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Hello and welcome back once again with another lecture on Transient Heat Conduction in 

NPTEL online certification course that is on Chemical Engineering Fluid Dynamics and 

Heat Transfer. In the last two classes that we have discussed regarding the transient heat 

conduction. 

The first we started with a general understanding of transient heat conduction and the 

lumped capacitance method. Why is it popular? The reason for its popularity was its 

simplicity, but then at the same time its validity has to be assessed that till how much or 

what is the logic behind that. 

So, we have understood that logic as well. Now, the point is that when that is not valid 

when the Biot number is no more less than 0.1; that means, there is a spatial variation 

which is significant. And if we use lumped capacitance method it would give us inaccurate 

result. Now, in those cases we can always go for the analytical solutions of the heat 

equations that we have seen earlier. 

In all three direction dimensions we have seen the heat equation at the very beginning of 

the conduction where we had the transient term all the terms were there in three dimension. 

There was heat generation term, there was transient term. So, that is complicated and each 

of their solution that involves appropriate boundary condition.  

Because we had restricted our discussion till this point is for the one dimension. And in 

fact, we will continue with the one dimension for its simplicity, but these ideas can be 

easily extrapolated to multiple direction dimension. So, this in the case of spatial 

distribution along with temporal distribution we have to understand some methods that are 

numerically in nature along because analytical solutions are not trivial in those cases. 

It is there in several text books standard state book you can find out the solution of the heat 

equation with appropriate boundary condition, but those standard formats are given for a 

set of boundary conditions that can be there. Now, what I will show you here we will 



demonstrate a numerical method that is called the finite difference method many of you 

have already been through because of your mathematics classes. 
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So, here we use a term called the discretization. We call the discretization. So, 

discretization essentially means converting partial differential equation to a set of algebraic 

equation which is easier to solve.  

So, for example, in two dimension the heat equation that we have seen a full-fledged heat 

equation without any heat generation we can write as: 

1
∝
𝜕𝑇
𝜕𝑡 =

𝜕!𝑇
𝜕𝑥! +

𝜕!𝑇
𝜕𝑦! 

 the problem can be complicated further by adding heat generation term we are say not 

looking into that. 

But even this equation solving analytically for various boundary conditions are difficult it 

can be done. And that actually necessitates the understanding of numerical methods. So, 

one of the methods I will describe it here very briefly , I hope that would be helpful for 

you. Now, in this case the process that will or the method that will use is called the finite 

difference method. Now, what happens in the numerical methods? We go step by step or 

we march step by step. 



So, for this what happens we usually divide the domain or the object the that we say the 

computational domain into several number of meshes or cells. The understanding becomes 

simpler if the cell sizes are uniform, but it necessarily that need not be the meshes can be 

non-uniform in that case the again the procedure becomes convoluted. So, consider there 

are the object shape is such that it can be divided into small equally spaced small-small 

pieces or the meshes. 

Now, what we will write, we will write the governing equations or we will discretize this 

partial differential equation for each of these cells as we go or as we march in direction as 

with time. So, when we jump from initial time to the final time in numerical process, we 

do not jump directly from the starting point to the end point we go in small steps. So, the 

solution accuracy improves or we get an improved solution accuracy. Now, the time 

interval total time is then divided in P number of small part or small time which is ∆𝑇. 

Now, in finite difference method what we do is we approximate the derivatives. Now, here 

we approximate since it is an approximation, I sign it accordingly and I write this as: 

𝜕𝑇
𝜕𝑡 ≈

𝑇",$%&' − 𝑇",$%

∆𝑇  

 This is an approximate form of this term where what we have the m and n the subscripts 

are designated to mention a coordinate m in the x-direction n in the y-direction. 

For example, if this is my m, n the next one I can consider as (m+1, n), (m + 2, n), (m + 3, 

n). Similarly, here if this is my (m, n) point this  becomes (n + 1, m) , (n + 2, m), (n + 3,m) 

like this. So, this designates the coordinates. And superscript P is the number of time step 

that we have considered. So, here if we see that this differential part, we have discretized 

in two terms where we actually if we are at point P. So, (P + 1) is a new time step where 

we are going where we are calculating the value of the temperature at that time step. That 

means, P is my previous time step. At previous time what was the temperature based on 

which I am going to the next step which is (P + 1) with the time increment of ∆𝑇. So, that 

means, we are going discretely from one point to the other point. 

