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Exact Solution 4 

 

Welcome back. 

Flow through a tube/Pipe 

Pressure driven flow: 

Consider a pipe of uniform cross-sectional area with the length L and the radius R with the 

cylindrical coordinate system and listed below are the assumptions that we are going to 

consider resolving the problem. 

 

 

Assumptions: 

1.Incompressible fluid: 𝜌 ≠ 𝜌(𝑟, 𝜃, 𝑧, 𝑡) 

2.Steady state: All the time derivatives will be zero:
𝜕

𝜕𝑡
( ) = 0 

3.Fully developed flow: (
𝜕𝑣𝑧

𝜕𝑧
) = 0  :That means the flow in the z direction is fully 

developed. So, 𝑣𝑧  does not change as a function of z. 

4.system is 𝜃 symmetric:
𝜕

𝜕𝜃
( ) = 0:There is no variation in 𝜃 direction. 

5.No slip condition is valid:  At, r=R: 𝑣𝑧 = 0 and 𝑣𝜃=0 for all z and 𝜃. 

 



6.Solid impermeable wall: at, r=R; 𝑣𝑟 =0 for all  𝜃  and z 

Here we are taking cylindrical coordinate system to solve the problem r, 𝜃,z and the 

component of velocities are in these three directions are 𝑣𝑟 , 𝑣𝜃 , 𝑣𝑧 respectively. So, how 

does the liquid flow through the pipe? The flow is a pressure driven flow. 

Next, we will consider the governing equation in cylindrical coordinate system. 

Continuity equation in r- 𝜃- z system 

𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟𝑣𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝜌𝑣𝜃) +

𝜕

𝜕𝑧
(𝜌𝑣𝑧) = 0 

Navier ‘s equation: 

r- component equation: 

𝜌 (
𝜕𝑣𝑟

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝑟

𝜕𝜃
−

𝑣𝜃

𝑟
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) =  −

𝜕𝑃

𝜕𝑟
+ 𝜌𝑔𝑟 − (

1

𝑟

𝜕(𝑟𝜏𝑟𝑟)

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
−

𝜏𝜃𝜃

𝑟
+

𝜕𝜏𝑟𝑧

𝜕𝑧
) 

𝜃- component equation 

𝜌 (
𝜕𝑣𝜃

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝜃

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝜃

𝜕𝜃
+

𝑣𝑟𝑣𝜃

𝑟
+ 𝑣𝑧

𝜕𝑣𝜃

𝜕𝑧
) =  −

1

𝑟

𝜕𝑝

𝜕𝜃
+ 𝜌𝑔𝜃 − (

1

𝑟2

𝜕(𝑟2𝜏𝑟𝜃)

𝜕𝑟
+

1

𝑟

𝜕𝜏𝜃𝜃

𝜕𝜃
+

𝜕𝜏𝜃𝑧

𝜕𝑧
) 

𝑧- component equation 

𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝑧

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) =  −

𝜕𝑝

𝜕𝑧
+ 𝜌𝑔𝑧 − (

1

𝑟

𝜕(𝑟𝜏𝑟𝑧)

𝜕𝑟
+

1

𝑟

𝜕𝜏𝜃𝑧

𝜕𝜃
+

𝜕𝜏𝑧𝑧

𝜕𝑧
) 

 

So, we will start the analysis of continuity equation, 

Continuity equation in r- 𝜃- z system 

𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟𝑣𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝜌𝑣𝜃) +

𝜕

𝜕𝑧
(𝜌𝑣𝑧) = 0 



Based on the assumption that incompressible fluid, the first term (
𝜕𝜌

𝜕𝑡
) will be zero. As the 

system being 𝜃 symmetric, this term 
𝜕

𝜕𝜃
(𝜌𝑣𝜃) also will be zero. Since the flow is fully 

developed flow, we can say that 
𝜕

𝜕𝑧
(𝜌𝑣𝑧) = 0. 

The term remaining in the continuity equation after simplification, 

1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟𝑣𝑟) = 0; 

Partial differential equation becomes ordinary differential equation, 

 
1

𝑟

𝑑(𝜌𝑟𝑣𝑟)

𝑑𝑟
= 0; 

Upon integration, (𝑟𝑣𝑟) = 𝐶1  

From the boundary conditions: for r=R, 𝑣𝑟 = 0 

(𝑅𝑣𝑟) = 0 = 𝐶1 

𝒗𝒓 = 𝟎  for the flow field. 

