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Exact Solution 2 

 

So, welcome back to the exact solutions. So, we started to talk about the possible Exact 

Solution of the Navier-Stokes equation or more critically the Navier’s equation for a fluid 

flowing over an inclined plane. 

x component momentum balance equation: 

 we will start with x component momentum balance equation. 
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Since the flow is steady state flow, 
𝜕𝑢

𝜕𝑡
= 0 and also the flow is full developed flow the 

term 𝑢
𝜕𝑢

𝜕𝑥
  will be zero. And due to v=0 and w=0, the other two terms on the L.H. S of the 

equation becomes zero. Collectively all the terms on the L.H.S of the x component 

momentum balance equation will be zero. If we are considering the R.H.S of the equation, 
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Then upon simplification the z component balance equation becomes  

𝜕𝜏𝑥𝑦

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ 𝜌𝑔𝑥 

Due to the orientation of the coordinate axis from the image, the value of 𝑔𝑥 = −𝑔 sin 𝜃 

Therefore, upon simplification the eqn becomes, 



 

 

𝜕𝜏𝑥𝑦

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
− 𝑔 sin 𝜃 

Note: Fully developed flow does not mean that all variations in the x direction will be zero. 

Only the velocity in the x direction will be zero. Therefore, the pressure gradient will not 

be zero in case of a pressure driven flow. 

For y component momentum balance equation, we got.  

𝜕𝑝

𝜕𝑦
= −𝜌𝑔 cos 𝜃 

We know that 𝑝 = 𝑝(𝑥, 𝑦, 𝑧, 𝑡) 

And from the steady state and incompressible flow assumptions 𝑝 ≠ 𝑓(𝑡) and also from 

the z component momentum balance equation 
𝜕𝑝

𝜕𝑧
= 0, 

Then we can say that  𝑃 = 𝑃(𝑥, 𝑦)  : 

At any particular x, 𝑃(𝑥) = pressure at a particular x becomes function of y only. 

x=x1: 𝑃(𝑥1) = 𝑓(𝑦)only  

then the above partial differential equation can be written as  

𝑑𝑃(𝑥)

𝑑𝑦
= −𝜌𝑔 cos 𝜃 

If we integrate the above equation we will get, 

𝑃(𝑥) = −𝜌𝑔 cos 𝜃𝑦 + 𝐶1 

By using the Boundary conditions 

For y=H, 𝑃(𝑥) = 𝑃𝑎𝑡𝑚 :        𝑃𝑎𝑡𝑚 + 𝜌𝑔 cos 𝜃𝐻 = 𝐶1  

Therefore               𝑃(𝑥) = 𝑃𝑎𝑡𝑚 + 𝜌𝑔 cos 𝜃(𝐻 − 𝑦)  

If we at (𝑥1𝑦1):            𝑃(𝑥1) = 𝑃𝑎𝑡𝑚 + 𝜌𝑔 cos 𝜃(𝐻 − 𝑦1)  

If we at (𝑥2𝑦1):            𝑃(𝑥2) = 𝑃𝑎𝑡𝑚 + 𝜌𝑔 cos 𝜃(𝐻 − 𝑦1) 

 



 

 

Therefore ∆𝑃(𝑥)|𝑦1
= 0: that means ∆𝑃(𝑥) for all y=0 

For all values of y:        
𝑑𝑃(𝑥)

𝑑𝑥
= 0 →

𝜕𝑃

𝜕𝑥
= 𝑂 that means 𝑃 ≠ 𝑓(𝑥)  ; P=f(y) only. 

So, the equation for the pressure distribution in the flow over the inclined plane can be 

written as                 𝑃 = 𝑃𝑎𝑡𝑚 + 𝜌𝑔 cos 𝜃 (𝐻 − 𝑦) 

From the equation, it is clear that as the depth decreases the pressure increases. So, this 

implies that the pressure distribution is purely hydrostatic.  

At the surface of the liquid layer, y=H: 𝑃 = 𝑃𝑎𝑡𝑚 

At the surface of the plane, i.e., y=0: 𝑃 = 𝑃𝑎𝑡𝑚 + 𝜌𝑔 cos 𝜃 𝐻 

By substituting 
𝜕𝑃

𝜕𝑥
= 0 to the simplified x component equation  

𝑑𝜏𝑥𝑦

𝑑𝑦
= −𝜌𝑔 sin 𝜃 

𝜏𝑥𝑦 = −𝜌𝑔 sin 𝜃𝑦 + 𝐶2 

Boundary Conditions to evaluate 𝐶2 : Shear stress at the free surface is 0. 

at 𝑦 = 𝐻, 𝜏𝑥𝑦 = 0 → 𝐶2 = 𝜌𝑔 sin 𝜃 𝐻 

Then the shear stress distribution equation becomes, 

𝜏𝑥𝑦 = 𝜌𝑔 sin 𝜃(𝐻 − 𝑦) 

Linear shear stress distribution within the flow of fluid over an inclined plane. 