So, this discretization helps in simplifying this partial derivative terms in order to get 

simple algebraic equations that we can solve by any iterative process. Because for each 

and every nodal point these are the points that we say the nodal points like this is for (m, 



n). Similarly, for (m + 1, n) , (m + 2, n) and (m, n + 1) , (m, n + 2) for each and every point 

we can write such expression. And we replace here and then find out a generic expression 

and then we iteratively solve that expression with time and with space. 

So, now these kinds of discretization in this case that we have used since it involves a next 

time step value, we say that this is the forward differencing approximation or forward 

difference approximation. So, forward difference approximation to the time derivative in 

this case. 

Similarly, we can use it for the spatial derivatives as well. So, how it would look like if I 

try if I write it here, if you follow each and every expression, I am pretty sure that you 

would understand that this is the first part. 

1
∝
𝑇",$%&' − 𝑇",$%

∆𝑇 =
𝑇"&',$% − 2𝑇",$% + 𝑇"(',$%

(∆𝑥!) +
𝑇",$&'% − 2𝑇",$% + 𝑇",$('%

(∆𝑦!)  

∆𝑥	&	∆𝑦	are grid size. When we march in x-direction it is (m + 1,n) , (m – 1,n) and the 

middle point (m, n). And here when we march in y-direction it is (m, n + 1), (m, n – 1) and 

(m, n) at a particular instead in time. So, this is forward differencing with respect to time 

and this we have done in case of as a central differencing in space. 

Now, if we simplify this and solve for this unknown because we need to know what would 

be the temperature at the next time step that is the goal. How the temperature profile 

changes with time. So, in that case what we write or if we simplify you would realize that 

the: 

𝑇",$%&' = 𝐹𝑜4𝑇"&',$% + 𝑇"(',$% + 𝑇",$&'% + 𝑇",$('% 5 + (1 − 4𝐹𝑜)𝑇",$%  

where again the Fourier number is the dimensionless time and it is given by: 

𝐹𝑜 =
𝛼∆𝑇
(∆𝑥!) 

 Again, the assumption here is that it is the cells are uniform that is (∆𝑥 = ∆𝑦). The cells 

are uniform in size. Once we do that what it shows this expression can further be written 

as: 

𝑇"%&' = 𝐹𝑜(𝑇"&',$% + 𝑇"(',$% ) + (1 − 2𝐹𝑜)𝑇"% 



 𝑇"%&' this expression now, we are simplifying instead of two dimension for one 

dimension. As let us say we if we restrict our discussion for the time being. Because now 

we can see this can be implemented for three dimension as well considering another 

variable another variable like m and n to define the coordinate. So, in this case what will 

happen for one dimensional case that is in the x direction if we consider. And particularly 

here since it is one dimension, we can erase this n terms because now we are not 

considering any n here it is simply all the m terms. 
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So, what it shows that the calculation of the next step temperature at any given point or at 

a particular point in x- direction only depends on the temperature of the previous time step. 

So, which means this calculation we can do individually or independently irrespective of 

the information of other nodal temperature because there is no involvement of any other 

points at any next time step. So, this involves the information of the previous time step 

temperature which is usually known because even if we start a solution the previous 

temperature is essentially the initial temperature. So, at (t=0) either we initialize the 

domain with a given temperature or we assume certain value. 

So, initial condition is usually known or if not known we guess it and we apply to all the 

nodal points. Based on that initial point we go for the next time step. And this next time 

step calculation does not involve any further complication, it involves only the point that 

is known previously.  



So, this kind of equations can be solved independently and that is why such formulation is 

called the explicit formulation of the problem. It is easier to implement and understand or 

to write because of this forward differencing discretization of the time derivative. It gives 

a solution because all unknown nodal temperature for the new time are determined 

specifically by the known nodal point temperatures of the previous time.  

So, quite naturally what we see that this solution of by this process of this differential 

equation now we have reduced it to one dimension, we can do it for any given boundary 

condition. Now, the point is that the accuracy of the solution improves if we find a desired 

Fourier number or a more accurate Fourier number and this actually dependent on the time 

step as well as the grid size. 

The time step and the grid size; that means, this spacing in space the spatial distance 

between the nodal points and in time. So, depending on the values of ∆𝑇	&	∆𝑥 we can find 

an optimum value of Fourier number for which the solution can give us our desired 

accuracy of the result. 

