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Forced Convection (Contd.) 
 

Hello everyone, welcome back once again with another lecture on Forced Convection in 

the part heat transfer of the NPTEL online certification course on Chemical Engineering 

Fluid Dynamics and Heat Transfer. 
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So, till the last class what we have seen? The fundamentals of convection several equations 

related to the governing equations of that convection heat transfer the convective flow the 

analogies between the thermal boundary layer and the velocity boundary layer and also 

what we have seen is that in convection we always need the information of the drag force 

or the drag coefficient because that directly influences the Nusselt number. 
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So, we have seen the form of local Nusselt number and that is a function of we have seen 

this form 𝑁𝑢! = 𝑓(𝑥∗, 𝑅𝑒# , 𝑃𝑟) . So, this is the local Nusselt number it is dependent on 

the dimensionless characteristic length for a flat plate it is the distance from the leading 

edge this 𝑥∗ non-dimensional length scale it is done if the flat plate length is L. We have 

seen this non-dimensionalization it is also dependent on the Reynolds number as well as 

the Prandtl number. 

Now, this Reynolds number is also the local Reynolds number depending on the length 

the length scale or the distance from the leading edge in case of a flat plate scenario. Also, 

we have seen when we integrate it over the entire domain the average Nusselt number it is 

a function 𝑁𝑢 = 𝑓(𝑅𝑒# , 𝑃𝑟).  

Now, experimentally it has been determined that the average Nusselt number usually vary 

in a simple power law function this form also we have seen, 	

(𝑁𝑢 = 𝐶𝑅𝑒#$𝑃𝑟%) and this is the complete length over the entire domain. Now, the point 

is this value of C is geometry or the domain dependent constant the value of L, m and n 

differs depending on the flow scenario or the flow condition and this values of m and n 

varies in between 0 to 1.  

The point is now we also mentioned that when this scenario this see the boundary layer 

develops, we know that depending on the upstream velocity there exist a critical length till 



which the flow is laminar and after that there is a chaotic motion of the or the random 

motion of the flow that is your eddies. 

So, this is the laminar part and this is the turbulent part after a critical length xcr for a 

isothermal condition this surface of the temperature is Ts. Now, the point is that this free 

stream temperature and Ts if there these are significantly different which is the common 

cases mostly occurred cases and at the same time the fluid properties are changing in that 

duration in that range. 

In that case while calculating the dimensionless numbers or any other quantity the derived 

parameter which temperature we should look into or say the properties if it is say density 

viscosity these are dependent on the temperature, then which value we should take? 

Because on one side we have Ts on other hand we have 𝑇& and these are drastically 

different. 

So, in those cases we have also discussed that we typically consider film temperature 

which: is 	

𝑇' =
𝑇( + 𝑇&

2  

we name this as the film temperature. So, in the film temperature we consider whatever 

the properties are there or the values are there for this particular fluid and accordingly we 

calculate all other derived parameter. Now, the drag coefficient when we take the average 

drag coefficient value what we did? See from local to the average value the way that it is 

typically calculated is: 

𝐶) =
1
𝐿4 𝐶),!

#

+
 

Similarly, h is also calculated on the same line: 

ℎ =
1
𝐿4 ℎ!𝑑𝑥

#

+
 

 

 Once you have an expression of hx you integrate it over the domain and find out the 

average heat transfer coefficient and once this average drag and convection coefficients 



are known, then we can calculate the rate of heat transfer between the bodies from this 

simple relation which is (ℎ𝐴∆𝑇), this h value comes from this integrations of the average 

quantity and A or A s this is the surface area across which the heat transfer is happening. 

Now, when there is this kind of flow that flow over a flat plate or specifically if we say 

that parallel flow over flat plates in parallel to the orientation of the plate. In this case as I 

mentioned earlier, we are not going into the details that there are several regions several 

layers turbulent, laminar flow conditions etcetera that comes from the fluid dynamics 

understanding. 

