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So, let us continue our analysis of cooling of a body in a reservoir. 
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So, we took the problem in which we had a solid body, which was initially a temperature T0 

and it was immersed in a reservoir of temperature, constant temperature T infinity. 

 

We determined the model equation as  

𝑑𝑇

𝑑𝑡
= −

ℎ𝐴𝑠

𝜌𝑉𝑐
(𝑇 − 𝑇∞) 
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And solved some of the problems in which for example, we were asked to give the equilibrium 

solutions or equilibrium temperature. So, let us quickly see what we arrived at? We arrived at 

𝑇𝑒 = 𝑇∞ and then we solved the model equation analytically. So, the time variation was given 

as  

𝑇(𝑡) = 𝑇∞ + (𝑇0 − 𝑇∞)𝑒−𝑎𝑡 

where a was given as  

ℎ𝐴𝑠

𝜌𝑉𝑐
= 𝑎 

Further using this solution using this solution we develop the phase portrait. Very quickly the 

phase portraits looked like this T this is the equilibrium solution then the phase portraits look 

like this. This is the general idea that we got in the previous lecture. So, let us continue our 

discussion. 
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Now, we are asked to develop the phase portrait without explicitly solving the governing 

equation. This is important. What we have been asked is to develop the phase portrait without 

explicitly solving the governing equation. In the previous case, we did solve the governing 

equation, we wrote 

𝑇(𝑡) = 𝑇∞ + (𝑇0 − 𝑇∞)𝑒−𝑎𝑡 

and then we saw that what are the extremities which the system can have what is the 

exponentially decaying behaviour, what is exponentially rising behaviour and then we drew 

the phase portrait. Now, the question is do we need to really solve this problem to develop the 

phase portrait. In this today's lecture we will see that in fact, you do not need to solve this 

problem explicitly to get the same answer. 
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Let us see how. So, our model equation was  

𝑑𝑇

𝑑𝑡
= −𝑎(𝑇 − 𝑇∞) 



This was our model equation. Now, we have a bifurcation parameter in the system in the 

previous lecture we in fact saw that for the sake of mathematical completeness, you may 

actually analyse positive and negative values of a and you see a completely different behaviour. 

So, therefore, in this lecture also we will take up these two possibilities and see what is the 

effect of a on the dynamics of the system. So, let us imagine that 𝑎 > 0, which is in fact the 

physically realisable situation, your value of 𝑎 > 0 which basically means that every single 

property associated with the system is in fact positive. So, let me draw the axis. 

This is the time this is the temperature. The first thing which you do is, so, this is for 𝑎 > 0. 

The first thing which you do is you identify the equilibrium solution on this phase portrait and 

we know that T equilibrium is T infinity. So, let us assume that this is the value for T infinity. 

This is T infinity. Some value of temperature. Now, I can divide this region I can divide this 

plane into several regions. So, I have  
𝑑𝑇

𝑑𝑡
= −𝑎(𝑇 − 𝑇∞) and therefore, looking at 𝑇∞. I divide 

this entire plane into two regions this is region 1 and this is region 2. 

So, in region 1, 𝑇 > 𝑇∞, the temperature in region 1 is greater than 𝑇∞ and therefore, what's 

going to happen in region 1, 𝑎 > 0  we know and 𝑇 − 𝑇∞  is also going to be greater than zero 

because 𝑇 > 𝑇∞. So, therefore, what is going to happen to  
𝑑𝑇

𝑑𝑡
  this is going to be equal to 

negative which is minus sign multiplied by 𝑎 which is positive multiplied by 𝑇 − 𝑇∞  which is 

again going to be positive. 

So, overall  
𝑑𝑇

𝑑𝑡
  which means the gradient is going to be negative. So, therefore, in this region 

in this region the gradient is going to be negative. Now, you imagine that you have to draw 

curves in this region such that the gradient of the curve is always negative, but you have to end 

up here because this is the long-term behaviour. This is the equilibrium solution. So, how will 

you solve? 