Next, we will start analyzing the r component balance equation. 

(
𝜕𝑣𝑟

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝑟

𝜕𝜃
−

𝑣𝜃

𝑟
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) =  −

𝜕𝑝

𝜕𝑟
+ 𝜌𝑔𝑟 − (

1

𝑟

𝜕(𝑟𝜏𝑟𝑟)

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
−

𝜏𝜃𝜃

𝑟
+

𝜕𝜏𝑟𝑧

𝜕𝑧
) 

As per assumption steady state system, first term (
𝜕𝑣𝑟

𝜕𝑡
) will be zero. And also, from the 

continuity analysis we got 𝑣𝑟 = 0,it makes the second term  𝑣𝑟
𝜕𝑣𝑟

𝜕𝑟
 zero. Since the system 

is 𝜃 symmetric, the term  
𝑣𝜃

𝑟

𝜕𝑣𝑟

𝜕𝜃
   will be zero. And there is no flow in the radial direction 

therefore, 
𝑣𝜃

𝑟
 will be zero. Because of the assumption fully developed flow the term 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
 

will be zero. Then all the terms on the L.H.S of the r component balance equation are zero. 

If we look at the R.H.S of the r component balance equation, the first term 
𝜕𝑃

𝜕𝑟
 will be non-

zero. 



we knew that  𝜏𝑟𝑟 = 𝑓 (
𝜕𝑣𝑟

𝜕𝑟
) ,Since 𝑣𝑟 = 0  the term 𝜏𝑟𝑟 = 0  and it makes the whole term 

1

𝑟

𝜕(𝑟𝜏𝑟𝑟)

𝜕𝑟
   as zero. Similarly, 𝜏𝜃𝜃 = 𝑓 (

𝜕𝑣𝜃

𝜕𝑟
) since we assume that system is 𝜃 symmetric 

𝑣𝜃=0: 𝜏𝜃𝜃 = 𝑓 (
𝜕𝑣𝜃

𝜕𝑟
) = 0 →

𝜏𝜃𝜃

𝑟
= 0.and also the term  

𝜕𝜏𝑟𝜃

𝜕𝜃
  will be zero due to the 𝜃 

symmetry. 

In this, the term   
𝜕𝜏𝑟𝑧

𝜕𝑧
=

𝜕

𝜕𝑧
(𝑓 (

𝜕𝑣𝑟

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑟
)): 

𝜕𝑣𝑟

𝜕𝑧
= 0 due to 𝑣𝑟=0 :then the term finally 

becomes  
𝜕

𝜕𝑧
(𝑓 (

𝜕𝑣𝑧

𝜕𝑟
)) and the that term can be written as  

𝜕

𝜕𝑧
(𝑓 (

𝜕𝑣𝑧

𝜕𝑟
)) = 𝑓 (

𝜕

𝜕𝑟
 (

𝜕𝑣𝑧

𝜕𝑧
))  and we know that this term will get to zero due to the fully 

developed flow condition. 

And we are taking the direction of gravity in the downwards direction, therefore the term, 

𝑔𝑟 = 𝑔. 

the r component balance equation becomes, 

−
𝝏𝒑

𝝏𝒓
+ 𝝆𝒈 = 𝟎 

We are considering the non-gravitational pressure, 

𝑃 = 𝑝 − 𝜌𝑔𝑟 

Upon differentiation:  
𝜕𝑃

𝜕𝑟
=

𝜕𝑝

𝜕𝑟
− 𝜌𝑔: If we combine the equations, we will get 

𝜕𝑃

𝜕𝑟
= 0 

And we can say that 
𝜕𝑃

𝜕𝜃
=

𝜕𝑝

𝜕𝜃
  and 

𝜕𝑃

𝜕𝑧
=

𝜕𝑝

𝜕𝑧
   

Since 
𝜕𝑃

𝜕𝑟
= 0, we can write as 𝑃 ≠ 𝑓(𝑟) and due to 𝜃 symmetric, 

𝜕𝑃

𝜕𝜃
= 0: 𝑃 ≠ 𝑓(𝜃) 

It shows that 𝑷 = 𝒇(𝒛) only. 