So, the transition from laminar to turbulent depends on the surface quality or the surface 

geometry surface roughness upstream velocity it also depends on the magnitude of the 

upstream velocity the surface temperature as well and of course, the type of the fluid where 

it would change. 

Now, since all the parameters are involved, it is best described as we typically do in terms 

of Reynolds number. So, this Reynolds number tells which is that we write: 

𝑅𝑒 =
𝜌𝑉𝑥
𝜇  

V is the upstream velocity and others are the fluid property and x is the distance from the 

leading edge. What is has been seen that also we have discussed is Reynolds critical for 

such cases is (Recr = 5 x 105). This is the value of critical Reynolds number for a flat plate. 

Now, this value may differ because this value is from the assumptions that the plate is 

smooth if the plate is rough depending on the degree of roughness this value can change 

from (105 to 3 x 106) it may vary in this range depending on the surface roughness and the 

turbulence level of the free stream. Now, we know what are the drag coefficient values for 

such cases of the friction coefficient values. 

So, for laminar condition for laminar condition, we can know that this boundary layer 

thickness is essentially: 

𝛿 =
5𝑥

𝑅𝑒
,
-
 

And friction coefficient the local friction coefficient is: 



𝐶',! =
0.664

𝑅𝑒!
,
-

 

where the Reynolds number is in the laminar region for this condition. 

Now, corresponding turbulent values the velocity boundary layer thickness is:  

𝛿 =
0.382𝑥

𝑅𝑒!
,
.

 

 so look at the variation. For turbulent flow the boundary layer thickness varies with the 

(x-1/5). And in the case of laminar flow, it varies with respect to x-1/2 where x is the distance 

from the leading edge, the distance from the leading edge. So, friction local friction 

coefficient is proportional to the Re-0.5 for laminar flow. 

So, that means, the friction coefficient is nearly infinite at the leading edge that is (x = 0) 

and decreases by a factor of x-1/5 for turbulent cases and x-0.5 in case of laminar cases. So, 

that means, the local friction coefficients are higher in turbulent flow than that of in the 

laminar flow. These things all we are aware these are the hydrodynamic points that we are 

telling here. 

Now, once we integrate it over the entire domain in this case in laminar case the friction 

coefficient value becomes. So, these numbers you have to remember Re0.5 where this 

condition remains. In this case the friction coefficient becomes once we integrate it like 

we have mentioned here it becomes 1/5 where Re is eventually in this range this is the 

relations. So, these are the relations over the entire plate. 
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So, now if we look at the cases where initially at the flat plate, I mean say the flat plate is 

sufficiently long like we discussed there, so some part it is laminar boundary layer and 

some part we have turbulent boundary layer. It is not that the complete length of this plate 

is covered by one of the boundary layers. Say the scenario is something hybrid in that case 

what we typically do?  

We find the value of Cf or the friction coefficient for the entire length by piecewise 

integration: 

𝐶' =
1
𝐿 D4 𝐶',!	01$2%13𝑑𝑥 +4 𝐶',!	4536507%4𝑑𝑥

#

!!"

!!"

+
E 

We replace those previous expressions here and we find out the complete expression and 

it appears that expression looks like something in this form: 

𝐶' =
0.074

𝑅𝑒#
,
.
−
1742
𝑅𝑒#

 

 For the range (5 x 10-5 < Re < 107). Average friction coefficient over the entire plate is 

then determined in case of such hybrid function where the presence of laminar boundary 

layer section cannot be neglected. In such case we use this kind of an expression.  



Now, again as I mentioned that these are derived or these are estimate these estimates the 

friction coefficient for the smooth plate. Now, for the rough surfaces this expression is 

modified something like this: 

𝐶' = H1.89 − 1.62𝑙𝑜𝑔
𝜖
𝐿N

8-..
 

 is the coefficient with the roughness factor which is epsilon here this roughness factor. 

