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Welcome back. So, till Now we were interested in understanding various quantities 

associated with the transfer function both in transfer in the continuous domain as well as in 

discrete time domain and its effect on the dynamical behavior. When we say the dynamical 

behavior, we were basically focusing on the rate of response or the speed of response, one 

important characteristics of dynamical feature is the stability of the system. Till now, we have 

not paid pretty much attention on deciding whether the system would be stable or not, when 

subjected to a given input to the system. So, we will focus on this particular topic in this 

lecture. 

(Refer Slide Time: 01:17) 

So, what we have in front of us is a system in state space domain. So, imagine that I have 

autonomous system which is described in state space domain given us the               . So, this 

is an nth order system, nth ordered autonomous system and we spent a lot of time to 

understand how to assess the stability of the system apart from the dynamical features of the 

system and how would you decide on the stability of the system? 

Well, you know that the general solution of the system is given us,  

  

So, what you basically do is you list out all the Eigen values, Eigen values, and what are the 2 

major categories in which the Eigen values may fall? They may either be a real or they may 

be complex, and depending upon whether they are all real or complex you can immediately 

see the Eigen values and comment upon the state of stability. 

So when the real eigenvalues such that you have all negative every single Eigen value is 

negative then you definitely see that the system is stable, which means every single state 

which the system can sample would be bounded, no state will blow up to infinity this is the 

simple definition of stability and otherwise the system would be unstable. Even if there is one 

Eigen value which is positive then e to the power positive quantity would blow up to infinity 

as t tends to infinity. 

And when you have complex eigenvalues then you want it to look at the real parts and if the 

real parts all the real parts less than 0, let me emphasize all real parts are less than 0 negative 

the system was stable and otherwise the system was unstable. So, this was what you could 

infer from the state space domain analysis. Look at the Eigen values every single negative 

Eigen value or in case of complex Eigen values every single real part being negative is 



assurance of stability and if even one of these is not satisfied the system is going to be 

unstable, pretty straightforward. Now you have an input output type system where you would 

like to know the response of a system subject to a given input, and then now you have to 

define stability. So, you need to define stability and we know that we need to do this analysis 

in the transform domain. 

(Refer Slide Time: 05:30) 

So let us see how do we do that? So, the first thing which you need to do is, you need to 

define what exactly is the meaning of stability. So, if in response to a bounded input, so the 

first thing which you need to worry about is bounded input, what is the meaning of bounded 

input? There is a minimum and maximum which has been defined for the input, so there is a 

minimum and maximum which is defined for the input. So, if in response to a bounded input, 

the dynamic output of the system remains bounded which means, the response also is 

bounded between maximum and minimum then the system is set to be stable otherwise 

unstable. 

So if we understand the meaning of bounded input obviously, the meaning of a bounded 

response would follow, so let us try to understand the meaning of bounded input. Let us 

imagine a step input of magnitude A. So, what happens here in this particular case? You give 

your system, so this is u of t and this is t, this function is defined such that you have the value 

0 and a value a at t is equal to 0 which is sustained there, so this is 0 this is A. So, what is the 

input what are the bounds on the input? Minimum is 0 and the maximum is A, so there are 

bounds. So, therefore, a step input follows the condition of bounded input, a step input is a 

bounded input. 

What about a sinusoidal input for example? Input, so I have here t and I have here        

u(t) = A sin ωt. 

What is going to happen in this case your function is going to look like this. So, what is the 

maximum that you have? It is A, this is the maximum and the minimum that you can have is 

minus A. So, again, your input is bound between 2 limits the upper one being plus A, the 

lower one being minus A. So, therefore, sinusoidal input also is an example of a bounded 

input. 

What about a ramp input. So, I write here bounded, bounded and I have a ramp input now, 

what is the functional form of a ramp input? U(t) is equal to a t and versus t. You see here the 



input goes to infinity as t tends to infinity. So, therefore, maximum is unbound there is no 

upper cap on the maximum and therefore, you have an unbounded input. So, therefore, you 

may not say anything or you may not be in a position to comment upon the stability of your 

system, if you subject the system to a ramp input, but you may subject the system to a step 

input and you know that the maximum that my input or my forcing function can have is A, 

the minimum that it can have is 0. So, therefore, if my response also is bounded then the 

system is called to be stable. 

(Refer Slide Time: 10:57) 

So now let us see how we can understand the dynamical behavior with respect to the stability 

of the system. The condition for stability is that a continuous system is stable if every poll 

associated with its transfer function is negative or has a negative real part. So, this means that 

I can simply look at the transfer function and say that I know that this system is going to be 

stable, I know this system is going to be unstable, the way I used to look at the Eigen values 

in the state space domain analysis and the moment I used to see that the Eigen values are 

positive, I use to say that a system is going to be unstable, when I saw all Eigen values to be 

negative as to say that the system is going to be stable. 