From the  𝜃 component balance equation, 

𝜌 (
𝜕𝑣𝜃

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝜃

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝜃

𝜕𝜃
+

𝑣𝑟𝑣𝜃

𝑟
+ 𝑣𝑧

𝜕𝑣𝜃

𝜕𝑧
) =  −

1

𝑟

𝜕𝑝

𝜕𝜃
+ 𝜌𝑔𝜃 − (

1

𝑟2

𝜕(𝑟2𝜏𝑟𝜃)

𝜕𝑟
+

1

𝑟

𝜕𝜏𝜃𝜃

𝜕𝜃
+

𝜕𝜏𝜃𝑧

𝜕𝑧
) 



Similar to r component balance equation, the term 
𝜕𝑣𝜃

𝜕𝑡
 will be zero due to the steady state 

assumption. Since 𝑣𝑟 = 0,the term 𝑣𝑟
𝜕𝑣𝜃

𝜕𝑟
  and the term 

𝑣𝑟𝑣𝜃

𝑟
 becomes zero. Due to the 𝜃 

symmetry, the term 
𝑣𝜃

𝑟

𝜕𝑣𝜃

𝜕𝜃
  and the term 𝑣𝑧

𝜕𝑣𝜃

𝜕𝑧
 will be zero. 

If we look into R.H.S of the equation of the 𝜃 component balance equation, 

As per the definition,  𝜏𝑟𝜃 = 𝑓 (
𝜕𝑣𝑟

𝜕𝜃
+

𝜕𝑣𝜃

𝜕𝑟
) 

Since 𝑣𝑟 and 𝑣𝜃 are zero, this term 
1

𝑟2

𝜕(𝑟2𝜏𝑟𝜃)

𝜕𝑟
 also become zero. Since the system is 𝜃 

symmetric the term 
1

𝑟

𝜕𝜏𝜃𝜃

𝜕𝜃
 will be zero. Similar to 𝜏𝑟𝜃 , 𝜏𝜃𝑧 = 𝑓 (

𝜕𝑣𝜃

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝜃
) and this term 

also becomes zero. And g does not act in the direction of 𝜃.therefore, 𝑔𝜃 = 0. 

The only one term remaining in the 𝜃 component balance equation, 

1

𝑟

𝜕𝑝

𝜕𝜃
= 0: 

𝝏𝑷

𝝏𝜽
= 𝟎 

If we look into the 𝑧- component equation 

𝜌 (
𝜕𝑣𝑧

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝑧

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) =  −

𝜕𝑝

𝜕𝑧
+ 𝜌𝑔𝑧 − (

1

𝑟

𝜕(𝑟𝜏𝑟𝑧)

𝜕𝑟
+

1

𝑟

𝜕𝜏𝜃𝑧

𝜕𝜃
+

𝜕𝜏𝑧𝑧

𝜕𝑧
) 

the term 
𝜕𝑣𝑧

𝜕𝑡
 will be zero due to the steady state assumption. Since 𝑣𝑟 = 0,the term 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
 

will be zero. The term  
𝑣𝜃

𝑟

𝜕𝑣𝑧

𝜕𝜃
 also zero due to the 𝜃 symmetry. The last term of the L.H. S 

of the z component balance equation  𝑣𝑧
𝜕𝑣𝑧

𝜕𝑧
  is zero due to the fully developed flow. If we 

consider the R.H.S of the equation, 

The term 
1

𝑟

𝜕𝜏𝜃𝑧

𝜕𝜃
= 0 due to the 𝜃 symmetry. And we knew that 𝜏𝑧𝑧 = 𝑓 (

𝜕𝑣𝑧

𝜕𝑧
) and this term 

will be zero due to the fully developed flow assumption. The term, 𝜌𝑔𝑧  also zero, because 

g does not act in the direction of z. 

From the 𝑧- component balance equation we will get, 



−
𝜕𝑝

𝜕𝑧
−

1

𝑟

𝜕(𝑟𝜏𝑟𝑧)

𝜕𝑟
= 0 

−
𝝏𝑷

𝝏𝒛
=

𝟏

𝒓

𝒅(𝒓𝝉𝒓𝒛)

𝒅𝒓
 

𝑑𝑃

𝑑𝑧
  is the pressure drop along the length of the tube. And if the volumetric flow rate is 

constant and diameter of the tube is constant then at every section 
𝑑𝑃

𝑑𝑧
  is actually constant. 

𝑑𝑃

𝑑𝑧
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡=𝐶2 

Upon integration,  ∫ 𝑑𝑃
𝑃2

𝑃1
= 𝐶2 ∫ 𝑑𝑧

𝑍2

𝑍1
  

∆𝑃 = 𝐶2(𝑧2 − 𝑧1): 𝐶2 =
∆𝑃

𝐿
 

Negative sign actually shows that as you flow along the direction the pressure reduces. 

