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Boundary Layer Analysis 6: Momentum Integral Method 02 

 

So, welcome back. In today's class we will start discussing about the Momentum Integral 

Method. Here are the expressions for the boundary layer displacement thickness and the 

momentum thickness. 

Boundary layer displacement thickness,𝛿∗ = ∫ (1 −
𝑢

𝑢∞
) 𝑑𝑦

∞

0
 

Boundary layer momentum thickness, 𝜃 = 𝛿∗∗ = ∫
𝑢

𝑢∞
(1 −

𝑢

𝑢∞
) 𝑑𝑦

∞

0
  

𝐻 =
𝛿∗

𝜃
= 𝑆ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑙𝑎𝑦𝑒𝑟 𝑜𝑟 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

Momentum integral method: 

(𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
) = 𝛾 (

𝜕2𝑢

𝜕𝑦2
) 

Integrate the above equation over the thickness of boundary layer  

∫ (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
)

𝛿

0

 𝑑𝑦 = ∫ 𝛾 (
𝜕2𝑢

𝜕𝑦2
)

𝛿

0

𝑑𝑦 

∫ 𝑢
𝜕𝑢

𝜕𝑥
𝑑𝑦 + ∫ 𝑣

𝜕𝑢

𝜕𝑦

𝛿

0

𝑑𝑦 =
𝛿

0

∫ 𝛾 (
𝜕2𝑢

𝜕𝑦2
)

𝛿

0

𝑑𝑦 

First, we look into the second term of the L.H.S of the equation, 

We know:                             
𝜕

𝜕𝑦
(𝑢𝑣) = 𝑢

𝜕𝑣

𝜕𝑦
+ 𝑣

𝜕𝑢

𝜕𝑦
 

Therefore, the second term of the L.H.S becomes, 

∫ 𝑣
𝜕𝑢

𝜕𝑦

𝛿

0

𝑑𝑦 = [∫ (
𝜕

𝜕𝑦
(𝑢𝑣) − 𝑢

𝜕𝑣

𝜕𝑦
)

𝛿

0

] 𝑑𝑦 

 



 

= ∫ (
𝜕

𝜕𝑦
(𝑢𝑣)𝑑𝑦) − ∫ (𝑢

𝜕𝑣

𝜕𝑦
𝑑𝑦)

𝛿

0

𝛿

0

 

 

And we know that from continuity:                 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 →

𝜕𝑢

𝜕𝑥
= −

𝜕𝑣

𝜕𝑦
 

Then we can write, 

∫ 𝑣
𝜕𝑢

𝜕𝑦

𝛿

0

𝑑𝑦 = [(𝑢𝑣)]|0
𝛿 + ∫ 𝑢 (

𝜕𝑢

𝜕𝑥
) 𝑑𝑦

𝛿

0

 

= (𝑢𝑣)|𝛿 − (𝑢𝑣)|0 + ∫ 𝑢 (
𝜕𝑢

𝜕𝑥
) 𝑑𝑦

𝛿

0

 

= 𝑢∞𝑣𝛿 − 𝑢0𝑣0 + ∫ 𝑢 (
𝜕𝑢

𝜕𝑥
) 𝑑𝑦

𝛿

0

 

we know 𝑢0 = 𝑣0 = 0,Therefore second term on L.H.S, 

∫ 𝑣
𝜕𝑢

𝜕𝑦

𝛿

0

𝑑𝑦 = 𝑢∞𝑣𝛿 + ∫ 𝑢 (
𝜕𝑢

𝜕𝑥
) 𝑑𝑦

𝛿

0

 

𝑣𝛿  is the total flow due to the y component velocity. We know that based on order of 

magnitude analysis that flow is 2D inside the boundary layer, that means v is nonzero. 

And, in the context of discussing the boundary layer displacement thickness we understood 

that because of the boundary layer separation at different x certain amount of fluid is not 

flowing. It was supposed to flow being potential or had there been no boundary layer 

formation, but that is not flowing because of the boundary layer separation. So, these fluids 

that are b not flowing through this area has been retarded out and they actually lead to the 

y component velocity. And y component velocity at every level has two components, one 

is the flow that it is inheriting from the lower level and the second component is the 

additional amount of flow that is getting augmented because of the retardation at that 

particular level. So, basically the summation of the cumulative sum of all these mass that 

is not flowing or the fluid that eventually drains out of the boundary layer and joins the 

bulk flow through this 𝑣𝛿 . all the fluid that are not flowing at different levels actually flow 

out of the boundary layer through this 𝑣𝛿 . So, whatever is the retardation due to the 

 



formation of the boundary layer that flow, whatever is the fluid that is unable to flow 

through that particular level because of the boundary layer formation that eventually joins 

that y component velocity and eventually drains out through the edge of the boundary layer 

that is 𝑣𝛿.so we can write 𝑣𝛿 = ∫ (
𝜕𝑣

𝜕𝑦
) 𝑑𝑦

𝛿

0
.  