 

And at y=0,𝜏𝑥𝑦 = 𝜌𝑔 sin 𝜃𝐻  Shear stress will be maximum at the surface of the wall and 

at y=H, 𝜏𝑥𝑦 = 𝜌𝑔 sin 𝜃(𝐻 − 𝑦) = 0 ,shear stress will be zero at the free surface. Shear 

stress profile is linear in this example. This expression of shear stress of a fluid flowing 



 

 

over an inclined plane is independent of the nature of the fluid. So, this shear stress profile 

is valid for all types of fluids. 

For Newtonian fluid:     𝜏𝑦𝑥 = 𝜇
𝑑𝑢

𝑑𝑦
 :From this expression you will get the velocity profile. 

For in the case of power law fluid,:     𝜏𝑦𝑥 = 𝑚 (
𝑑𝑢

𝑑𝑦
)

𝑛

 

If we substitute this equation in the shear stress distribution equation  

𝜏𝑦𝑥 = 𝑚 (
𝑑𝑢

𝑑𝑦
)

𝑛

= 𝜌𝑔 sin 𝜃(𝐻 − 𝑦) 

(
𝑑𝑢

𝑑𝑦
) = [

𝜌𝑔

𝑚
sin 𝜃(𝐻 − 𝑦)]

1
𝑛
 

If we are integrating the above equation, 

𝑢 = (
𝜌𝑔 sin 𝜃

𝑚
)

1
𝑛

∫ (𝐻 − 𝑦)
1
𝑛  𝑑𝑦

𝐻

0

 

Let’s assume 𝐻 − 𝑦 = 𝜂: 𝑑𝑦 = −𝑑𝜂 to perform the integral if we substitute this in above 

equation. Then the equation becomes, 

𝑢 = − (
𝜌𝑔 sin 𝜃

𝑚
)

1
𝑛

∫ (𝜂)
1
𝑛  𝑑𝜂

𝐻

0

 

Upon integration the equation becomes, 

𝑢 = − (
𝑛

𝑛 + 1
) (

𝜌𝑔 sin 𝜃

𝑚
)

1
𝑛

𝜂
𝑛+1

𝑛 + 𝐶3 

To evaluate C3, we will use the no slip boundary condition: 

1)no slip boundary condition at y=0: u=0→ 𝜂 = 𝐻:u=0 

By applying the boundary condition we will get, 

𝐶3 = (
𝑛

𝑛 + 1
) (

𝜌𝑔 sin 𝜃

𝑚
)

1
𝑛

𝐻
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If we put the value of C3 in the above equation 

𝑢 = (
𝑛

𝑛 + 1
) (

𝜌𝑔 sin 𝜃

𝑚
)

1
𝑛

[𝐻
𝑛+1

𝑛 − (𝐻 − 𝑦)
𝑛+1

𝑛 ] 

= (
𝑛

𝑛 + 1
) (

𝜌𝑔 sin 𝜃

𝑚
)

1
𝑛

𝐻
𝑛+1

𝑛 [1 − (1 −
𝑦

𝐻
)

𝑛+1
𝑛

] 

Volumetric flow rate is the product of average velocity and the cross-sectional area. From 

the volumetric flow rate, we can find out the average velocity. 

Velocity profile for a Bingham plastic: 

Bingham plastic is a type of fluid, for which it does not deform initially when we applied 

force and once the applied stress crosses the yield stress or the critical stress then it behaves 

like a Newtonian fluid.  

For 𝜏𝑦𝑥 > 𝜏𝐵: 𝜏𝑦𝑥 = 𝜏𝐵 + 𝜇𝐵 (
𝜕𝑢

𝜕𝑦
) 

For 𝜏𝑦𝑥 < 𝜏𝐵; 
𝜕𝑢

𝜕𝑦
= 0 

And we knew that shear stress will be minimum at the free surface and maximum at the 

wall (𝜏𝑤). 

If 𝜏𝑤 < 𝜏𝐵:There will not be any flow. Once the 𝜏𝑤 exceeds the 𝜏𝐵 ,it starts to flow. 

 

We will continue the discussion in the next class. 

Thank you. 


