate of heat transfer either to the body or from the body 

that we estimate is 𝑄̇ = ℎ𝐴∆𝑇. 

Now, here the ∆𝑇 is the ∆𝑇*+#,*-#; that means: 

𝑄̇ = ℎ𝐴$(𝑇$ − 𝑇&)*+#,*-# 

where h is the average heat transfer coefficient, As is the heat transfer area which is equals 

to 𝜋𝐷𝐿, in case of circular pipe of length L, diameter D and ∆𝑇*+#,*-# is the  appropriate 

average temperature difference, the difference bit of average temperatures at of the fluid 

and the surface. Because at the surface although this is constant the fluid temperature 

changes along the cross section. 

So, that is why the mean fluid temperature we are considering and also since it changes 

along the x-direction. So, throughout the case we take an appropriate average of it. Now, 

in case of constant surface temperature one of the way to estimate ∆𝑇*+#,*-# is taking the 

arithmetic mean difference.  

∆𝑇*+#,*-# =
∆𝑇" + ∆𝑇#

2  



=
(𝑇$ − 𝑇") + (𝑇$ − 𝑇#)

2  

So, at the inlet the average of ∆𝑇" is (𝑇$ − 𝑇") plus the difference at the exit is (𝑇$ − 𝑇#) 

and its arithmetic average which becomes: 

= 𝑇$ −
𝑇" + 𝑇#
2  

= 𝑇$ − 𝑇. 

Tb is the bulk fluid temperature equals to /"0/#
1

. We can also say this as the bulk mean fluid 

temperature. This is the arithmetic average of mean fluid temperatures at the inlet and at 

the outlet.  

Now, in this case what happens? The arithmetic mean temperature difference is simply the 

average of temperature difference between the surface and the fluid at the inlet and at the 

exit. The inherent assumption in this case is that the mean fluid temperature varies linearly 

along the tube. If this linearly varies then such assumptions or this definition work best. 

But that does not happen; that this mean fluid temperature does not vary linearly in this 

case. Therefore, we need a better way to find out what is the ∆𝑇*+#,*-#. So, now consider 

again energy balance of an differential element and in that case what we usually have seen 

that: 

4𝑚̇𝑐!𝑑𝑇5 = 	ℎ(𝑇$ − 𝑇&)𝑑𝐴$ 

So, with the increase in energy of the fluid that is equals to the energy transferred to the 

fluid from the tube surface by convection where 𝑑𝐴$ = 𝑝𝑑𝑥 . 

Now, also we have seen this is dTm. So, dTm = d(Ts – Tm), because surface temperature is 

constant. So, what we can write? Since Ts is constant in this way. And then if we try to 

rearrange this: 

𝑑(𝑇$ − 𝑇&)
𝑇$ − 𝑇&

= −
ℎ𝑝
𝑚̇𝑐!

𝑑𝑥 



Once we integrate it from (x = 0) to (x = L), 0 means where Tm is Ti, at (x = 0), Tm is 

basically the Ti. And at exit or (x = Tm) is basically Te. 

𝑙𝑛
𝑇$ − 𝑇#
𝑇$ − 𝑇"

=
ℎ𝐴$
𝑚̇𝑐!

 

where again As is nothing but (pL) surface area of the tube and h is the constant average 

convection heat transfer coefficient. So, once we find this once we have this, then if we 

solve for Te we can write an expression that gives us the value: 

𝑇# = 𝑇$ − (𝑇$ − 𝑇")exp	(−ℎ𝐴$ 𝑚̇𝑐!)⁄  

So, this relation we can use to determine the mean fluid temperature at any x by replacing 

As is equals to (pL) by (px) at any position x if we consider (As) as (px) from this 

expression, we can find that mean temperature. So, that means, the temperature difference 

between the fluid and the surface decay exponential from this relation we can clearly see. 

And this rate of decay depends on the value of this exponent. And this dimensionless 

number is called the Number of Transfer Unit, NTU and this is the measure of 

effectiveness of heat transfer process. So, what has been seen that if number of transfer 

unit if it is more than 5, then it is seen that the exit temperature of the fluid becomes almost 

equals to the surface temperature. 
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That means schematically what is there in this case when we have a constant surface 

temperature condition the fluid is flowing from (0 to L). So, this is our Ti and this is our 

Texit. Now, in this case the temperature varies in this way where we have it is not exactly 

overlapping. This is my constant surface temperature condition. 

So, initially we had ∆𝑇" and here the ∆𝑇# and this is the ∆𝑇 = 𝑇$ − 𝑇& which exponentially 

decay and reaches the exit temperature of the fluid. This is the fluid temperature curve 

which is not linear and that is why that simple arithmetic mean average would not have 

been an appropriate approximation that we are now seeing from this expression it reaches 

for NTU more than 5 the exit temperature reaches nearly the constant surface temperature. 

So, NTU has importance, we will not go into the details of it, but the point is once we have 

understand this importance say we have seen now the expression: 

𝑙𝑛
𝑇$ − 𝑇#
𝑇$ − 𝑇"

=
ℎ𝐴$
𝑚̇𝑐!

 

𝑚̇𝑐! =
ℎ𝐴$

𝑙𝑛 𝑇$ − 𝑇#𝑇$ − 𝑇"

 

Now what we know that 𝑄̇ = 𝑞$𝐴$̇ = 𝑚̇𝑐!(𝑇# − 𝑇") 
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Above equation is for constant surface heat flux condition when this was for the constant 

surface heat flux condition, when this was constant. Now, once we substitute this (mCp) 

in this equation what happens is that: 

𝑄̇ = ℎ𝐴$∆𝑇23/4 

LMTD we call this as Logarithmic Mean Temperature Difference. 

∆𝑇23/4 =
(𝑇" − 𝑇#)

𝑙𝑛 𝑇$ − 𝑇#𝑇$ − 𝑇"

=
∆𝑇# − ∆𝑇"

𝑙𝑛 ∆𝑇#∆𝑇"

 

These are the temperature difference at the inlet at the inlet between the surface at the inlet 

fluid temperature and at the outlet the outlet fluid mean temperature and the surface 

temperature the difference of it. So, once we replace this m 𝑚̇𝑐! in this equations on we 

try to find it out for the constant surface temperature. What we see is that instead of the 

Taverage this relation is more appropriate in order to find out the amount of heat or the rate 

of heat transfer that is happening. 

And this introduces the concept of LMTD which is extremely useful for the case of internal 

forced convection. Because this concept in future you would see the applications in shell 

and tube heat exchanger design and various other purposes. So, I stop here today. Based 

on this concept we will solve a couple of problem in the next class and then we move on 

to the natural convection part. 

After understanding these applications of constant surface heat flux and constant surface 

temperature we will see that how to apply this concept for problem solving and then we 

move on to the some overview of the natural convections and the related values. But we 

have come here, but till this class is the concept of LMTD. And now we will see in the 

next class before you solve the some problem that how the Nusselt number is varying in 

these two conditions. 

That is the constant surface heat flux and the constant surface temperature conditions. 

Because we have not till now seen how Nusselt number calculate can be estimated for 

these conditions for both laminar and turbulent flows. So, those we will see in the next 

class and we will solve a few one or two problem and then we move on to the next section. 



With this I thank you for your attention and please rehearse these things before we go to 

the next class. 

Thank you. 