Because this explicit formulation is easy to implement, but it comes with a natural 

influence, that it is not stable. Because stability analysis would shows that in order to be 

this equation have a stable result this parameter the coefficient of the time of the previous 

time this parameter has to be positive. 
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So, which means in the case that we see the stability requirement of this solution is that: 

(1 − 2𝐹)) ≥ 0 

𝐹) ≤
1
2 

That means Fourier number has to be lesser than half in case of 1D transient heat 

conduction problem, if we try to find out its temporal variation. Similarly, for two 

dimensional cases the criteria: 

(1 − 4𝐹)) ≥ 0 

𝐹) ≤
1
4 

And by doing so by restricting the criteria what we have here? It must be less than (1/4). 

And this Fo that we have already seen: 

𝐹𝑜 =
𝛼∆𝑇
(∆𝑥!) ≤

1
2		(1𝐷) 

≤
1
4		(2𝐷) 

 

Above is the criteria to have a stable solution by explicit formulation. 

And accordingly, then you can choose the ∆𝑇	&	∆𝑥 value. That has to be because once you 

decrease the time step, once you decrease the time step the Fourier number decreases. You 

are in the safer region for a particular ∆𝑥. But if you march in time with a very large time 

step then the chances of Fourier number getting higher would be much larger. 

That in those in that case the chances of unstable simulation of the solutions would be 

much higher. And in this case in the case of 2D this value has to be restricted beyond 0.4 

or below 0.4. Now, for a particular time step if you want to have a higher time step or 

larger time step value accordingly you have to adjust the grid size the ∆𝑥 the division in 

this x-direction for the case of one dimensional case and for the case of two dimensional 

case ∆𝑥	&	∆𝑦 you need to adjust accordingly. 



So, that the value of Fourier number falls below to this one. So, this is the pros and cons 

of the explicit formulation and similarly there is implicit formulation. Implicit formulation 

in that case what happens? The time derivative is discretized in backward differencing. 

Using the backward differencing process. And if we do so let me write that expression 

then in that case for the implicit formulation where we need not worry about this stability 

criteria. The form it would look like is that: 

1
𝛼 <

𝑇",$%&' + 𝑇",$%

∆𝑇 = =
𝑇"&',$%&' − 2𝑇",$%&' + 𝑇"(',$%&'

(∆𝑥!) +
𝑇",$&'%&' − 2𝑇",$%&' + 𝑇",$('%&'

(∆𝑦!)  

Again, we can rearrange it and find an information for 𝑇",$%  a term that would consist of 

all the next time step values. 

So, the new temperature of point (m, n) node would depend on the new temperature of the 

adjacent nodes and that is why it is called the implicit formulation because you cannot 

solve it independently as we have done in case of explicit simulations with in marching 

order.  

So, essentially the crux of this formulation is that we take the governing equation which is 

the heat equation; we take appropriate boundary condition because in order to solve this 

problem or solve this expression what we need is initial condition. That means, one 

condition with respect to time it is first order derivative with respect to time and second 

order derivative with respect to space or x or y.  

So, we need one initial condition that is with respect to time and two boundary conditions 

in space that is at x is 0 this value at y is 0 that value or even at x is for two different x is 

we can have two different temperatures. 

If those are given with respect to x and y both for two different values, we can solve this 

analytically as well as numerically like we have shown here. Because those boundary 

points are then here and when we approximate the values because those boundary values 

are either at x is 0 and x is L or y is 0 and y is L. 

This boundary nodal points would come in these expressions when we calculate for the 

adjacent point. And the boundaries values would be incorporated in those cases. And that 

is how the solution or the boundary value propagates inside the domain. I hope this process 



is clear because it is with an understanding that you have done or you understand this finite 

difference method. 

I have given you a brief overview those who forgot I hope this would help you to remember 

or refresh your memory that what was the finite difference method and how we can apply 

it and what is discretization. So, with this we are covering this conduction part in this 

course in a very compact manner. 

In the next week we will see convection or in the next class we will see that we start with 

the concept of convection mode of heat transfer. Till then I hope that you would rehearse 

this part with a given assignments and I hope it would help you to clear your understanding 

or whatever the concept you wanted to have to be cleared. I hope that would be fine with 

you. With this I thank you for your attention and we will see you in the next class. 