Or how will you draw the curve? Well, you can draw the curve like this. This is one of the 

curves. Remember, how did I do that, I took into consideration that along this curve, the 

gradient should always be negative and then second thing it should end up at 𝑇∞  as 𝑡 → ∞. So, 

this is one of the curves and this will be your T01, one of the initial conditions, you can have 

several of these curves corresponding to different initial conditions and so on. 

And if you remember, this is exactly the same phase portrait which we obtained for T0 greater 

than T infinity. If you remember from the previous lecture, this portion of the phase portrait 

was exactly like this. Now, I go for region 2. I have  
𝑑𝑇

𝑑𝑡
= −𝑎(𝑇 − 𝑇∞). In region 2, 𝑇 < 𝑇∞ 



and therefore, what I have is 
𝑑𝑇

𝑑𝑡
  which is equal to minus sign which is negative times 𝑎 which 

is positive times  𝑇 − 𝑇∞  which is negative which means this is going to be a positive quantity. 

So, the derivative in region 2 overall has to be a positive quantity. Now, the question is how 

We are going to draw a phase line which conforms to two conditions, the first condition is that 

the derivative of the line should always be positive and the second condition is that it should 

asymptotically reach 𝑇∞  as 𝑡 → ∞. I hope you will be able to convince yourself that this is 

going to be one of the phase lines. 

And you can draw several of them to make the complete phase portrait and then you will realise 

that this is the T02 and these are different initial temperatures or initial conditions and for      

𝑇0 < 𝑇∞, you in fact saw that this was the exact same phase portrait that we obtained in the 

previous lecture. 

So, then what do we understand by this what we understand by this is that for this particular 

problem or the problems of this nature, you actually do not need to solve the problem explicitly 

if you merely want to know the qualitative dynamical behaviour of the system and does this 

phase portrait make sense physically. 

Well, in region 1, your initial temperature of your system is larger than the equilibrium 

temperature, the equilibrium temperature being the temperature of the reservoir. So, therefore, 

with time, so, this is the direction of time in which time the temperature of your system is going 

to reduce. 

Well, if you have a body which is colder than your reservoir temperature, then what's going to 

happen the temperature of your body is going to increase this is the direction of time and 

ultimately all of them will reach 𝑇∞. Now, you must say that negative time does not exist 

negative time in fact, you can always shift the time to zero of your convenience. Therefore, 

negative time does not exist yes physically, it does not mathematically this particular space is 

always available. So, therefore, we draw the complete phase portrait like this. 
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So, let me elegantly draw the phase portrait like this. So, my equation is  
𝑑𝑇

𝑑𝑡
= −𝑎(𝑇 − 𝑇∞). I 

will mark the axis as t and T, I will mark the equilibrium solution by this dotted line and this is 

going to be equal to 𝑇∞ and in fact you can put 𝑇∞ anywhere on this plane. So, all the axes 

which are parallel to the time axis can be in fact 𝑇∞ subject to the condition that they are 

physically realisable. 



And once we have marked all of this then for 𝑎 > 0, the sum total is this. So, therefore, these 

are going to be the phase lines and for 𝑎 > 0 and 𝑇 < 𝑇∞. These are going to be the phase lines. 

So, this is the phase one portrait. Now, the question is that for a condition where 𝑎 < 0. So, 

imagine that there is not this particular system, but there is some system for which you have an 

analogous model equation and 𝑎 in that case is less than zero. Then how would the phase 

portrait look like? 
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Well, we can do that analysis. Let us write  
𝑑𝑇

𝑑𝑡
= −𝑎(𝑇 − 𝑇∞) and now, we are trying to 

develop a phase portrait for a situation where 𝑎 < 0 making the overall coefficient of the 

exponent to be positive. So, I will again draw the equilibrium solution as this horizontal line, 

this is 𝑇∞. I will divide this entire phase portrait into two regions. 

This is region 1, and this is region 2. So, let me do an analysis for region 1 and region 2. So, 

for region 1, 𝑇 > 𝑇∞. Again, I am not solving the model equation, all I am doing is I am 

analysing the derivative. So, 
𝑑𝑇

𝑑𝑡
= −𝑎(𝑇 − 𝑇∞)  which means, this is going to minus sign is 

negative always, 𝑎 in our case is less than zero. So, you have negative but 𝑇 − 𝑇∞ is going to 

be positive. 

