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Lecture - 19 

Boundary Layer Analysis 4: Blasius Solution 2 

 

So, welcome back to our 19th lecture and we were discussing the Blasius Solution or 

essentially, how to solve the Boundary Layer Equation.  

From Falkner skan transformation, we got that  
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Based on stream function, we can write that 
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If we differentiate u w.r.t to x, 
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If we differentiate u w.r.t to y, 
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Note: 𝑓 𝑎𝑛𝑑 𝑓(𝜂) 𝑎𝑟𝑒 𝑠𝑎𝑚𝑒. 

If we differentiate 
𝜕𝑢
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  w.r.t to y again, 
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From the boundary layer equation, 
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If we substitute for u and v in term of 𝑓 𝑎𝑛𝑑 𝜂,we get the L.H.S term of the above equation: 
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R.H.S term of the above equation: 
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If we substitute these terms in the boundary layer equation, finally we get 
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Now, this is a third order ordinary differential equation. Since, it is third order equation, 

we need three boundary conditions, and the boundary conditions are: 

1.At  𝜂 = 0, 𝑓 = 0: 𝜂 = (
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𝛿
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This can be split up to 3 coupled first order ODE. And the solution of the above equation 

by numerical approach, we will get: 
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One of the utilities of the above equation is to find out the wall shear stress, 
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We will discuss bout this in detail in the next lecture. 

Thank you very much. 