So, rough surface and turbulence and turbulent flow condition. So, these are the 

hydrodynamic part. Now, coming to the heat transfer coefficient part for laminar flow it 

has been seen that the expression for local Nusselt number in case of laminar flow is:  

𝑁𝑢!,01$2%13 =
ℎ!𝑥
𝑘 = 0.332𝑅𝑒!+..𝑃𝑟

,
:														[𝑃𝑟 > 0.6] 

And the corresponding Nusselt number for turbulent is 0.0296.  

𝑁𝑢!,4536507%4 =
ℎ!𝑥
𝑘 = 0.0296𝑅𝑒!+.;𝑃𝑟

,
:														[0.6 ≤ 𝑃𝑟 ≤ 60] 

																																																																																								[5 × 10. ≤ 𝑅𝑒 ≤ 10<] 

 

So, what we see that hx is proportional to the 𝑅𝑒!+.. in case of laminar flow and in case of 

turbulent flow 𝑅𝑒!+.;.  

So, for laminar flow hx the local transfer coefficient the convection heat transfer coefficient 

that means varies with (x-0.5) . So, here we have (x0.5) when it is divided by another x it 

becomes proportional that hx is then proportional to x by this relation ℎ!~𝑥8+...  

So, which means the hx similar now we can see the analogy like in the case of 

hydrodynamic boundary layer the friction coefficient was infinite near the or at the leading 

edge where (x = 0). Similarly, the convection heat transfer coefficient local convection 

heat transfer coefficient is infinite at the leading edge. 

And then it takes a value or decreases along the length of the path and it decreases 

gradually with a slope of (-0.5). So, schematically if I try to show you the trend. So, if this 



is my x the plate plate length is like here this is the plate and the value of h and Cf together 

the flat velocity profile of the upstream velocity profile is there which is at 𝑇&&	𝑉& in order 

to clearly differentiate. 

Now, this what happens? We have seen that. So, here let us further introduce another 

region that instead of directly going from its have a laminar section and then there is a 

turbulent section and then we have a turbulent boundary layer. So, this is the part till which 

we have laminar and from here the turbulent boundary condition starts. So, till this part I 

have laminar this is transition and here we have turbulent boundary condition. 

Turbulent boundary layer and this is my say 𝛿! the thickness that varies along the x 

direction. Now, how the profile would look like h and Cf that is the heat convection heat 

transfer coefficient, convection coefficient and the friction factor it happens like this it is 

just a schematic. So, it decreases like this and then in the transition region it reaches a 

maximum value that is at the onset of turbulence and then again it decreases as with x with 

a different slope. 

This is for h and Cf both local friction and heat transfer coefficient for flow over flat plate 

that is isothermal the plate is isothermal. So, if we have understood this thing and then 

what happens? The natural question comes ok these are the local values. So, what about 

the average properties?  

So, say Nusselt number for laminar case now instead of local value we are integrating over 

the entire plate or till the length where this laminar boundary layer exist which is: 

𝑁𝑢01$2%13 =
ℎ𝐿
𝑘 = 0.664𝑅𝑒+..𝑃𝑟

,
: 

In case of the turbulent flow this takes a form: 

𝑁𝑢4536507%4 =
ℎ𝐿
𝑘 = 0.037𝑅𝑒+.;𝑃𝑟

,
: 

these are the average Nusselt number over the entire plate when the plate is having a 

uniform temperature and constant temperature.  

Similar to the process that we have followed in case of hybrid condition that if the plate is 

sufficiently long where both laminar and the turbulent boundary layer must be considered 



that laminar part cannot be neglected. In those case similar to this idea, we also integrate 

it over the entire domain in a piecewise function. 
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In that case again a form that appears Nusselt number: 

                                   𝑁𝑢4536507%4 =
=#
>
= (0.037𝑅𝑒+.; − 871)𝑃𝑟

#
$ 	

                                 [0.6 ≤ 𝑃𝑟 ≤ 60] 

																																																																																								[5 × 10. ≤ 𝑅𝑒 ≤ 10<] 

Now, this constant values that we have seen in both the equations would be different if the 

critical Reynolds number is different because this is specifically for the flat plate with a 

smooth surface and the plate is isothermal. 