−
∆𝑃
𝐿

=
1

𝑟

𝑑(𝑟𝜏𝑟𝑧)

𝑑𝑟
 

Upon integration, 

𝑟𝜏𝑟𝑧 = (−
∆𝑃

𝐿
)

𝑟2

2
+ 𝐶3 

From the boundary condition, we know that velocity is going to be maximum at the center 

and shear stress is minimum, that means zero and at the center, r=0 shear stress will be 

zero. So the boundary conditions are, 

at r=0, 𝜏𝑟𝑧 = 0: 𝐶3 = 0 

Then the shear stress: 𝜏𝑟𝑧 = (−
∆𝑃

2𝐿
) 𝑟: that the shear stress profile is linear, and its value is 

linearly increases from 0 to the maximum value, 𝜏𝑤 = 𝜏𝑟𝑧|𝑟=𝑅
. 

Wall shear stress: 𝜏𝑤 = 𝜏𝑟𝑧|𝑟=𝑅
= (−

∆𝑃

2𝐿
) . 𝑅 

 



 

Velocity profile for the power law fluid: 

For a power law of fluid, the shear stress dependence in a tube flow is given as  

𝜏𝑟𝑧 = 𝑚 (−
𝑑𝑣𝑧

𝑑𝑟
)

𝑛

 

(−
𝑑𝑣𝑧

𝑑𝑟
) = [

𝑟

2𝑚
(

−∆𝑃

𝐿
)]

1
𝑛

 

Upon integration                   −𝑣𝑧 = (
−∆𝑃

2𝑚𝐿
)

1

𝑛
[

𝑟
𝑛+1

𝑛

𝑛+1

𝑛

] + 𝐶4 

To evaluate 𝐶4, Boundary conditions at r=R, 𝑣𝑧 = 0 →Then the 𝐶4 = − (
−∆𝑃

2𝑚𝐿
)

1

𝑛 𝑛

𝑛+1
[𝑅

𝑛+1

𝑛 ] 

𝑣𝑧 = (
−∆𝑃

2𝑚𝐿
)

1
𝑛 𝑛

𝑛 + 1
[𝑅

𝑛+1
𝑛 ] [1 − (

𝑟

𝑅
)

𝑛+1
𝑛

] 

In the case of Newtonian’s fluid:  𝑚 = 𝜇 and 𝑛 = 1 

Then the equation  

𝑣𝑧 = (
−∆𝑃

2𝜇𝐿
) 𝑅2 [1 − (

𝑟

𝑅
)

2

] 

From the above equation, it is clear that, when the Newtonian fluid passes through a tube, 

it will have a parabolic profile. The velocity profile equation for a Newtonian fluid is called 

the Hagen Poiseuille equation or Hagen Poiseuille flow. For shear thinning fluid,𝑛 > 1,it 

shows in the image.  

 



 

Volumetric flow rate 

𝑄 = ∫ 2𝜋𝑟. 𝑣𝑧 . 𝑑𝑟
𝑅

0

 

= ∫ 2𝜋𝑟 (
−∆𝑃

2𝑚𝐿
)

1
𝑛 𝑛

𝑛 + 1
[𝑅

𝑛+1
𝑛 ] [1 − (

𝑟

𝑅
)

𝑛+1
𝑛

] 𝑑𝑟
𝑅

0

 

At r=0, Velocity will be maximum: 𝑣𝑧𝑚𝑎𝑥 = 𝑣𝑧|𝑟=0 

𝑣𝑧𝑚𝑎𝑥 = (
−∆𝑃

2𝑚𝐿
)

1
𝑛 𝑛

𝑛 + 1
[𝑅

𝑛+1
𝑛 ] 

Then the volumetric flow rate will be  

𝑄 = ∫ 2𝜋𝑟 𝑣𝑧𝑚𝑎𝑥 [1 − (
𝑟

𝑅
)

𝑛+1
𝑛

] 𝑑𝑟
𝑅

0

 

𝑄 =  𝜋 𝑣𝑧𝑚𝑎𝑥 (
𝑛 + 1

3𝑛 + 1
) 𝑅2 

 

 Next class we will discuss about boundary layer concept.Thank you. 

 