So, overall 
𝑑𝑇

𝑑𝑡
  is going to be greater than zero or it is going to be positive. So, let us imagine a 

curve which always has a positive slope. But now, the situation is completely inverted you have 

an asymptote which has to be 𝑇∞, the equilibrium solution will always be an asymptote and 

therefore, the curve should have a positive slope and an asymptote which is 𝑇∞, but the 𝑇∞ now 

will be here. It will be here. 

So, therefore, the only way I can draw this curve is if I draw curves like this and these would 

be the phase lines. Remember, why I could not draw the asymptote for 𝑡 → +∞ ? Because 

there is no way this solution this curve can be drawn with a positive slope the only way that 

the slope can be maintained positive and at the same time you have 𝑇∞ as asymptote is if you 

go to negative time. 

And now for region 2, which means 𝑇 < 𝑇∞ my 
𝑑𝑇

𝑑𝑡
= −𝑎(𝑇 − 𝑇∞)  which means that negative 

sign. 𝑎 in my case is negative and 𝑇 − 𝑇∞ is also negative which means overall the slope has 

to be negative. 



Again, I have to draw curves such that the slopes are always negative and 𝑇∞ is a is an 

asymptote and therefore, the only way I can draw any of such curses I do this. So, therefore, 

for the case where 𝑎 < 0  your phase portrait looks something like this. 
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Now, let us analyse how does the phase portrait change as a function of 𝑎. So, I will need to 

draw two phase portraits now this is t this is T and irrespective of the 𝑎, Te remains the same. 

So, I will draw the horizontal lines corresponding to the Te. So, this is Te. Now on the left-hand 

side, I draw the phase portraits for 𝑎 > 0 . And for the left-hand side, right hand side I draw 

for 𝑎 < 0  . So, for 𝑎 > 0 we saw that the phase portraits, phase lines look like this. These were 

the phase lines and for 𝑎 < 0  phase lines look like this. So, let us see the characteristic features 

of the two, phase portraits. When 𝑎 < 0, which is the phase portrait you can see on the right-

hand side the system diverges with time. So, the temperature or any associated parameter for 

that particular system, it blows up to infinity as time 𝑡 → ∞. 

Whereas, for 𝑎 > 0, remember your model equation already had a negative sign in front of it. 

So, the general theory remains the same that for an equation of the form  
dx

𝑑𝑡
= 𝑥  ; 𝑎 > 0, your 

system is unstable or divergent for 𝑎 < 0, your system is convergent or system is stable. So, 

since this in this particular case your model equation already had negative sign in front of it for 

such a case for 𝑎 > 0, you see a convergent system the solutions converge to the in 𝑇∞. So, 

therefore, we can say that the fate of your system, the value of the variable as time 𝑡 → ∞ 

depends upon the sign of 𝑎. When sign of 𝑎 changes, the fate changes and what is the meaning 

of fate? 

See, I am not interested in the exact value of the dynamical variable or the rate at which it 

increases or changes. I am interested in knowing what happens to the final value as long as my 

𝑎 > 0 irrespective of the initial condition. My final fate is that I am going to end up at 𝑇∞ and 

this is going to be exactly opposite when the sign of a changes you move away from 𝑇∞. So, 

therefore, you have a stable system here and you have an unstable system here and therefore, 

the system has a bifurcation and the bifurcation parameter is 𝑎 and the system has bifurcation 

about 𝑎 = 0. So, this is the complete phase portrait and I emphasise again that this these phase 

portraits consider all the possibilities which may or may not include physically realisable 

properties. 



And this is quite obvious by looking at this particular phase portrait that this particular region 

which you can see here is the physically realisable region. So, therefore, for our particular 

example, you may worry about only the first coordinate where temperature is positive and time 

is positive, but otherwise go as a complete mathematical theory you must know that this is how 

the phase portraits look like. 