When the Eigen values used to be complex numbers with all negative real parts and I used to 

know that the system will have oscillations, but oscillations will eventually die out and when 

they had positive part I used to know that there would be oscillations and the oscillations 

would increase in amplitude with time, the oscillations would sustain if you have you had a 

purely imaginary eigenvalue. So, similarly, now what I can do is I can look at the transfer 

function, the Laplace domain transfer function in case of continuous systems and I would 

look into the poles of the system. And if every pole associated with the transfer function is 

either negative or the real part is negative, if it is a complex pole, then the system will be 

stable. Let us see if we can establish this. 

(Refer Slide Time: 12:49) 

So, imagine that I have a p, q order system. So, let us take the most general case. So, I have,  

𝑔𝑝,𝑞(𝑠) =  𝑘 (𝑎0 + 𝑎1𝑠 +  𝑎2𝑠2+ . . . + 𝑎𝑞𝑠𝑞1 +  𝑏1𝑠 +  𝑏2𝑠2+ . . . + 𝑏𝑝𝑠𝑝) 

this is the numerator having a polynomial of degree q divided by an polynomial of degree p. 

So, this I am considering the most general case. Now if this be the case, I would like to know 



the dynamical response and the input itself has to be bounded, so therefore, let us take the 

case of a step input. One thing which I have forgotten is that I need to multiply it with the 

static gain K. So, this is my general transfer function. 

So therefore, what would be 𝑦̅(𝑠), would be transfer function multiplied by the Laplace 

transform of the step input. So, that would be, 

𝑦̅(𝑠) =  𝐴𝑘 1𝑠 (𝑎0 + 𝑎1𝑠 +  𝑎2𝑠2+ . . . + 𝑎𝑞𝑠𝑞(𝑠 − 𝑟1)(𝑠 − 𝑟2). . . (𝑠 − 𝑟𝑝) ) 

How will I do the Laplace inverse inversion? Well, I know that I will need to do partial 

fraction. So, imagine that I can factorize the denominator, I do not worry about the 

numerator, again, I need to factorize the denominator. And let us say that the denominator 

can be factorized as follows. The numerator is simply 𝑎0 + 𝑎1𝑠 +  𝑎2𝑠2+ . . . + 𝑎𝑞𝑠𝑞, and I 

have factorized my denominator into p number of factors. 

So let us say the factors are (𝑠 − 𝑟1), (𝑠 − 𝑟2) up to (𝑠 − 𝑟𝑝), what would be my next step? I 

will need to do a partial fraction, I will not worry about what exactly would be the form of the 

partial fraction, but I know what would be the functional form of the final finally partial final 

partial fraction which I get. I hope you would agree that the final partial fraction would look 

like this, 
𝑐0 𝑠 + 𝑐1 𝑠−𝑟1 + 𝑐2 𝑠−𝑟2 + . . . + 𝑐𝑝𝑠−𝑟𝑝, there would be some numbers associated with c0, c1 

and so, on. I do not need to worry about that, at this point of time because they are not going 

to affect the stability of the system, they would affect the dynamics, but it will not affect the 

stability. 

We will see why, what is going to happen to y(t)? So, now we will do a Laplace inversion. 

So, I will get y(t) = AK(𝑐0 + 𝑐1𝑒𝑟1𝑡 +. . . + 𝑐𝑝𝑒𝑟𝑝𝑡). Now you see the first term on the right-

hand side is a constant function it is always going to be bound, but rest every term on the 

right-hand side has 𝑒𝑟𝑖𝑡. 

So, I have e to the power what is the nature of e
rt
, this is what this is e

rt
 versus t it looks like 

this, which means unbound and e
-rt

 and in every case r > 0. So, e
-rt

 you will have e
-rt

 again 

greater than 0 versus t, this will this is bound. You can find the minimum maximum in that 

case. So, when ri is real when ri is a real, stability dictates that ri must be less than 0 for y(t) to 

be bound, if y(t) has to be bound, then our ri have to be less than 0, you can see the graph on 

the right-hand side. 



Now the problem is when ri belong to complex numbers, when ri belong to complex numbers, 

then what happens? So, I have 𝑒𝑟𝑖𝑡 and let me write 𝑒𝑟𝑖𝑡, as what 𝑒|𝑟|𝑒𝑖𝜃
, where theta is equal 

to tan inverse imaginary upon real, I can do this. So, then what is going to happen? In this 

case, even before this happens what I can do is, I can simply write 𝑒𝑟𝑖𝑡 = 𝑒(𝑧1 + 𝑖𝑧2)𝑡. In this 

case, I do not need to even convert it to the r𝜃 form, I simply convert it to ri = z1 + iz2, so this 

is what? 𝑒𝑧1𝑡𝑒− 𝑖𝑧2𝑡. 

And now it is very clear that this will give you oscillations to your system because those can 

be converted to sines and cosines and this will give you decay or growth depending upon z1. 

So, therefore, you will have decay for z1 < 0 and growth for z1 > 0, why? Because you have 𝑒𝑧1𝑡, same thing which is there on the figure on the on the right-hand side. So, therefore, it is 

pretty clear that when you have a system whose poles are all negative or the if the poles are 

complex numbers, all of the real parts are negative, it is only then that you can expect the 

system to be stable. 