Now, in case of liquid metals liquid metals why we are specifying liquid metals? Because 

liquid metals have very high thermal conductivity and Prandtl number in those cases are 

significantly lower than 0.6 values (Pr < 0.05).  So, what kind of relation then you could 

be applied here to find the heat transfer coefficient for such fluids? 

In those cases, it has been seen that the local Nusselt number follows this kind of a relation: 

𝑁𝑢# = 0.565(𝑅𝑒. 𝑃𝑟)
,
- 



 because in those cases it has very small Prandtl number. So, the thermal boundary layer 

develops much faster than the hydrodynamic or the velocity boundary layer. 

So, if we assume that the velocity in the thermal boundary layer is constant that is of the 

free stream value then we solve the energy equation and find this expression. Now, there 

these are if you look at this each expression has their limitation or the operating range in 

terms of the Reynolds number, Prandtl number etcetera. Now, the point is it is desirable to 

have a generic expression that applies for all the fluids all the conditions. 

Now, those are critical those are at an advanced stage and based on the curve fitting 

phenomena; that means they do several experiments with different fluids they find the best 

feed condition or the best feed curve and propose some relation. So, those things we need 

not remember those things are there in the reference book textbook whenever we need for 

design purpose we go into that reference or particularly in that topic and we choose the 

relevant expression to find out the value in such cases. 

But these expressions within this operating limit they fairly do well in this case. The other 

thing that can happen in case of the thermal boundary layer , we have some unheated 

portion at the beginning. So, this 𝜉 length that we have is unheated portion. So, velocity 

boundary layer will develop from here, but the thermal boundary layer will develop from 

the where the temperature is different in such way because this is the Ts, we have the free 

stream values.  

Now, in such cases so, if we have a flat plate whose heated section is maintained at a 

constant temperature from a distance (x = 𝜉). Now, in those cases the Nusselt number for 

both laminar and turbulent they also have a different just correction that we have seen from 

the earlier cases. So, in those cases this is what happens? 

𝑁𝑢! =
𝑁𝑢!,?@+	

X1 − DH𝜉𝑥NE

:
A
Y

,
:
 



=
0.332𝑅𝑒!+..𝑃𝑟

,
:

X1 − DH𝜉𝑥NE

:
A
Y

,
:
 

Above equation valid for the laminar case. 

 For the turbulent case similarly, the similar expression is there, but the denominator 

changes: 

𝑁𝑢! =
𝑁𝑢!,?@+	

X1 − DH𝜉𝑥NE

:
A
Y

,
:
 

=
0.0296𝑅𝑒!+.;𝑃𝑟

,
:

X1 − DH𝜉𝑥NE

B
,+
Y

,
B

 

Above equation is valid for the turbulent part. Because at (𝜉 = 0) this eventually both the 

relations falls back to our previous expressions. The other part the final part in this lecture 

is that. So, this all the things we are talking about Ts is constant the temperature of the 

surface is constant. 

When the flat plate is not having a constant surface temperature, but we have uniform or 

say constant uniform heat flux condition. In those case the Nusselt number relation is for 

laminar flow: 

𝑁𝑢! = 0.453𝑅𝑒+..𝑃𝑟
;
: 

𝑁𝑢! = 0.0308𝑅𝑒+.;𝑃𝑟
,
: 

 



Second equation valid for turbulent flow. This is when we have uniform heat flux condition 

instead of a uniform temperature. So, what we see in this lecture is that the value of C, m 

and n from the generic expression. 

As I mentioned these are system dependent as well as the flow condition dependent. 

Depending on how the boundary conditions what is the boundary condition or how the 

flow operating condition these parameters changes, but the format remains almost similar. 

So, with this concept I stop here there are several things you have to remember, there are 

several expressions that I have not mentioned here need not be because those can be 

referred as and when required. So, we will see one or two problems in the next class related 

to utilization of these expressions.  

Till then thank you for your attention. 