Now, when we drew these phase portraits without actually solving the problem, can we ensure 

that these are actually the solution lines? For that let us do one thing, let us draw these curves 

and visualise these curves. 
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So, our solution let us remind ourselves that our solution was  

𝑇(𝑡) = 𝑇∞ + (𝑇0 − 𝑇∞)𝑒−𝑎𝑡 

This was the solution and I will use the online Desmos calculator, graphing calculator to 

visualise the solutions. To make it easily visualizable let us recast this as  

𝑓(𝑥) = 𝑎 + (𝑏 − 𝑎)𝑒−𝑐𝑥 

Due to the syntax which is required in the graphing calculator, we will be using this. Where, 𝑎 

would correspond to 𝑇∞, b would correspond to T0 and c would correspond to the parameter 𝑎. 
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So, let us draw these 𝑓(𝑥) = 𝑎 + (𝑏 − 𝑎)𝑒−𝑐𝑥. This is the equation and let me click around 

this, these parameters. So, 𝑎 was the ultimate temperature. So, let me make it in a range of 200 

to 500, b was the temperature. So, let me make it in the range of again we can keep the range 

same 200 to 500 and let me change this to a small limit of -0.1 to 0.1. 

So, let us see what we observe. Let us see. So, our first condition was that when the initial 

temperature is greater than the equilibrium temperature then your solutions would converge at 

time 𝑡 → ∞ provided your c is positive. This was the phase portrait which we developed. So, 

our equilibrium temperature let us set the equilibrium temperature at 200 and my initial 

temperature was say 300. 

So, this is what happens. Your temperature starts with 300 it goes down to ultimate temperature 

of 200. What is the importance of the parameter c or in our model equation the parameter a it 

gives you the speed with which or the rate with which the parameter comes down. So, I can 

make this smaller as I said small value of a means slow decay. 



This is how it looks like and you see here in the negative region negative time again for the 

sake of mathematical completeness, the curve looks like the source of the overall responses 

like this. 
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And do we see this in in this particular mode? Yes, what we saw was you have this and this is 

exactly what you see in here also you see here also. 
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We get the reducing. Now, what happens when the equilibrium temperature is larger? So, let 

me make the equilibrium temperature as 400. You see here, you start with some value say 300 

and then you rise is this what we also saw in the phase portrait? Yes, we saw in the this in the 

phase portrait that you actually want like this. And this is the car with you all you are seeing 

this right. 

So, for 𝑎 > 0, our phase portraits actually match. What about 𝑎 < 0? So, for 𝑎 < 0, now, you 

see that your system has asymptote at 𝑡 → −∞. This is what we also saw in our case. So let me 

draw what we saw. We in fact saw that the system will have slope which is always negative, 

and it will have the asymptote at negative infinity and then the other curve was like this. And 

then let us see, if we saw this thing in the present cases well, I will make this positive. You see 

this for this case. So, negative the system diverges, and then the system diverges to negative 

infinity, positive the system saturates and for this case also the system saturates. So, I can again 

animate all of these and then you will see that these are all the possibilities that the system can 

sample and you can get the corresponding dynamics. So, let us see what we understood and 

learned in this particular course. 
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What we studied was that we started with the definition of order for system, the definition of 

linearity, the definition of autonomous systems, then we studied the behaviour of first order 

linear autonomous systems. And then we took up an example, which was a physical example 

of cooling of a body and then what we realised was that all the principles that we studied for 

the analysis of dynamics of a very simple equation of the form  
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 can in fact be realised 



for physical system as well. We developed the phase portraits, we invoked the concept of 

equilibrium solution, we also invoked the concept of phase lines, we understood how to draw 

the phase portraits and how to draw different phase lines and also the concept of bifurcation. 

While we did understand the limitation for one particular set of physically realisable quantities, 

we also realise that there can be other situations where the other values of the system parameters 

may be sampled. 

And therefore, for the sake of mathematical completeness with an expectation of being able to 

extrapolate similar concepts to other model and other systems. We look into the complete phase 

portraits including positive x-axis positive temperature axis, negative x-axis negative 

temperature axis and learn the general behaviour of first order systems. We will stop here today 

and then from the next week onwards, we will take up the case for higher order linear systems. 

Thank you. 