(Refer Slide Time: 23:34) 

So let us quickly look into the statement which we had a continuous system is stable if every 

pole associated with the transfer function has a negative real part or is itself negative. We 

looked into the transfer function for a first order system and we got further equation 

τ ⅆ𝑦ⅆ𝑡 + 𝑦 = 𝑘𝑢 

from here we got g(s) = k / (τs + 1), what was the response of such a system subjected to y(t) 

and u(t) as a function of t, if this is A, the response was bound bounded and this was the 

response. What was the pole? zr in this case was minus 1 / τ which is less than 0. I encourage 

you to find this out that for an equation of the form 
ⅆ𝑦ⅆ𝑡 + 𝑦 = 𝑘𝑢 for which g(s) would be k / 

(τs + 1) your r will become 1 / τ which is greater than 0. 

So we had y(t) = AK(1-et/τ) as the solution. If you follow the exact same procedure here you 

will find that y(t) = AK(1-et/τ). And what would this function look like? This function would 

look like this, this is y(t), u(t) versus t. This is A and what would the response look like when 

you can plot the response looks like this. So, bounded and tau was minus 1 / τ < 0 unbounded 

was 1 / τ which is greater than 0 as simple as that. So, you can simply look at the transfer 

function and comment on the stability. 



(Refer Slide Time: 26:46) 

Now can we extend this to discrete system? Let us look and write down the general discrete 

general discrete time pulse transfer function. So, g(z) would be what?  

𝑔(𝑧) =  (𝑎0 + 𝑎1𝑧−1  +  𝑎2𝑧−2+ . . . + 𝑎𝑞𝑧−𝑞1 +  𝑏1𝑧−1  +  𝑏2𝑧−2+ . . . + 𝑏𝑞𝑧−𝑞 ) K 

So, this is the general p, q order discrete time pulse transfer function. We will do the same 

analysis subject this to step input, what is going to happen? y(z) subject to a step input would 

be  

ŷ(𝑧) =  𝐴𝐾 1(1 − 𝑧−1) ( 𝑎0 + 𝑎1𝑧−1  +  𝑎2𝑧−2+ . . . + 𝑎𝑞𝑧−𝑞(1 − 𝑟1𝑧−1)(1 − 𝑟2𝑧−1). . . (1 − 𝑟𝑝𝑧−1)) 

Now let me factorize the denominator. If you remember the lecture in which we introduced z 

transforms, we can factorize the denominator now into p number of factors as this 1 − 𝑟1𝑧−1, 1 − 𝑟2𝑧−1, …+  1 − 𝑟𝑝𝑧−1, this is the way we will do the factorization. Then what we will do 

same, we will do a partial fraction, so what is going to happen? This will be 𝐴𝐾 ( 𝑐01−𝑧−1 +
𝑐11−𝑟1𝑧−1 + 𝑐21−𝑟2𝑧−1  . . . + 𝑐𝑝1−𝑟𝑝𝑧−1). 

And therefore, y of n t the inverse z transform will give you what? A k times c0 because one 

of our z inverse is simply z transform of the step function, the unit step function plus c1, we 

will take the inverse Laplace and this would be e to the power nlnr1 please refer to our 

previous lecture, you will get this plus 𝑐2𝑒𝑛 𝑙𝑛 𝑟2 plus upto 𝑐2𝑒𝑛 𝑙𝑛 𝑟𝑝. So, the first term on the 

right hand side is bounded with c 0 is a constant. 

Now every term rest of the of the terms have 𝑐2𝑒𝑛 𝑙𝑛 𝑟𝑖 in general ri may be complex. So, 

therefore, let me write this as 𝑒𝑛 𝑙𝑛|𝑟|𝑒𝑖𝜃
. And therefore, this would result in 𝑒𝑛𝑖𝜃𝑒𝑙𝑛|𝑟|. So, 

now what we see here is that we have e
lnr

, and what is ln r? |𝑟| = √𝑧12 + 𝑧22. 

So, if I draw a plane in which I have z1 the real part on x axis and z2 the imaginary part on the 

y axis, then I have a unit circle and then for ln r < 0, you need | r | < 1, the log of quantity less 

than 1 is negative. So, therefore, in this region as long as you have z1, z2 in this region your 

system is stable otherwise, the system is unstable. And I can draw a corresponding plot, so 

this is for discrete and what will be the corresponding plot for continuous you have z1, you 



have z2, all of this has the real part which is less than 0, so therefore, you have a system 

which is stable here. 

So you can always draw the complex plane and locate the poles there for the case of 

continuous system, the poles lie on the second and third quadrant the system would be stable. 

For the case of a continuous system, you draw a circle of unit length and if the pole lies inside 

it or even on it, you will have stability otherwise you will not have stability.  

So, this is not this is what are what we have we had to study we which we had planned on 

studying, we started with the analysis of the systems in transform domain studied everything 

about the continuous domain analysis then we went to the draw the discrete time domain 

analysis. We studied the effect of the form of transfer functions on the dynamical features, 

the speed of dynamics basically, and today we also looked into the effect of the features of 

the transfer function on the stability of the system. 

In the next lecture which will be the final lecture we will recapitulate everything which we 

studied in this particular course. And for today, we will stop here, we meet again for the last 

lecture tomorrow. Till then, goodbye. 