 

Then the L.H.S of the equation can be written as, 

∫ 𝑣
𝜕𝑢

𝜕𝑦

𝛿

0

𝑑𝑦 = 𝑢∞ ∫ (
𝜕𝑣

𝜕𝑦
) 𝑑𝑦

𝛿

0

+ ∫ 𝑢 (
𝜕𝑢

𝜕𝑥
) 𝑑𝑦

𝛿

0

 

= −𝑢∞ ∫ (
𝜕𝑢

𝜕𝑥
) 𝑑𝑦

𝛿

0

+ ∫ 𝑢 (
𝜕𝑢

𝜕𝑥
) 𝑑𝑦

𝛿

0

 

The L.H.S of the integrated equation becomes, 

∫ 𝑢
𝜕𝑢

𝜕𝑥
𝑑𝑦 + ∫ 𝑣

𝜕𝑢

𝜕𝑦

𝛿

0

𝑑𝑦 = ∫ 𝑢
𝜕𝑢

𝜕𝑥
𝑑𝑦

𝛿

0

− 𝑢∞ ∫ (
𝜕𝑢

𝜕𝑥
) 𝑑𝑦

𝛿

0

+ ∫ 𝑢 (
𝜕𝑢

𝜕𝑥
) 𝑑𝑦

𝛿

0

𝛿

0

 

= 2 ∫ 𝑢 (
𝜕𝑢

𝜕𝑥
) 𝑑𝑦

𝛿

0

−𝑢∞ ∫ (
𝜕𝑢

𝜕𝑥
) 𝑑𝑦

𝛿

0

 

= ∫
𝑑

𝑑𝑥
𝑢(𝑢 − 𝑢∞)𝑑𝑦

𝛿

0

 

= −𝑢∞
2 ∫

𝑑

𝑑𝑥
(

𝑢

𝑢∞
(1 −

𝑢

𝑢∞
)) 𝑑𝑦

𝛿

0

 

We know the relation for boundary layer momentum thickness, 𝜃 = ∫
𝑢

𝑢∞
(1 −

𝑢

𝑢∞
) 𝑑𝑦

∞

0
 , 

∫ 𝑢
𝜕𝑢

𝜕𝑥
𝑑𝑦 + ∫ 𝑣

𝜕𝑢

𝜕𝑦

𝛿

0

𝑑𝑦
𝛿

0

= −𝑢∞
2

𝑑𝜃

𝑑𝑥
 

 

We will look into the R.H.S of the equation, 

There is flow across the edge of the 

boundary layer and that means, since 

there is flow across the edge of the 

boundary, the edge of the boundary layer 

cannot be a streamline. 

 



∫ 𝛾 (
𝜕2𝑢

𝜕𝑦2
)

𝛿

0

𝑑𝑦 = [𝛾.
𝜕𝑢

𝜕𝑦
]

0

𝛿

= 𝛾.
𝜕𝑢

𝜕𝑦
|𝛿 − 𝛾.

𝜕𝑢

𝜕𝑦
|0 =

−𝜏𝑤

𝜌
 

Note: at the edge 𝑢 = 𝑢∞, 
𝜕𝑢

𝜕𝑦
|𝑦=𝛿 = 0:And we know that 𝜏𝑤 = 𝜇

𝜕𝑢

𝜕𝑦
 

By combining the L.H.S and R.H.S, 

−𝑢∞
2

𝑑𝜃

𝑑𝑥
=

−𝜏𝑤

𝜌
 

𝑑𝜃

𝑑𝑥
=

𝜏𝑤

𝜌𝑢∞
2
 

We have to evaluate 𝜃 ,for that we need to assume a velocity profile. In order to perform 

the momentum integral method, we have to assume a velocity profile. This is the    

limitation of the momentum integral method, though the method is often referred to as an 

approximate method. 

Karman-Pahlausen approximate method for solving the momentum integral equation 

We assume a polynomial velocity profile: 

𝑢

𝑢∞
= 𝑎0 + 𝑎1𝜂 + 𝑎2𝜂2 + 𝑎3𝜂3 

And we know that 𝜂 =
𝑦

𝛿
 

To evaluate the constant, we will use the boundary conditions: 

1.At 𝑦 = 0, 𝑢 = 0(𝑑𝑢𝑒 𝑡𝑜 𝑛𝑜 𝑠𝑙𝑖𝑝 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) →At 𝜂 = 0,
𝑢

𝑢∞
= 0 

2.At 𝑦 = 0,
𝜕2𝑢

𝜕𝑦2
= 0(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤𝑎𝑙𝑙 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑤𝑎𝑙𝑙 →At 𝜂 = 0,

𝜕2

𝜕𝜂2
(

𝑢

𝑢∞
) 0 

3.At 𝑦 = 𝛿, 𝑢 = 𝑢∞ →At 𝜂 = 1, (
𝑢

𝑢∞
) = 1 

4. At 𝑦 = 𝛿,
𝜕𝑢

𝜕𝑦
= 0(there is no variation of velocity along y 𝑎𝑡 the edge. Therefore, 

at 𝜂 = 1,
𝜕

𝜕𝜂
(

𝑢

𝑢∞
) = 0 



By using the above boundary conditions, we will get 

𝑎0 = 0, 𝑎2 = 0 

𝑎1 + 3𝑎3 = 0 

𝑎1 + 𝑎3 = 1 

By solving them, we will get the velocity profile as  

𝑢

𝑢∞
=

3

2
𝜂 −

1

2
𝜂3 

This is the velocity profile. 

Thank you. 


